

DIRECTORY-BASED WIRED-WIRELESS NETWORK-ON-CHIP ARCHITECTURES TO
IMPROVE PERFORMANCE

A Dissertation by

Kishore Konda Chidella

Master of Technology, Jawaharlal Nehru Technological University, 2010

Submitted to the Department of Electrical Engineering and Computer Science
and the faculty of the Graduate School of

Wichita State University
in partial fulfillment, of

the requirements for the degree of
Doctor of Philosophy

December 2018

© Copyright 2018 by Kishore Konda Chidella

 All Rights Reserved

ii

DIRECTORY-BASED WIRED-WIRELESS NETWORK-ON-CHIP ARCHITECTURES TO
IMPROVE PERFORMANCE

The following faculty members have examined the final copy of this dissertation for form and
content, and recommend that it be accepted in partial fulfillment of the requirement for the degree
of Doctor of Philosophy, with a major in Electrical Engineering and Computer Science.

__
Abu Asaduzzaman, Committee Chair

__
Ramazan Asmatulu, Committee Member

__
Hongsheng He, Committee Member

__
Ward T. Jewell, Committee Member

__
M. Edwin Sawan, Committee Member

Accepted for the College of Engineering

Steven Skinner, Interim Dean

Accepted for the Graduate School

__
Dennis Livesay, Dean

iii

DEDICATION

‘To my parents, friends, and family members’

iv

ACKNOWLEDGEMENTS

I am very thankful to my dissertation advisor Dr. Abu Asaduzzaman for his continuous

encouragement and support throughout my research work. His timely supervision on my progress

and guidance helped me to complete this research on time. I appreciate his contributions,

unconditional support, and funding to make my Ph.D. research productive and thought-provoking.

I am always thankful for his constant support and I am glad to be supervised from such an

industrious leader. He always had time and patience to guide me accordingly. It has been an honor

for me to work for him as a graduate research assistant and graduate teaching assistant. I am also

thankful to Dr. M. Edwin Sawan for establishing a Maha “Maggie” Sawan Fellowship for graduate

students, and I am very happy to be honored by such prestigious award. I gratefully acknowledge

the funding sources from Wichita State University for travel grants, and scholarships.

I express my sincere gratitude and thanks towards Dr. Ramazan Asmatulu, Dr. Hongsheng

He, Dr. Ward T. Jewell, and Dr. M. Edwin Sawan for taking time from their busy schedules and

serve on my dissertation committee. I take pleasure in recognizing the efforts of all those who

encouraged and assisted me both directly and indirectly with my experimental research. I

acknowledge the WSU Computer Architecture and Parallel Programming Laboratory (CAPPLab)

facilities and research group for providing me with all necessary resources to conduct the research

work, prepare the manuscript, and improve the quality of the work and manuscript.

I would like to thank my family, in-laws, for all their love, and encouragement. I thank my

parents for the sacrifice they made to see my dreams come true. A special thanks to my brother

Ganesh Chidella, who uplifted my intentions, motivated me in hard times and utmost is the

financial support.

v

Most of all for my loving, favorable, patient, and determined wife Sahithi Chidella whose

faithful support during all stages of my life and Ph.D. is much appreciated. I am thankful to god

for giving me such a nice, kind and understandable wife as my partner. I may not reach this point,

without the inspiration of my wife. To my beloved son, Venu Karthikeya and daughter Mishu

Ishaanvi, I would like to express my thanks for being good all the time and always making me

cherish and reenergized to accomplish the goals.

 Kishore Konda Chidella

 Wichita State University

 December 2018

vi

ABSTRACT

Network-on-Chip (NoC) architectures have emerged as a promising technology for modern

computer systems to address the design challenges of high-performance computing systems.

Wireless NoC (WNoC) architectures are introduced to improve performance by reducing the core-

to-core communication latency. Conventional WNoCs broadcast messages that increase

bandwidth-traffic, communication delay, and power consumption. Studies show that directory-

based schemes have potential to reduce bandwidth-traffic and improve performance. This work

introduces a WNoC architecture with centralized directory (WNoC-CD) and a WNoC architecture

with distributed directories (WNoC-DDs) to enhance faster execution by reducing bandwidth-

traffic and communication latency. The impacts of uniform and non-uniform distribution of cores

into subnets on performance are also studied.

VisualSim software package is used to model and simulate a traditional mesh and the

proposed WNoC-CD and WNoC-DDs architectures by processing different communication

scenarios. Experimental results show that the proposed WNoC-DDs reduces communication delay

up to 20.54% and 5.40%, respectively, when compared to mesh and WNoC-CD. Similarly, the

proposed WNoC-DDs reduces power consumption up to 73.56% and 19.97%, respectively, when

compared to mesh and WNoC-CD. In a WNoC-DDs, each subnet works independently and

resolves communication issues simultaneously. Experimental results also show that the non-

uniform subnets help reduce communication delay up to 11.11% and reduces power consumption

up to 14.76% when compared with the uniform subnets. Non-uniform partitioning provides

flexibility of allocating tasks to different sized subnets as needed and thus improves the core

utilization to a greater extent.

vii

 TABLE OF CONTENTS

Chapter Page

1. INTRODUCTION ...1
1.1 Computer Architectures ..4

1.1.1 Single-Core Architectures ...4
1.1.2 Multicore Architectures ..6

1.2 Cache Coherence in Multicore Architectures ..9
1.3 Performance Issues of Network Topologies ..12
1.4 Problem Description ..13
1.5 Contributions..14

 1.6 Dissertation Organization ..15

2. LITERATURE SURVEY ...16

 2.1 Cache Memory Hierarchy ..16
2.1.1 Cache in Single-Core Architectures ..16
2.1.2 Cache in Multicore Architectures ...18
2.1.3 Cache Coherence Protocols in Multicore Architectures19

2.2 Directory-Based DASH Architecture ...22
2.3 Interconnection Network Topologies ...24

2.3.1 Bus Topology ..24
2.3.2 Crossbar Topology ..25
2.3.3 Mesh Topology ...27

2.4 Wired-Wireless Network-on-Chip (WNoC)Topology ...28
2.4.1 Clustering Cores into Subnets ...28
2.4.2 Wireless Routers into Subnets ..30
2.4.3 Uniform and Non-Uniform Partition of Subnets 33
2.4.4 Adaptive XY Routing Algorithm for WNoC Architecture 34

3. PROPOSED DIRECTORY-BASED WIRED-WIRELESS NETWORK-ON-CHIP ARCHITECTURES ...36

3.1 Designing Directories for WNoC Architectures ..37
3.2 Customizing MESI Protocol for WNoC Architectures ..39
3.3 Proposed Architecture 1: Introduction of Centralized Directory in WNoC

 Architecture with Uniform Partition of Subnets 41
3.3.1 Clustering Cores into Uniform Subnets of WNoC Architecture41
3.3.2 Communication between Subnets with Centralized Directory42

viii

TABLE OF CONTENTS (continued)

Chapter Page

3.4 Proposed Architecture 2: Introduction of Distributed Directories in WNoC
 Architecture with Uniform Partition of Subnets 43

3.4.1 Clustering Cores into Uniform Subnets with an Individual Directory44
3.4.2 Communication between Subnets with Distributed Directories45

3.5 Proposed Architecture 3: Non-Uniform Partition of Subnets in
 WNoC Architecture with Distributed Directories47

3.5.1 Clustering Cores into Uniform and Non-Uniform subnets with an
Individual Directory ..48

3.5.2 Communication between Distributed Directories with Different
Assignments ..50

4. EXPERIMENTAL DETAILS ...52

4.1 Assumptions ...52
4.2 Simulation Tool ...57
4.3 Workload..60
4.4 Simulation of Proposed Architecture 1 ..62

4.4.1 Communication Latency ..63
4.4.2 Hop Count ..65
4.4.3 Power Consumption ...67

4.5 Simulation of Proposed Architecture 2 ..70
4.5.1 Communication Latency ..70
4.5.2 Hop Count ..72
4.5.3 Power Consumption ...74

4.6 Simulation of Proposed Architecture 3 ..76
4.6.1 Communication Latency ..77
4.6.2 Hop Count ..79
4.6.3 Power Consumption ...81

