Student Performance Characteristics in a Hybrid Engineering Statics Course

Roy Myose, L. Scott Miller, and Elizabeth Rollins

Department of Aerospace Engineering Wichita State University

Presentation Outline

- Background and motivation
- Describe the advantages of hybrid-style course
- Define topical coverage and exam structure
- Discuss student performance for exams during the semester
- Obtain a benchmark for performance based on cumulative averages

Background

- Significant growth & demand for STEM graduates in U.S.
 o Studies have shown that 50-85% of U.S. GDP growth is due to advances in science & engineering*
- One roadblock to increasing Engineering graduation numbers is the issue of student retention
- A common bottleneck in Engineering is Statics
 - o 56% pass rate at Cal Poly Pomona
 - o 61% pass rate at Univ of Texas Pan American
 - o 65% pass rate at Wichita State for 1760 students
 - o Comparable 66% pass rate for 1st author's hybrid classes

*Norm Augustine, U.S. News & World Report, 8 June 2012

16 September 2019

Motivation for Benchmark Data

- Hybrid class by the first author has a comparable pass rate
- To increase retention and improve student success, interventions will be necessary
 - o However, the efficacy of interventions cannot be objectively assessed without a benchmark
- Goal is to obtain a benchmark for student performance over the course of the semester for a hybrid Statics class

Advantages of Hybrid Course

- A hybrid course includes videos of concept development and example problems viewed outside of class
 - o The videos allow students to go over difficult concepts multiple times by pausing and rewinding the videos
 - o Dovetails with current students who desire study material any time, anywhere
- Opens up class time to solve additional examples and spend time on review prior to exams
- Class periods become available to increase the number of exams, each of which become a smaller fraction of the final grade
 - o Section coverage in each exam becomes limited rather than wideranging, so exams are more like quizzes in terms of coverage
 - o Students may be able to recover from one poor exam score compared to classes with only a few exams

Organization and Topical Coverage

Different for 50 min class vs 60 & 75 min classes

Week	Exam	50min Class [# Lessons]	60&75min Class [# Lessons]	Exam	Week		
3	1	Ch2 Force Vectors [4]	Ch2 Force Vectors [5]	1	4		
5	2	Ch2 <i>continued</i> [1] & Ch3 Force Equilibrium [2]	Ch3 Force Equilibrium [2] & Ch 4 Moments [2]	2	6		
7	3	Ch 4 Moments [4]	Ch4 <i>continued</i> [3] & Ch5 Rigid Body Equilibrium [2]	3	7		
9	4	Ch4 <i>continued</i> [1], Ch5 Rigid Body Equilibrium [3], & Ch6 Trusses [1]	Ch5 <i>continued</i> [1] & Ch6 Trusses & <mark>Frames</mark> [3]	4	10		
10		Last Day for Withdrawal	Last Day for Withc <mark>rawal</mark>		10		
11	5	Ch6 Trusses & Frames [2] & Ch7 Internal Forces [2]	Most difficult: Frames	5	12		
13	6	Ch7 Internal Forces <i>cont.</i> [1] & Ch8 Friction [2]	Ch9 & 10 Section Prop [5]	6	15		
15	7	Ch9 & 10 Section Prop [5]					

16 September 2019

Dataset for the Benchmark

- Dataset consists of 343 students in the first author's hybrid classes
 - o 152 students in four 50-minute sections with 7 regular exams
 - o 117 students in three 75-minute sections and 74 students in two 60minute sections (i.e., 191 total students) with 6 regular exams
 - In addition to regular exams, all students took a prerequisite knowledge test at the start of the semester and a comprehensive final exam
- ~11% of the students withdrew from the course with a grade of W
 - Some students remained in the class even though they were flunking at 10th week, often to maintain financial aid or immigration status
 - o Those who did not take the exams were not a part of the cumulative averages change in class composition can affect statistical results

16 September 2019

Individual Exam Averages Over the Course of a Semester

- Performance by 50-min class was
 lower than 60- & 75-min classes
- Reason: they were less capable as indicated by lower prerequisite test score (topic of earlier paper)
- Exam 1 is review so many do very well, but this is not evident from the average

