Student Performance Characteristics in a Hybrid Engineering Statics Course

Case : Wichita State Wha : UNIVERSITY

Roy Myose, L. Scott Miller, and Elizabeth Rollins
Department of Aerospace Engineering Wichita State University

Presentation Outline

- Background and motivation
- Describe the advantages of hybrid-style course
- Define topical coverage and exam structure
- Discuss student performance for exams during the semester
- Obtain a benchmark for performance based on cumulative averages

Background

- Significant growth \& demand for STEM graduates in U.S.
o Studies have shown that $50-85 \%$ of U.S. GDP growth is due to advances in science \& engineering*
- One roadblock to increasing Engineering graduation numbers is the issue of student retention
- A common bottleneck in Engineering is Statics
o 56% pass rate at Cal Poly Pomona
o 61\% pass rate at Univ of Texas - Pan American
o 65% pass rate at Wichita State for 1760 students
o Comparable 66% pass rate for $1^{\text {st }}$ author's hybrid classes
*Norm Augustine, U.S. News \& World Report, 8 June 2012

Motivation for Benchmark Data

- Hybrid class by the first author has a comparable pass rate
- To increase retention and improve student success, interventions will be necessary
o However, the efficacy of interventions cannot be objectively assessed without a benchmark
- Goal is to obtain a benchmark for student performance over the course of the semester for a hybrid Statics class

Advantages of Hybrid Course

- A hybrid course includes videos of concept development and example problems viewed outside of class
o The videos allow students to go over difficult concepts multiple times by pausing and rewinding the videos
o Dovetails with current students who desire study material any time, anywhere
- Opens up class time to solve additional examples and spend time on review prior to exams
- Class periods become available to increase the number of exams, each of which become a smaller fraction of the final grade
o Section coverage in each exam becomes limited rather than wideranging, so exams are more like quizzes in terms of coverage
o Students may be able to recover from one poor exam score compared to classes with only a few exams

Organization and Topical Coverage

Different for 50 min class vs 60 \& 75 min classes

Week	Exam	50min Class [\# Lessons]	60\&75min Class[\# Lessons]	Exam	Week
3	1	Ch2 Force Vectors [4]	Ch2 Force Vectors [5]	1	4
5	2	Ch2 continued [1] \& Ch3 Force Equilibrium [2]	Ch3 Force Equilibrium [2] \& Ch 4 Moments [2]	2	6
7	3	Ch 4 Moments [4]	Ch4 continued [3] \& Ch5 Rigid Body Equilibrium [2]	3	7
9	4	Ch4 continued [1], Ch5 Rigid Body Equilibrium [3], \& Ch6 Trusses [1]	Ch5 continued [1] \& Ch6 Trusses \& $\frac{\text { Frames }}{\uparrow}$ [3]	4	10
10		Last Day for Withdrawal	Last Day for Withgrawal		10
11	5	Ch6 Trusses \& Frames [2] \& Ch7 Internal Forces [2]	Most difficult: Frames	5	12
13	6	Ch7 Internal Forces cont. [1] \& Ch8 Friction [2]	Ch9 \& 10 Section Prop [5]	6	15
15	7	Ch9 \& 10 Section Prop [5]			
			Myose, Miller, and Rollins		6

Dataset for the Benchmark

- Dataset consists of 343 students in the first author's hybrid classes
o 152 students in four 50-minute sections with 7 regular exams
o 117 students in three 75-minute sections and 74 students in two 60minute sections (i.e., 191 total students) with 6 regular exams
o In addition to regular exams, all students took a prerequisite knowledge test at the start of the semester and a comprehensive final exam
- $\sim 11 \%$ of the students withdrew from the course with a grade of W
o Some students remained in the class even though they were flunking at $10^{\text {th }}$ week, often to maintain financial aid or immigration status
o Those who did not take the exams were not a part of the cumulative averages - change in class composition can affect statistical results

Individual Exam Averages Over the Course of a Semester

- Performance by 50-min class was lower than 60-\& 75 -min classes
- Reason: they were less capable as indicated by lower prerequisite test score (topic of earlier paper)
- Exam 1 is review so many do very well, but this is not evident from the average