5. RESULTS AND DISCUSSION ...86

5.1 Evaluation of Proposed Architecture 1 ...86
5.1.1 Communication Latency ..86
5.1.2 Hop Count ..88
5.1.3 Power Consumption ...89

5.2 Evaluation of Proposed Architecture 2 ...91
5.2.1 Communication Latency ..91
5.2.2 Hop Count ..93
5.2.3 Power Consumption ...94

ix

TABLE OF CONTENTS (continued)

Chapter Page

5.3 Evaluation of Proposed Architecture 3 ..95
5.3.1 Communication Latency ..96
5.3.2 Hop Count ..98
5.3.3 Power Consumption ...100

6. CONCLUSIONS AND FUTURE EXTENSIONS ..103

6.1 Conclusions ...103
6.2 Future Extensions ..105

REFERENCES ..107

x

LIST OF TABLES

Table Page

3.1 A row in directory that shows initial stage of core-1 ...38

3.2 A row in directory showing changes after reading a block by core-138

3.3 A row in directory showing changes for write in a block of core-139

3.4 System parameters of a directory ...39

4.1 Considerations and assumptions for power calculations ..55

4.2 Source and destination cores for different communication tasks 60

4.3 Workload for uniform and non-uniform subnets in 64-core architecture 62

4.4 Communication latency compared to WNoC-CD architecture ..64

4.5 Hop count compared to WNoC-CD architecture ..66

4.6 Power consumption compared to WNoC-CD architecture ...68

4.7 Communication latency compared to WNoC-DDs architecture 71

4.8 Hop count compared to WNoC-DDs architecture ...73

4.9 Power consumption compared to WNoC-DDs architecture ..75

4.10 Communication latency of 64-core architecture with uniform and non-uniform subnets .78

4.11 Hop count of 64-core architecture with uniform and non-uniform subnets 80

4.12 Power consumption of 64-core architecture with uniform and non-uniform subnets 82

xi

LIST OF FIGURES

Figure Page

1.1 Single-core architecture ...5

1.2 Multicore architecture ..6

1.3 Examples of cache levels in multicore architectures: (a) Multicore architecture with

dedicated L2 cache (b) Multicore architecture with shared L2 cache 7

1.4 Cache organization...10

1.5 Cache coherence example: (a) Sequence of reads and writes (b) Cache contents after

the read at time t1 (c) Cache contents after the read at time t2 (d) Cache contents after the

write and read at time t3 ...11

2.1 Examples of cache organization in single-core architectures: (a) Single-core Celeron

processor with private CL1 and on-chip CL2 (b) Single-core Pentium II Xeon

processor with private CL1 and off-chip CL2 ...17

2.2 Intel-like quad-core architecture with private CL1 and shared CL218

2.3 Four states of MESI protocol ...20

2.4 Block diagram of directory-based cache coherence protocol ..21

2.5 DASH architecture for shared memory ...23

2.6 Bus network topology ...25

2.7. Crossbar topology ...26

2.8 2D Mesh topology ...27

2.9 Mesh topology with subnet division ...29

2.10 2D NePA architecture with 4X4 matrix ..30

2.11 Port description of NePA router ..31

xii

LIST OF FIGURES (continued)

Figure Page

2.12 Traditional wireless network-on-chip architecture with wireless routers 32

3.1 WNoC architecture with centralized directory ...41

3.2 WNoC architecture with distributed directories ...44

3.3 Uniform partition of subnets in 64-core architecture ..48

3.4 Non-uniform partition of subnets in 64-core architecture ..50

4.1 Model of the subnet with a directory and wireless router ...59

5.1 Communication latency compared to WNoC-CD architecture ..87

5.2 Average communication latency compared to WNoC-CD architecture 87

5.3 Hop count compared to WNoC-CD architecture ...88

5.4 Average hop count compared to WNoC-CD architecture ..89

5.5 Power consumption compared to WNoC-CD architecture ..90

5.6 Average power consumption compared to WNoC-CD architecture 90

5.7 Communication latency compared to WNoC-DDs architecture 92

5.8 Average communication latency compared to WNoC-DDs architecture 92

5.9 Hop count compared to WNoC-DDs architecture ..93

5.10 Average hop count compared to WNoC-DDs architecture ..94

5.11 Power consumption compared to WNoC-DDs architecture ...94

5.12 Average power consumption compared to WNoC-DDs architecture 95

5.13 Communication latency of uniform and non-uniform subnets in 64-core architecture 96

5.14 Average communication latency on job basis ...97

5.15 Average communication latency of 64-core architecture ...98

xiii

LIST OF FIGURES (continued)

Figure Page

5.16 Hop count of uniform and non-uniform subnets in 64-core architecture 99

5.17 Average hop count on job basis ...99

5.18 Average hop count of 64-core architecture ..100

5.19 Power consumption of uniform and non-uniform subnets in 64-core architecture 101

5.20 Average power consumption on job basis ...102

5.21 Average power consumption of 64-core architecture ...102

xiv

LIST OF ABBREVIATIONS

2D, 3D Two-dimensional, Three-dimensional

Addr Address

CAPPLab Computer Architecture and Parallel Programming Laboratory

CL1, CL2 Cache Level 1, Cache Level 2

CMP Chip Multiprocessors

CPU Central Processing Unit

CUDA Compute Unified Device Architecture

DASH Directory Architecture for SHared Memory Multiprocessors

E East

FDMA Frequency Division Multiple Access

FLC First Level Cache

FLOPS Floating Point Operations per Second

GPU Graphics Processing Unit

HC Hop Count

HPC High Performance Computers

Int Internal Port

KB Kilo Bytes

MESI Modified, Exclusive, Shared, Invalidate

ms Millisecond

mW Milliwatt

N1, N2 North 1, North 2

NePA Network Based Processor Array

xv

LIST OF ABBREVIATIONS (continued)

PE Processing Element

PFLOP Petaflop

NI Network Interface

NoC Network-on-Chip

PWI Pure Write Invalidate

PWU Pure Write Update

RC Resistor-Capacitor

S1, S2 South 1, South 2

SoC System-on-Chip

TFLOP Teraflop

W West

WNoC Wireless Network-on-Chip

WNoC-CD Wireless Network-on-Chip with Centralized Directory

WNoC-DDs Wireless Network-on-Chip with Distributed Directories

1

CHAPTER 1

INTRODUCTION

Computing is a critical task of modern technology, where it uses computers to manage and

process the information. The revolution of computation led to the developments and improvements

in designing low-cost microprocessors. According to Moore’s law the number of transistors on the

chip doubles about every two years. Till recent times we have been able to push more and more

transistors on a single chip, but one day we will reach a limit that a transistor may be one atom

length, this will be an absolute limit on the Moore’s law [1], [2]. Considering the future challenges

with respect to transistor size and its limits, computer scientists are embarking on a fundamental

shift in how the transistor density on a single chip is used to increase the performance. The increase

in transistor number led to multiple ways of increasing parallelism. Initially, the parallelism is

introduced on single-core processors. However, Single-core processors are not good enough for

complex applications and they have their own limitations in terms of processing speed and

adoptable features. Speedup in single-core architectures can be enhanced by increasing clock

speeds however they are certain limitations like switching frequency, heat dissipation, etc. [3]. To

increase speed, a modern technology, that is multicore architecture evolved, by addressing the

problems of single-core architecture in various aspects. More than one core on a single silicon die

is considered as multicore architecture and they ensure better performance with less heat

dissipation [4]. However, the growth of multicore architectures is ineffective with the existed

programming structures and so the development of parallel programming came to limelight, that

allows multiple cores to work independently for different assignments [5], [6]. Multicore

architectures are used in analyzing data, scientific research, and to solve complex computational

problems. Multicore architecture brings various platforms into one roof, such as parallel

2

processing algorithms, multiple cluster node networks, and computer architectures for the

performance improvement of many applications [7]. Multicore architectures are fast and effective

in executing the programs with a trade-off on bandwidth, latency, and power consumption [8]. In

multicore architectures, cores are coupled together to work concurrently in parallel for increasing

execution speed of complex jobs which need multiple operations to be done at a single instant of

time. A large and/or complex job is divided into multiple tasks and the tasks are processed

concurrently on many cores; this leads to multicore systems [9], [10]. It is necessary that all cores

cooperate efficiently for every single computation. In a multicore system, multitasking is done by

assigning different sets of tasks to different cores. More cores are integrated on a single die which

presents a need of interconnection between two cores and interconnection among the cores leads

to long wiring delays, huge power consumption, and other challenges. To address the

interconnection issues, Network-on-Chip (NoC) architectures are proposed and is still widely

investigated as a scalable and reliable infrastructure communication [11], [12]. However, with

NoCs, the major problems are the connection between nodes, latency, and is suitable for only

medium number of cores [13]. Wireless Network-on-Chip (WNoC) architecture is introduced to

overcome the problems of multi-hop in NoC [14]. WNoC reduce the number of hops by using

wireless links in the path and thus reduces latency and power consumption among cores in a

multicore architecture [15], [16]. With the increase of multiple cores on a single die, cache

coherence is one of the major challenges particularly when they are associated with shared memory

[17]. In the present design of a multicore architecture, there are many techniques to address cache

coherence such as directory-based protocols [18].