16 September 2019

Individual Exam Averages Over the Course of a Semester

- Result on exam over frames is poor because it is the most difficult material in course
- Except for frames, exam performance appears relatively constant (to <u>+</u>5%)
- Poor students dropping over time masks difference in performance
- Need to look at cumulative ave

16 September 2019

Myose, Miller, and Rollins

9

Cumulative Statistics (Average & Standard Deviation) During Semester

Group \ Average, SD, (N)	Exam 1	Exam 1 & 2	Exam 1 to 4	All Regular Exams
	85.9%	84.6%	83.5%	83.0%
Those that pass (A-C)	12.7%	9.6%	8.2%	7.7%
	(201)	(200)	(193)	(167)*
	76.6%	75.2%	75.5%	76.4%
All students (reference)	19.2%	16.5%	14.1%	12.8%
	(343)	(337)	(304)	(243)*
	63.5%	61.5%	61.6%	62.0%
Not passing (C- to D & F)	19.4%	14.7%	11.1%	9.8%
	(142)	(137)	(111)	(76)*

- Divided into groups: those that pass, all (reference), and not passing
- Cumulative average do not vary significantly within each group

16 September 2019

Cumulative Performance Over the Course of the Semester

- Exam 1 is review, so half of those who pass earn 90's
- Over the semester, number of A's decrease while number of C's increase

16 September 2019

Correlation Between Exam Scores and Semester Grade

- Pearson correlation coefficient between exam scores and semester grade were determined
- Pearson correlation coefficient ranges between +1 and -1
 - o It is +1 when it is perfectly correlated
 - o 0 when there is no correlation at all
 - o -1 when an increase in one variable leads to a decrease in the other
 - Results are less scattered when the correlation coefficient approaches +/-1

Correlation Between Exam Scores and Semester Grade

• Correlation coefficient between **individual** exams & semester grade:

Pre-test = moderate correlation Exam 1 (only) = moderately high

• Correlation coefficient between **<u>cumulative</u>** ave & semester grade:

Pre-test & Exam 1	Exam 1 & 2	Exam 1 to 4	All Regular Exams
0.678	0.783	0.883	0.947
very high		► ne	ear perfect correlatio

• Very high correlation by the fourth exam, when the last day to withdraw with a grade of W occurs

Correlation Details: Pre-test, Exam 1 & 2 Average with Semester Grade

- Least squares fit lines shown: Exam 1 (only), cumulative ave of Ex 1 & 2, and Pre-test (only)
- Data points for Ex 1 & standard deviation (SD) at each grade pt are also shown
- SD ("error") bars show range of values for each grade pt

Semester Grade Point

Correlation Details: Pre-test, Exam 1 & 2 Average with Semester Grade

- For Ex 1, average score at each grade pt is often above the typical grade range
- E.g., those with C's for semester grade have 81% average on Ex 1
- There is also a very high variance
- E.g., those with C+ have SD of <u>+15%</u> even though grades are only <u>+1.5%</u> wide

16 September 2019

Correlation Details: Exam 1-4 Cumulative Average & Grade

- Data points for cumulative ave & SD of Ex 1-4 at each grade pt are shown
- By Ex 4, cumulative ave least squares fit line has moved close to middle of score range of each grade
- Variance in scores for each grade has also been reduced, though <u>SD</u> is still more than <u>+</u>1.5%

Myose, Miller, and Rollins

16

Correlation Details: All Regular Exam Cumulative Average and Grade

After all regular exams (except for final exam):

- Not much shift in cumulative ave line except at lower grade levels
- Variance in scores has reduced to about <u>+</u>2% to 3%
- Results are close to grade level values & range as expected since correlation coefficient is <u>0.947</u>

• There is still some room to improve with the final, but it is limited

Myose, Miller, and Rollins

17

16 September 2019

Summary

- Student performance characteristics in a hybrid Statics class were investigated
- Cumulative averages did not vary much over the semester, but the distribution of scores varied a lot
- Decreasing amounts of variance in the cumulative exam averages existed at each grade level as the semester progressed
- By the withdrawal date, the cumulative exam average could be used with relatively good confidence to predict end-of-semester grades
- There is a limit to the amount of improvement that is possible just with the final exam; i.e., after the completion of the regular semester exams
- These results provide a benchmark for comparison in the future when interventions are made to affect student success in Statics at WSU