Myose, Miller, and Rollins

Individual Exam Averages Over the Course of a Semester

- Result on exam over frames is poor because it is the most difficult material in course
- Except for frames, exam performance appears relatively constant (to $\pm 5 \%$)
- Poor students dropping over time masks difference in performance
- Need to look at cumulative ave
- - - Overall Average \quad. $75 \mathrm{~min} \& 60 \mathrm{~min} \quad \triangle 50 \mathrm{~min}$

Myose, Miller, and Rollins

Cumulative Statistics (Average \& Standard Deviation) During Semester

Group \Average, SD, (N)	Exam 1	Exam 1 \& 2	Exam 1 to 4	All Regular Exams
	85.9%	84.6%	83.5%	83.0%
Those that pass (A-C)	12.7%	9.6%	8.2%	7.7%
	(201)	(200)	(193)	$(167)^{*}$
	76.6%	75.2%	75.5%	76.4%
	19.2%	16.5%	14.1%	12.8%
	(343)	(337)	(304)	$(243)^{*}$
Not passing (C- to D \& F)	63.5%	61.5%	61.6%	62.0%
	19.4%	14.7%	11.1%	9.8%
	(142)	(137)	(111)	$(76)^{*}$

- Divided into groups: those that pass, all (reference), and not passing
- Cumulative average do not vary significantly within each group

Myose, Miller, and Rollins

Cumulative Performance Over the Course of the Semester

Analysis based on averages alone obscures trends

Distribution of averages over semester

- Exam 1 is review, so half of those who pass earn 90's
- Over the semester, number of A's decrease while number of C's increase

Correlation Between Exam Scores and Semester Grade

- Pearson correlation coefficient between exam scores and semester grade were determined
- Pearson correlation coefficient ranges between +1 and -1
o It is +1 when it is perfectly correlated
o 0 when there is no correlation at all
o-1 when an increase in one variable leads to a decrease in the other
o Results are less scattered when the correlation coefficient approaches +/-1

Correlation Between Exam Scores and Semester Grade

- Correlation coefficient between individual exams \& semester grade:

Pre-test	Exam 1
0.457	0.628

Pre-test = moderate correlation Exam 1 (only) = moderately high

- Correlation coefficient between cumulative ave \& semester grade:

Pre-test \& Exam 1	Exam 1 \& 2	Exam 1 to 4	All Regular Exams
0.678	0.783	0.883	0.947
very high \longrightarrow near perfect correlation			

- Very high correlation by the fourth exam, when the last day to withdraw with a grade of W occurs

Correlation Details: Pre-test, Exam 1 \& 2 Average with Semester Grade

- Least squares fit lines shown: Exam 1 (only), cumulative ave of Ex 1 \& 2, and Pre-test (only)
- Data points for Ex 1 \& standard deviation (SD) at each grade pt are also shown
- SD ("error") bars show range of values for each grade pt

Correlation Details: Pre-test, Exam 1 \& 2 Average with Semester Grade

- For Ex 1, average score at each grade pt is often above the typical grade range
o E.g., those with C's for semester grade have 81% average on Ex 1
- There is also a very high variance
o E.g., those with C+ have SD of $\pm 15 \%$ even though grades are only $\pm 1.5 \%$ wide

- Cumulative ave of Ex 1 \& 2 lowers typical score

Correlation Details: Exam 1-4 Cumulative Average \& Grade

- Data points for cumulative ave \& SD of Ex 1-4 at each grade pt are shown
- By Ex 4, cumulative ave least squares fit line has moved close to middle of score range of each grade
- Variance in scores for each grade has also been reduced, though SD is still more than $\pm 1.5 \%$

Myose, Miller, and Rollins

Correlation Details: All Regular Exam Cumulative Average and Grade

After all regular exams (except for final exam):

- Not much shift in cumulative ave line except at lower grade levels
- Variance in scores has reduced to about $\pm 2 \%$ to 3%
- Results are close to grade level values \& range as expected since correlation coefficient is $\underline{0.947}$

Summary

- Student performance characteristics in a hybrid Statics class were investigated
- Cumulative averages did not vary much over the semester, but the distribution of scores varied a lot
- Decreasing amounts of variance in the cumulative exam averages existed at each grade level as the semester progressed
- By the withdrawal date, the cumulative exam average could be used with relatively good confidence to predict end-of-semester grades
- There is a limit to the amount of improvement that is possible just with the final exam; i.e., after the completion of the regular semester exams
- These results provide a benchmark for comparison in the future when interventions are made to affect student success in Statics at WSU