As we know, a processor is the brain of a computer system and is responsible for

computing, making logical decisions, and controlling different activities throughout the process.

3

A helping hand or additional hardware for a processor or Central Processing Unit (CPU) adds an

advantage to the system. Hardware accelerator [19], [20] is an additional hardware to any CPU for

improving the performance. In this work, we are introducing Stanford Directory Architecture for

SHared Memory (DASH) like hardware in a traditional WNoC architecture. DASH architecture

provides high processor performance by maintaining coherence among the caches of all the cores

and provides scalability of cores [21]. The proposed architecture is a hybrid combination of the

WNoC architecture and the DASH architecture. The major goal of the proposed multicore

architecture is to reduce the cache latency among the cores by decreasing the number of hops

required to travel from a source core to a destination core using the directory and wireless routers.

Multicore or WNoC architectures are traditionally mesh networks. The physical

arrangement of network in mesh has several disadvantages such as congestion due to multicasting,

latency, power consumption, and unbalanced workloads. To address mesh network issues,

solutions such as partitioning cores into subnets are introduced. In multicore architectures, cores

are divided into subnets based on different mechanisms and data is transferred between cores based

on network topology [22], [23]. The cores are logically divided into subnets, where each subnet

has a center core and the center core is responsible to communicate with-in subnets or out of the

subnets. The partition of subnets reduces underutilization of cores, latency, and power

consumption. Subnets allow the multicore architecture to work in parallel for various assignments.

However, finding a center core is a challenge in many cases. Conventionally, subnets are divided

uniformly based on the number of cores for that chip. Uniform subnets imply that every subnet

has equal number of cores in that architecture. It will be easy to find a center core for a 3x3 core

subnet, which has 9 cores. However, it will be a challenging task to find a center core for a 4x4

core subnet, which has 16 cores. The performance can be boosted if the subnet has a closer center

4

core and the distance is uniform to other cores in its subnet. In general, applications may need

minimum to maximum number of cores. Allocating uniform subnets may result some cores in less

or no utilization for some applications, and some applications may need more cores than the

number of cores fixed in a subnet.

Non-uniform subnets are becoming popular for some applications as they offer better

performance when compared to uniform subnets [24], [25], [26]. The non-uniform subnet results

are promising and convincing to adopt the new techniques into WNoC architectures. Non-uniform

subnets may be better if different number of cores are required by different applications.

1.1 Computer Architectures

Computer system architectures are influenced by the trends of hardware and software

technologies. The performance improvement of any architecture depends on its capability in terms

of clock speeds, switching operation of transistors at logic level, and hardware/software

methodologies. According to Moore’s law, the number of transistors per square inch on integrated

circuits doubles every year. With this high package density of transistors there are several

advantages and disadvantages to make it in complete usage. Several computer architectures are

introduced as the days go on. In mid-1990s, single-core architectures are introduced. Single-core

processors can only start one operation at a time. To enhance the performance of single-core

processor, multicore architectures are introduced in 2004-2006 [27].

1.1.1 Single-Core Architectures

Single-core architectures have only one processor to process instructions. The performance

of single-core architectures achieved through the increase of clock speed and transistors count.

However, there are limitations in increasing the clock speed as they end up with thermal or heat

dissipation issues [28]. Increased clock frequency also brings the issues of switching speed of

5

transistors. The performance of a single-core architecture can be enhanced if the core accesses the

data quickly and it can be achieved with the introduction of a dedicated cache. The cache memory

stores the frequent data and so the latency can be reduced if it is not accessing the main memory.

However, the size of cache memory is small, and so the latency is a major issue in single-core

architectures. So, for complex computations or multitask environments, single-core architectures

are not satisfactory. Mostly, the processors manufactured before 2005 are single-core and they are

cheap now with the evolution of multicore architectures. Figure 1.1 illustrates a simple single-core

CPU architecture, which has an arithmetic logic unit (ALU) and is possible to execute only a single

instruction at a time.

Figure 1.1: Single-core architecture

As time goes on, the modern requirements are not satisfied with the existed single-core

architectures as they have certain limitations in multitasking. Single-core based modeling and

simulation techniques are not adequate to design modern multicore embedded systems [28].

Multicore processors are emerged to deal with the multiple tasks/applications given to the

processor at any given instant of time. Multicore system has multiple cores that can be on a single

or multiple system. In multicore architectures, to speed up the computation process, cores are

6

assigned to perform different tasks in parallel and so they are also termed as parallel processor

architectures. Multicore processors execute multiple tasks at the same time, reduces waiting time,

and enhances the computer’s productivity. However, multicore processors are complex to design

and needs more space. Multicore processors are appropriate for more processing power

applications and consumes smaller power compared to single-core at the same clock rate.

1.1.2 Multicore Architectures

A multicore processor is a single computing component that has multiple cores and they

work independently as a processing unit. Multicore computers are intended to address the issues

of single-core architectures like heat and speed. As the name suggests, multicore processing units

execute multiple instructions at the same time. The multiple cores are integrated on a single

integrated circuit (IC) or multiple die but in a single chip package. Figure 1.2 illustrates the simple

multicore architecture of four cores, where each core has its own ALU. The ALU has its own

register file and the register files are connected to a shared bus interface.

Figure 1.2: Multicore architecture

7

According to multicore architecture design techniques, four cores running at one fourth of

the frequency can approach the performance of a single-core running at full frequency, while the

quad-core power consumption is less. If the cores are increased, it would be an advantage for

software applications as they have more threads. The multicore architectures are capable to handle

multithreaded parallel processing. Multiple threads on multiple cores can be executed

simultaneously at the same processor cycle [29], [30].

Multicore systems are designed in a way that two or more cores are coupled together to

work concurrently in parallel for increasing execution speed of complex jobs which need multiple

operations to be done at a single instant of time. In multicore architectures, speed can be enhanced

if the cores access the data quickly and it can accomplish when all the cores have their own

dedicated cache. To reduce the latency between the cores, cache levels can be expanded further.

However, the performance of multicore also relies on the type of cache utilized such as dedicated

and sharing. With the introduction of cache in multicore architectures, cache coherence is a major

issue when the cached data from cores is not updated in the shared memory. Figure 1.3 illustrates

the multicore architectures organization with dedicated cache and shared cache [31].

(a) Multicore architecture with dedicated L2 cache

(b) Multicore architecture with shared L2 cache

Figure 1.3: Examples of cache levels in multicore architectures:

 (a) Multicore architecture with dedicated L2 cache (b) Multicore architecture with shared L2 cache

2

Figure 1.3 (a) illustrates the AMD Opteron organization, where CL1 is divided into L1 data

cache and L1 instruction cache with dedicated CL2 for each core. Figure 1.3 (b) illustrates the Intel

Core Duo organization that has a dedicated CL1 for instruction and data with a shared CL2 cache.

In all the multicore architectures, the main memory is shared and so the cache coherence problems

arise if the cached data of the cores are not updated. Multicore architectures are reliable with

improved performance for network-on-chip (NoC) architectures. Even though multicore

processors have become important, there are still many issues that designers face while designing

more than one processing core on a chip. For efficient on-chip communication, there are certain

constraints to be considered, such as limited area, communication latency, and power

consumption. To combat unnecessary power consumption, many designs incorporate a power

control unit which has the authority to shut down unused cores and limits the consumption of

power [32]. The bus based multicore architecture [33] is suitable for small number of cores (say,

4-8) with dedicated wires to the cores. However, the manufacturing of chips using dedicated wires

would consume more power but offers no or little performance improvement. The inefficiency of

dedicated wires resulted in a shift to on-chip networks and incorporating wireless communication

among cores. NoC provides a more scalable solution for the multicore architectures.

The scaling difficulties of uniprocessor architectures lead to the evolution of chip

multiprocessors (CMPs). To increase the number of cores in a scalable way, the research and

evaluation on NoC architectures predominantly increased. The memory hierarchy, interconnect,

wiring schemes, routing architecture, network topologies, and power optimization techniques play

a key role in the performance of CMP designs as well as NoC architectures. The advanced

multicore chip supports several cores say, 10 to 100 or more on a chip and their performance is

based on the number of cores and network topology [34], [35].

3

1.2 Cache Coherence in Multicore Architectures

Single-core architectures are having limitations to speed up by increasing clock frequency

as they dissipate enormous heat and consume more power. Then the existence of multicore

architectures raised as they are good to distribute work among cores and they can work

concurrently to complete the given task successfully. To cut down the costs of multicore

architectures, shared memory is introduced. In multicore architecture, cores in a group work

together in parallel according to the given assignments and there is a need of data exchange

between cores in this process. Due to the cost of memory devices, cache size of each core is limited

and so the capacity of it is small when compared to shared memory. In general, the data exchange

between cores is through cache and we use different protocols to update the cache accordingly.

When the cache is not updated accordingly, then the data in the cache is incoherent and it is

generally termed as cache coherence. If the number of cores is less, broadcasting is possible with

snoopy based protocols and every core is updated with recent changes on any core. Withal, as the

number of cores increases, snoopy techniques are not capable and so the directory-based protocols

are developed that gives a room for scalability.

Particularly, the incoherent data may be greater in multicore architectures as they have

several cores or processing units. With the number of cores increase, scalability and cache

coherence related issues are boosted. To improve the performance of multicore architectures the

role of cache is dominant. When a processor/core modifies a cached data element, then it is

essential to update or invalidate other cached copies to prevent of usage of obsolete data copies.

Cache coherence arises due to non-updated data [36], [37]. However, the performance

enhancement majorly lies on cache size, cache level hierarchy such as private and shared. The

performance of any system also depends on the type and organization of cache implemented.

4

Figure 1.4 illustrates the cache organization of a two-core CPU. Here, each core has dedicated

cache and the caches share a shared memory resource.

Figure 1.4: Cache organization

Consider a system with many cores, where all of them have their own private cache. The

read and write of three of those processors are illustrated in Figure 1.5 (a). After completion of

first read at time t1, processor P0 will have the value "12" (randomly chosen) in its cache for a

variable X which is stored in shared memory location X as illustrated in Figure 1.5 (b). After

completion of second read at time t2, both processor P0 and P1 will have the same value "12" in

their caches for the variable X as illustrated in Figure 1.5 (c). After time t3, processor P0 writes the

new value "16" in its cache. In a system without cache coherence mechanism, say it will not be

updated to a shared memory location. Therefore, when P1 and/or P2 will read next time, they will

read the old value "12" as illustrated in Figure 1.5 (d) [38]. To ensure that all the processors

5

whichever read the new value of X after the update of processor P0, a new mechanism is required

to update the main memory location value as well as all other processors who will be using it.

Figure 1.5: Cache coherence example

6

1.3 Performance Issues of Network Topologies

Multiple nodes or cores are connected to communicate with each other, which is referred

to as network topology. The connection lines between cores are generally termed as hops. The

message flow in a network based on the type of topology enforced. The data transfer rate between

computers/terminals depends on bandwidth. The higher bandwidth allows the computers to

transfer data quickly. There are several network topologies that are available in market with some

trade-off among speed, efficiency, and cost. The performance of any network topology depends

upon all the components used in that network [39], [40]. To get better performance of a network,

using outstanding components for the entire network is essential. The network components are,

bandwidth which depends on connection lines, network cards, routers, and cables. On top, the

speed and efficiency mostly rely on the type of network, where the computers are connected. A

topology can be preferred based on the type of application required as every topology has its own

advantages and disadvantages. Out of most, there are some topologies which are extensively used

because of their capability with greater trade-off abilities. Namely, some of those trendy topologies

are bus, ring, crossbar, and mesh topologies.

Every topology has its own pros and cons. Bus topology is preferred for smaller networks.

Bus topology [41] is simple, and they don’t have any special computer or controller compared to

ring, where it could be useful in controlling the sub network or entire network. The lack of

controller in bus topology does not make fit to be adopted in multicore architectures

predominantly. In ring topology, computers formed as ring or circular where a neighbor computer

is connected to its left and right. Latency is the major concern in this topology, as the number of

computers increase in its network, the latency increases accordingly. The major drawback of the

ring topology is break in network cabling may affect the entire network. Thus, ring topologies are

7

not given highest priority in multicore architectures. Crossbar topology [42] is better in multicore

architectures when compared to bus and ring topologies. Source node to destination node

connections are made through cross bar switch. Each node is connected to all other nodes of the

architecture. The major drawback of crossbar topology is the number of switches required and so

the cost of the system increases extremely. In contrast to crossbar, the nodes in mesh topology are

connected to its own switch. Mesh topologies [43] use blocking technique to get rid of multiple

paths especially when there are 3 requests from any specific node. This limitation is mainly due to

the routing strategy of mesh, that generally follows XY routing protocol, which indicates only two

directions possible at a time for that specific node. The mesh topology follows multiple paths using

XY routing protocol to reach the destination [44]. There is a trade-off between the crossbar and

mesh topology and if the cost is a major concern, then mesh is the only possible solution.

Wired interconnects can cause delay, power loss, and scalability issues. On-chip

interconnects with wireless techniques are introduced to address the issues of wired interconnects.

Communication latency and power consumption are important parameters that need to be

addressed for improving the performance of architectures with hundred number of cores. There

are various challenges to the introduction of wireless routers and directories in WNoC in order to

improve the performance of WNoC architectures.

1.4 Problem Description

Network-on-Chip architectures has several issues such as connecting nodes, on-chip

temperature, and packaging constraints. Basically, NoC architecture is implemented with a

network topology such as bus, crossbar, and mesh. Several challenges encounter based on the type

of topology and interconnects used.

8

In traditional mesh architecture, communication latency, power consumption, and hop

count are high due to its architecture design and routing protocol. Mesh architecture is completely

wired interconnects and thus having scaling issues. Traditional mesh architectures make use of

entire architecture for any application and so they may face underutilization challenges for small

applications.

In traditional WNoC, even though wireless routers and clusters division is implemented to

address the issues of traditional mesh architecture, it still has the problems with incoherent data,

broadcasting, and traffic issues which also increases power consumption. So, a novel architecture

is required to reduce wired interconnects, communication latency, cache coherence, data

synchronization, and power consumption.

However, as the number of cores increase, the complexity of controlling the architecture

in terms of latency, wired/wireless links are always challenging. Instead of using the entire network

for a single application, the subnets partition helps to reduce latency and power consumption. The

partition of cores into the subnets improve the system performance and they can be categorized

into uniform and non-uniform partition. Uniform partition leads to underutilization of cores and

more power consumption for smaller applications. Logical partition of subnets to find a center core

is always challenging as the number of cores increase mostly if the size of architecture is of even

size.

1.5 Contributions

In this work, we propose a novel architecture that enhances performance with minimal

energy using wireless routers and directories. Major contributions in this research include:

• Introduction of a centralized directory in WNoC architecture to reduce

communication latency and power consumption by addressing cache coherence.

9

• Introduction of distributed directories to overcome centralized directory issues such

as network scalability and performance.

• Introduction of non-uniform partitioning in WNoC to improve core utilization and

performance.

• Other contributions include: Introduction of a simulation platform and introduced

workload characterization for multicore WNoC simulation.

1.6 Dissertation Organization

The dissertation is organized as follows:

In Chapter 2, literature survey on cache memory hierarchy in multicore architectures,

DASH architecture to address cache coherence and data synchronization, popular interconnection

network topologies, WNoC topology with wireless routers, uniform and non-uniform partition of

subnets in WNoC architectures are discussed.

In Chapter 3, the proposed WNoC architectures with centralized directory are introduced,

follwed by distributed directories of 36-core, where each subnet has a single directory. Then,

number of cores are extended to 64-core with WNoC-DDs properties. Finally, uniform and non-

uniform partitions are discussed.

In Chapter 4, experimental details for this research including assumptions, workload, tools,

and parameters are described.

In Chapter 5, some experimental results are presented and discussed to show the

performance of various architectures of assorted sizes with different workloads. Finally, this work

is concluded in Chapter 6.

10

CHAPTER 2

LITERATURE SURVEY

In this chapter, we discuss some related published articles as background work and

motivation. We start with cache memory hierarchy in single-core and multicore architectures.

Then we discuss how DASH architecture addresses cache coherence, and how popular

interconnection network topologies such as bus, crossbar and mesh topologies are used. Finally,

we discuss WNoC topology and clustering of WNoC cores into uniform and non-uniform subnets.

2.1 Cache Memory Hierarchy

Cache is a hardware that is used to store data close to the CPU to improve performance.

Normally, each core has its own cache memory. Single-core architectures can improve

performance with increased clock frequency but consumes more power which is nearly 73% with

20% increase of clock frequency. However, with the introduction of a second core, without

increasing the frequency, the performance can be improved to 73% with minimal rise of power

consumption compared to single-core [45]. Then the designers developed multicore architectures

and introduced parallel processing methods such as thread level parallelism (TLP). Multicore

supports TLP to boost up performance.

2.1.1 Cache in Single-Core Architectures

To improve the performance of a processor, cache is introduced between the main memory

and the CPU. During computation, the core checks its cache for data as/if needed and if the data

is not available in cache, it is considered as cache miss. Then the data request is sent to main

memory which increases the latency and power consumption. To improve performance further

considering single cache issues accommodated with cost and power consumption, cache levels are

introduced. The cache close to CPU is cache level-1 (CL1) and then a cache level-2 (CL2) is

11

introduced to reduce cache miss. CL2 can be shared or dedicated based on the type of architecture.

In this research, shared off-chip CL2 is considered. The cache levels are further increased to

improve the performance, but they are always shared to cut down the costs. The latency is

minimum if CL1 has requested data, but it increases if there is a miss in CL1 and its ascending

from there on to main memory. Figure 2.1 illustrates the Celeron processor [46] with 2x16 KB L1

cache and 128 KB L2 on-chip cache levels in single-core architecture. The on-chip CL2 increases

the cost of the system.

(a)

(b)

Figure 2.1: Examples of cache organization in single-core architectures: (a) Single-core Celeron processor with

private CL1 and on-chip CL2 (b) Single-core Pentium II Xeon processor with private CL1 and off-chip CL2

In some processors, CL2 is off-chip and is close to main memory. Figure 2.2 illustrates the

Pentium II Xeon processor [46] with 2x16 KB L1 cache and 512 KB to 2 MB L2 off-chip cache

levels in single-core architecture.

12

2.1.2 Cache in Multicore Architectures

The multicore architecture is a single physical chip that has more than one core. As cores

increase, multiple requests to main memory leads to traffic, and latency. So private CL1 is

accommodated for each core and thus individual data requests to main memory can be reduced.

To incur the costs and improve performance, shared and private CL2 is introduced in multicore

architectures [47]. As the number of cores increase, the issues such as cache coherence and

scalability rise. Cache follows different techniques or policies to update the data in their system.

Cache keeps the data that are frequently referenced, recently referenced, resources near referenced

using temporal and spatial locality principles.

Figure 2.2 illustrates the cache hierarchy of Intel quad-core architecture with private CL1

and shared CL2 [48]. The data transfer is faster between cores if the data is obtained from cache

and the delay increases if the core misses from individual cache. The lower level caches are always

closer to the cores and if there is any data miss in L1 cache, it accesses the L2 cache and it follows

further that is main memory if it misses in L2 cache. To work with the cores in great extent,

improving cache utilization is one of the workable solutions.

Figure 2.2: Intel-like quad-core architecture with private CL1 and shared CL2

13

 The communication latency to fetch data from cores depends on the level of cache where

the data is available. To wind up, the latency and power consumption is maximum when the cores

try to fetch data from main memory. To reduce the latency and power consumption, suitable

coherence protocols between main memory and cores must be established.

2.1.3 Cache Coherence Protocols in Multicore Architectures

The main reason of using cache is to reduce the execution time of CPUs. If the data is

referenced in cache, then it completes the execution in less CPU cycles rather than consuming

more cycles when referred to main memory. In multicore architecture, each core has its own cache

and so there is a possibility of cache inconsistency and it can be detected dynamically at run-time

or statically at compile-time. When multiple copies of data are present in different caches

simultaneously, then the problem of cache coherence arises. When the processors can update their

own cache freely, then the inconsistent view of memory arises. To ensure data is valid, it is

essential to avoid dirty data by using updates or invalidate policies. For any change in data, the

processor updates by using write-policy schemes namely write-back and write-through to the

cache. In write-back, write operations are made only to cache and the main memory can be valid

only if the cache line updates the main memory. In write-through policy, cache as well as main

memory are updated at the same time.

 There are several cache coherence protocols that are widely used such as snoopy, MESI,

and directory-based [49]. The popular protocol to address cache coherence is snoopy protocol [50].

They are majorly used for small core architectures and they follow broadcasting technique.

Traditional snoopy methods are popular as they are simple to implement and provides reliable

performance at the cost of high bandwidth and a size up to 32 processors only. Broadcasting is a

simple technique to find data copies from all other caches, however, it consumes high bus

14

bandwidth, power, and increase latency for non-shared data compared to shared data. These

broadcasting techniques shows that on average, 67% of broadcasts are unnecessary [51].

Traditional pure write update (PWU) protocol has low network latency but high bandwidth

required. Traditional pure write invalidates (PWI) protocol has less bandwidth requirement but it

has high cache miss ratio. Considering the issues of PWU and PWI protocols, there is a necessity

of novel design in protocol that can accommodate for large core architectures.

MESI protocol is one of the popular among all that is basically used to perform write-back

to the cache. MESI stands for Modified (M), Exclusive (E), Shared (S), and Invalid (I) [52], [53].

Figure 2.3 illustrates the detailed operation of four states in MESI protocol.

Figure 2.3: Four states of MESI protocol

15

In MESI protocol, for a read miss, the cache block is moved to either shared or exclusive

based on the cache status that is shared or not. If the cache is shared, then the cache will be in

shared state, else in exclusive that indicates the data is consistent with main memory. The

advantage of MESI protocol is the capability of avoiding bus invalidation. MESI simply skips bus

transaction to write to cache instead they move to modified state.

Directory-based cache coherence protocols are better for large core architectures and

address the issues of snoopy protocols [54]. Figure 2.4 illustrates the block diagram of directory-

based cache coherence protocol. From the Figure 2.4, multiple sharer groups are connected to a

shared directory along with L2 cache. Each group individually has different number of processors

less than 32 in number and follows a snoopy protocol. Here, the directory receives the requests

from each core individually from a sharer group to reduce the network bandwidth. The directory

maintains the processor information/data and thus it reduces the latency.

Figure 2.4: Block diagram of directory-based cache coherence protocol

16

The performance improvement by reducing cache coherence in multicore architectures can

be possible with the implementation of directory in cache level (CL2) between main memory and

CL1. A directory-based hybrid approach of PWU and PWI reduces cache coherence and the results

are promising in reducing bandwidth, memory latency, and cache miss ratio [55].

As discussed above, increased number of cores with increased clock speed may lead to

unsustainable power consumption. Alternatively, to enhance performance, parallel programming

could be an efficient choice if the instructions dependency is less. The performance of program

execution can be improved if the data is retrieved faster from the memory. It depends on the type

of cache memory organization used. Distributed memory models offer message passing with

improved performance and scalability, but they are complex to design and program. The processor

performance can be improved with private and multilevel cache [56]. However, the presence of

cache in multicore architectures introduce the cache coherence problem. Hardware and/or software

solutions can be used to address cache coherence problems [57].

With the introduction of directory-based architecture, cache coherence problems can be

resolved, and data synchronization can be improved. The most popular directory-based

architecture is DASH that is scalable, and it is possible to build large scale shared memory

architectures. DASH architectures are good to work on parallel applications and so it is a valuable

approach to introduce it into multicore architectures.

2.2 Directory-Based DASH Architecture

In this work, we considered Stanford DASH architecture because of its directory-based

cache coherence protocol and high scalability. The DASH system supports shared memory

architecture inside a cluster of a small number of cores and the message passing technique among

the clusters. This architecture provides excellent performance by updating the caches of all the

17

cores and provides scalability of cores as it does not have any single control unit. DASH protocol

does not rely on broadcast messages and instead uses point-to-point messages sent between

processors and memories to keep caches consistent [58]. Figure 2.5 illustrates the high-level

organization of a DASH system [21].

Figure 2.5: DASH architecture for shared memory

Typically, a DASH system may consist of many processing nodes via an interconnection

network which has large bandwidth and a low communication latency. The physical memory or

the main memory is distributed among all the clusters in such a manner that the memory is

accessible for every core. Each processing core has its own individual cache. To maintain cache

consistency among the cores of a cluster a bus-based snoopy scheme is used, and a distributed

directory-based coherence protocol is used to maintain cache consistency among the clusters. In

DASH architecture, shared memory provides a major reduction in the communication latency.

18

2.3 Interconnection Network Topologies

In this subsection, we discuss some popular network topologies such as bus, crossbar and

mesh. In parallel architectures, network topologies refer to the type of interconnections technique

among multiple cores and memory modules. Every network topology has its own pros and cons.

There will be always a trade-off between speed, hop count, and power consumption based on the

chosen topology. If one or more devices connected to each other for inter-device communication,

then the system is considered as interconnection network. Interconnection networks are especially

used to connect processors/cores to processors/cores. Typically, the cores might be connected to

private level cache memory and shared memory. Depending upon the type of interconnections and

memory module entities, the performance of parallel or multicore architectures is derived. Low

latency and cache coherence problems are challenging in NoC [59]. Generally, when a processor

with memories are connected to each other, then we call it as node. Based on the node’s

interconnection, performance parameters such as scalability, reliability, applicability, and cost can

be supervised while designing an efficient multicore architecture.

2.3.1 Bus Topology

In bus topology, all nodes are connected to a main cable that has terminators at both ends

[60]. When a node sends data signal, it will flow in both directions of cable. At each end of the

cable, the signal absorbed by terminators to avoid signal bouncing. Signal bouncing should be

avoided to overcome the chances of collision, when two or more nodes are trying to send the signal

at the same time. The nodes in bus network topology are connected in a linear method and is

illustrated in Figure 2.6. Bus topology is simple and cheap to implement. The topology requires

less cable compared to star topology and it is most appropriate in smaller networks. The

19

terminators wouldn’t be expensive, and the network doesn’t require any additional hubs or

switches to establish communication between nodes.

Figure 2.6: Bus network topology

In bus topology, if single node is down, then it wouldn’t affect the entire network.

However, if the bus or main cable fails then it affects the entire network. Additional devices can

be easily connected to the network. But the performance can be degraded with increased nodes,

data size, and not suitable for heavy traffic [61]. The central cable length has a limit and thus the

number of nodes connected to cable, which brings the issues of scalability. In case of time-shared

common bus, only a single communication between two processors or access of main memory is

possible with a limited transfer rate. Also, the troubleshooting is difficult to manage in large

networks.

2.3.2 Crossbar Topology

In crossbar topology, the switches are arranged in a matrix configuration that has multiple

input and output lines as illustrated in Figure 2.7. Crossbar switch topology is a low latency and

high throughput network [62]. In crossbar topology, every node is connected to other node with

non-blocking feature. The arrangement of cores in crossbar topology is in rows and columns

20

pattern. The crossbar topology achieves high performance as the switches provide all possible

permutations [63].

Figure 2.7: Crossbar topology

In cross topology, every node can reach other node through the corresponding switch by

following a XY routing algorithm. The number of horizontal and vertical links are interconnected

by a switch and the communication between nodes is through these intersections. In crossbar, to

select a node the topology has unique intersection. There is no alternative path if any node in row

or column fails.

As illustrated in Figure 2.7, the crossbar network uses p*m grid matrix to connect p inputs

to m outputs in a non-blocking manner. The crossbar topology provides higher bandwidth with

reduced hop count. Crossbar supports simultaneous transfers from all memory modules and

possibility of considering alternative switching route. However, the crossbar topologies have

drawbacks such as failure of any cross-point prevents the communication between those

intersection points. The cross-points are inefficiently utilized as every node is not extremely

21

engaged in every communication. Crossbar topologies are expensive as they require many wires

and lack of scalability, because the crossbar needs N2 switches for N nodes.

2.3.3 Mesh Topology

Mesh topology is simple, and it can reach destination through several paths. Mesh is easy

to layout on-chip with equal length of links. Mesh is a potential network topology for multicore

architectures [64]. In a two-dimensional (2D) mesh network, all cores are connected in a crossbar

connection as illustrated in Figure 2.8. The cores are plotted/organized in rows and columns

method and they are addressed using matrix technique. Mesh network topology is the most

common topology used, due to its advantages of shorter wavelength, low router complexity, and

feasibility.

Figure 2.8: 2D Mesh topology

Wired mesh network provides very good reliability for inter-core communication [65]. In

realistic implementations, 2D meshes with equal number of nodes along each dimension are used

for connecting a set of processing nodes. The mesh topology with XY routing algorithm has several

advantages such as never runs into deadlock or live lock.

22

In mesh topology, the addresses of the routers can be simply determined as XY coordinates

in mesh [66]. When the source column is different from the destination column, initially a packet

moves through horizontal axis and then it takes vertical axis to reach its destination. There are

many routing algorithms used by various topologies to reach the destination core. In NoC

architectures, mesh architecture is considered as a root architecture and on top of that extension of

new techniques such as wireless routers are added to get advantage of performance such as speed

and scalability. However, traditional mesh topology has many disadvantages, such as network

congestion, poor scalability, high power consumption, and long latency. Traditional mesh topology

in NoC also faces traffic issues and multiple path policies to reach destination. Adequate control

unit to address traditional mesh challenges is required to improve the performance further.

2.4 Wired-Wireless Network-on-Chip Topology

Wireless network-on-chip topology basically developed on top of mesh architecture [67].

In mesh architecture, all the cores are accustomed to do a single task that may or may not have

subtasks. In this strategy, some of the cores may not be utilized and thus brings underutilization

issues and consumes more power as all the cores are active. So, to enhance the utilization and

performance, new principle must be introduced that allows small number of cores out of maximum

available cores to work in a group for a single task. This method of grouping cores is generally

termed as clustering cores into subnets.

2.4.1 Clustering Cores into Subnets

Clustering is introduced to improve the performance of multicore architectures. When

several cores of same kind are grouped together as a bunch, then it is called clustering. In Figure

2.9, 36-core mesh architecture is divided into 4 subnets, and each subnet has 9 cores.

23

Figure 2.9: Mesh topology with subnet division

Instead of using the entire network for smaller workloads, the cores are divided into clusters

which gives the scope of assigning multiple tasks that uses a single cluster or multiple clusters

according to the given workload. This virtual clustering allows the network to be active or non-

active cluster according to the given task. This will help in reducing the power consumption as

idle network consumes less power compared to active cluster. The subnet division will make an

individual small network and it could reach the destination faster if the destination is in the same

subnet.

Even though, the cores are clustered into subnets, at some point they need to follow

traditional mesh topology that has multiple path policy to reach the destination. This method

increases latency and power consumption. To address such issues, alternative routing with the

wireless routers is introduced.

24

2.4.2 Wireless Routers into Subnets

To enhance the performance or to reduce latency of traditional mesh clustering, wireless

routers are introduced [68], [69]. These routers avoid traditional routing and follows subnet to

subnet communication with only one hop which reduces the latency. In other words, wireless

routers reduce the number of links between source and destination compared to traditional mesh.

Each router is having its own processor and control logic to manage the data sending or receiving

to other subnets or its own subnet. WNoC architecture is basically a network-based processor array

(NePA) [70]. NePA is a two-dimensional row x column processor array with mesh topology. The

key ingredient in NoC design is based on decoupling of computation from communication. Each

processing element (PE) consists of a processor core, network interface (NI), and a router. The

processing core takes care of every task and are responsible for data synchronization. The

architecture of a NePA is illustrated in Figure 2.10.

Figure 2.10: 2D NePA architecture with 4X4 matrix

25

The routers in NePA architecture has two bidirectional 64-bit links connecting it with the

neighboring routers and additionally they also have vertical ports. With the help of the links, two

subnets can be formed – an East subnet and a West subnet, separating the whole network into two

sub-networks. The input and output ports of a NePA router is illustrated in Figure 2.11.

Figure 2.11: Port description of NePA router

Whenever a packet is to be transmitted it is injected into the router via internal port (Int)

and accordingly it is directed to destination by directing it towards either East-subnet or West-

subnet. NePA utilizes an adaptive XY routing [71] scheme to route the packet from source to

destination. To balance the link utilization and improve network performance, the router selects an

alternative output port for incoming packets. This process is useful, especially when the output

port is congested. Wireless routers are capable of transferring packets via wired as well as wireless.

Some of the wired routers in WNoC are replaced with wireless routers which have wireless

links to other routers in different subnets, in addition to the original wired links. Figure 2.12

illustrates the traditional WNoC architecture, where the cores are divided into four rectangular

subnets and the wireless routers are placed in the central core of each subnet.

26

Figure 2.12: Traditional wireless network-on-chip architecture with wireless routers

WNoC is capable of transferring packets through wired and wireless links [72]. In WNoC,

processing cores are divided into various subnets, where each subnet has one wireless router and

is responsible to broadcast the requested data to all other subnets [73]. In Figure 2.12, the dotted

and curved lines represent the wireless links and the solid lines represent wired links among the

processing cores to transmit the data packets between routers.

The frequency division multiple access (FDMA) technique is chosen to provide

simultaneous communication among the multiple wireless routers. Transmitter and receivers

installed on a wireless router are assigned with an independent carrier frequency to accommodate

data from different channels. Wormhole packet switching, which offers many advantages such as

lower transfer latency and a low buffer requirement, is used to transfer packets of data among the

27

cores. The whole network is divided into subnets and each node is identified within its subnet using

a local address. The features of addressing a specific core in a network help WNoC provide much

faster routing decisions as well as a scalable hierarchical system. However, the traditional WNoC

architectures has broadcasting and bandwidth issues. These issues can be addressed if a directory

is added on top of traditional WNoC architecture.

2.4.3 Uniform and Non-Uniform Partition of Subnets

When several applications are running in a multicore NoC architecture, the amount of

traffic generated is significant. The traffic generation is based on multiple loads/applications to the

network. The performance of NoC architectures can be critical if the traffic is extensive. In

multicore architectures, the traffic relies on workload as well as subnet mechanism. As we know,

clustering cores into subnets reduces hops and thus reduces latency as well as power consumption

[74]. Therefore, the method of clustering plays a key role in improving the performance. For

example, if the application is using the cores in only one subnet, then it is not essential to request

the data from other subnets. This will reduce the waiting time, processing time, and data transfer

time. However, if the size of the subnet is too large then it is not possible to run multiple

applications on a subnet. At the same time for small applications some cores may be idle and can

be classified as underutilization. This will cause increase in latency and power consumption.

Hence, there is always a tradeoff in determining the size of subnets. In general, for small and same

sized applications, uniform partition of subnets can bring good benefits in improving performance.

To avoid traditional network congestion of mesh topology wireless router is introduced in

subnet. Too many wireless routers will also increase traffic and channel interference. Wireless

routers allow the subnets to communicate directly rather than core to core, which happens in

traditional mesh topology. The subnet to subnet communication reduces the links and traffic. With

28

this technique, a subnet can run its own application alone and can serve the requests of other

subnets with a minimal complexity and delay. The other key factor of determining subnet size and

assigning wireless router is based on the number of cores. If the wireless router is in center to a

subnet, then the performance of subnet is exceptional as the neighbor cores are approximately

equal in distance to the center core. If the size of subnets in any architecture are equivalent, then

they are classified as uniform partition of subnets.

Uniform partition of subnets is entertained for smaller core architectures. So more than one

subnet may be involved for larger applications. The latency and power consumption rise as the

number of subnets involved for any application. As the number of cores increase, determining

subnet size and center core are complicated without compromising the performance of NoC

architectures.

Non-uniform partition of subnets is recommended to address the complexities of uniform

partition [75], [76], [77]. The scope of various size of subnets satisfy distinct largeness of

applications with reduced latency by minimizing hops. Uniform partition with even number of

cores like 4, 8, 12, 16, etc. have the difficulties in determining approximate center core. The shift

of center core varies the performance of the system and it benefits certain cores dominantly, which

are nearly connected to center core. Thus, in larger core NoCs, non-uniform partition to avoid even

size subnets is preferred. With this approach, determining center core and making availability of a

subnet to large applications can bring stability to improve performance.

2.4.4 Adaptive XY Routing Algorithm for Wireless Network-on-Chip Architecture

Adaptive XY routing algorithm is efficient in fully utilizing network resources. Basically,

adaptive XY routing is a subsidiary of traditional XY routing algorithm. Adaptive routing depends

on the neighbor’s load condition to make a route between source node and destination node. If the

29

congestion is too high, then the nodes check for an alternative route that has less congestion path.

Each node has horizontal path with 2-bits quantized value and vertical path with 2-bits quantized

value, which totally makes 4-bits load value to find the less congestion path. Horizontal path node

uses 2-bits quantized value that reflects East subnet and West subnet to calculate the less

congestion path. Similarly, vertical path node uses 2-bits quantized value that reflects North subnet

and South subnet to calculate the less congestion path.

To establish a route between source node and destination node, configuration packets are

generated with the collaboration of neighbor nodes. Adaptive algorithms may need more

computation than deterministic algorithms to identify the correct path for sending packets between

nodes [78], [79], [80]. The performance can be improved when the load is uniformly distributed

throughout the network and maintains balanced nature of the architecture.

30

CHAPTER 3

PROPOSED DIRECTORY-BASED WIRED-WIRELESS NETWORK-ON-CHIP

ARCHITECTURES

In this chapter, we introduce our proposed directory-based wired-wireless network-on-chip

architectures. We describe the design considerations and working principle of the directories. We

propose three architectures as listed below:

• Proposed Architecture 1: Introduction of Centralized Directory in WNoC

 Architecture with Uniform Partition of Subnets

• Proposed Architecture 2: Introduction of Distributed Directories in WNoC

 Architecture with Uniform Partition of Subnets

• Proposed Architecture 3: Non-Uniform Partition of Subnets in WNoC Architecture

 with Distributed Directories

The proposed architecture is a hybrid combination of the WNoC architecture and the

DASH architecture. The major goal of the proposed multicore architecture is to reduce the

communication latency among the cores by decreasing the number of hops required to travel from

a source node to a destination node using the directory and wireless routers. The key design

considerations include: grouping cores, designing directory, managing cache consistency, and

communication among cores.

Primarily, in this work, we introduce a single directory that is centralized directory for 4

subnets, where each subnet has 9-core that makes a total of 36-core architecture. Thus, we design

a novel architecture, that is wireless network-on-chip architecture with centralized directory

(WNoC-CD). We model all the architectures using VisualSim tool and derive the performance

31

characteristics such as communication latency, hop count, and power consumption. The proposed

centralized directory is compared with traditional mesh and traditional WNoC architectures [81].

However, centralized directory is not suitable for larger networks. The load on centralized

directory could be heavy with larger networks and thus drawbacks such as delay, data

synchronization, traffic and bandwidth issues may arise. To overcome the issues of centralized

directory, distributed directories are introduced in WNoC, that is WNoC-DDs. The performance

of WNoC-DDs is compared with traditional mesh, traditional WNoC, and WNoC-CD.

As the number of cores increases, the challenges of enhancing performance increase. The

performance of directory introduced to subnets will increase the overall performance. However,

selection of center core that hosts the directory plays a key role in performance improvement and

it could be better if the center core is in equal distance or closer to the other cores in its subnet. For

large core architectures, the size of subnet is large and allocating a full subnet for low loads leads

to underutilization of network and boosts power consumption. So, uniform partition of subnets for

large core may not be satisfactory. Also, uniform subnets may not be suitable for different-sized

applications. Considering the weaknesses of uniform partition, a non-uniform partition approach

is examined.

3.1 Designing Directories for WNoC Architectures

In the design of centralized directory or distributed directories in WNoC architecture, the

basic abstraction is identical. In both centralized and distributed directories, the purpose of the

directories is to hold information about the cached copies. A powerful processor with a wireless

router is used to host the directory. The center core of each subnet is integrated with a wireless

router. The wireless router is capable of transmitting and receiving the data between the subnets.

32

The directory contains the information of all other subnets that includes data sync, minimal routing

path, and it is integrated with wireless router in the central core of each subnet.

WNoC-CD architecture has a single centralized directory and the directory is responsible

for providing information about the cached copies. WNoC-DDs has distributed directories, where

all directories are identical. The directory contains cores’ subnet addresses, the status of each

cached block, and the addresses of the blocks that have been cached. The directory is dynamic in

nature and the total number of directory entries depends on the number of cache blocks/lines per

core. It is explained below with an example:

Say, the cache size per core is 1 KB (1024 Bytes) and the size of each cache block (also

known as, cache line) = 128 Bytes. So, the number of cache blocks = Total size of memory in

cache / Size of each cache line = 1024 Bytes /128 Bytes = 8. Therefore, for an n-core system, n x

(1 + 8) entries are required. In each row, one column for the core number and eight columns for

eight blocks. Table 3.1 illustrates a row in directory that shows the initial stage of Core-1. Initially,

the blocks for each core in the directory will be empty. Whenever a core caches data, the selective

block address of the specific data is recorded to the corresponding block of that core. Table 3.1

illustrates initial stage of Core-1, Table 3.2 illustrates the changes after reading from Core-1, and

Table 3.3 illustrates the changes after write operation to Core-1.

Table 3.1: A row in directory that shows initial stage of core-1
Core # Block 0 Block 1 Block 2 Block 3 Block 4 Block 5 Block 6 Block 7
Core1
(0,0.0)

0 Addr
 Empty

0 Addr
 Empty

0 Addr
 Empty

0 Addr
 Empty

0 Addr
 Empty

0 Addr
 Empty

0 Addr
 Empty

0 Addr
Empty

Table 3.2: A row in directory showing changes after reading a block by core-1
Core # Block 0 Block 1 Block 2 Block 3 Block 4 Block 5 Block 6 Block 7
Core1
(0,0.0)

0 Addr
 Empty

0 Addr
 Empty

0 Addr
 Empty

0 Addr
 Empty

E 100th
Blk

0 Addr
 Empty

0 Addr
 Empty

0 Addr
Empty

33

Table 3.3: A row in directory showing changes for write in a block of core-1
Core # Block 0 Block 1 Block 2 Block 3 Block 4 Block 5 Block 6 Block 7
Core1
(0,0.0)

0 Addr
 Empty

0 Addr
 Empty

0 Addr
 Empty

0 Addr
 Empty

M100th
Blk

0 Addr
 Empty

0 Addr
 Empty

0 Addr
Empty

The status of every subnet before and after the requests of data with-in or out of subnets is

controlled and monitored by the directory. The cache size of each core is split into cache

block/cache line. When the directory receives the request for data from a core, then the directory

checks the block individually and is defined as an entry. The directory controls and monitors the

status for the data requests with-in or out of the subnets. The number of entries required for a

request depends on the cache size and block size. The parameters for a cache size, block size,

number of entries is listed in Table 3.4.

 Table 3.4: System parameters of a directory
System Parameters Relevant Value

Cache size/core 1 KB
Each cache block size 128 Bytes
Number of cache blocks/core 8
Number of entries/ 9-core 81
Number of entries/ 36-core 324
Number of entries/ 64-core 576

3.2 Customizing MESI Protocol for WNoC Architectures

The working principle of both central and distributed directories is identical. A few

additional steps are required for distributed directories to maintain data synchronization between

directories of all other subnets. The directory working principle is explained in detail by

considering a scenario of Core-1 requesting for data and the required data blocks are cached from

the main memory to the cache of Core-1. The information regarding the cached block will be

stored in the directory as well. At the beginning, the directory is empty and alterations to the

34

directory are made according to the outcomes of the requests for blocks made by the cores. For a

1KB cache with 128B lines:

(1) Initially all the blocks of directories would be empty with Status ‘0’ as shown in Table 3.1

(2) After Core-1 makes a request to fetch 100th block of the next level cache/memory, the block

number is 100 mod 8 = 4. The fetched data is stored in the 4th block of the cache of Core-1 (see

Table 3.2) with Status ‘E’ (for Exclusive).

(3) If the same/cached data is read again by Core-1, then there will be no change in Table 3.2.

(4) If Core-1 performs a write operation on the cached block, then the status of the block will

be changed to ‘M’ to indicate that the value is modified (as illustrated in Table 3.3). A protocol to

manage cache consistency is explained next.

With respect to the read/write requests, the state of a block in the directory changes

accordingly as illustrated in Tables 3.1, 3.2, and 3.3. The directory keeps track of each cached

block and maintains its state. The directories are updated, if there is any request of read or write to

any core and thus it can send the data requested by a core.

Another example: when a core requests for a read operation for the first time, the data of

that selective memory location is read and stored in the appropriate block, the directory is updated

with an ‘E’ (for Exclusive) and the block address. When a core requests a write operation on the

same block, the state of that selective block is changed to ‘M’ (for Modified). For every write

operation, the directory is updated with an ‘I’ (for Invalidate) for the other cached copies. The state

‘S’ (for Shared) of a cached block means more than one cores are sharing that selective block. In

case of multiple directories, updating/synchronizing directory is essential to avoid data

inconsistency.

35

3.3 Proposed Architecture 1: Introduction of Centralized Directory in WNoC

 Architecture with Uniform Partition of Subnets

At the beginning, a DASH architecture with wireless routers is introduced in a traditional

WNoC architecture. Each subnet has equal priority to the centralized directory.

3.3.1 Clustering Cores into Uniform Subnets of WNoC Architecture

The proposed architecture divides the cores on the die into clusters called subnets and a

directory with wireless router is introduced to improve the performance of traditional mesh and

WNoC architectures. In each subnet, one special core, such as core-4 in subnet (0, 0.x) of Figure

3.1, contains a wireless router and the other cores within subnet contains wired routers.

Figure 3.1: WNoC architecture with centralized directory

36

From the Figure 3.1, considering a 6x6 mesh topology, the cores are grouped into 3x3-core

subnets, forming four quadrants. Each quadrant, that is each subnet communicates with other

subnets through the centralized directory. Each dark core that is each center core supervises its

own subnet and communicates with other subnets. The subnetting mechanism with the initiation

of centralized directory improves the performance of the system in terms of latency, hop count,

power consumption, and data synchronization.

3.3.2 Communication between Subnets with Centralized Directory

A directory is introduced in the center to hold the information of cached copies of all

subnets. All the cores inside a subnet are local to the subnet and the cores outside of a subnet are

remote cores for that subnet. A source core places its request for the data on the bus and if the data

is not found among the caches of all the cores in the subnet, a request is sent by the subnet wireless

router to the centralized directory for the requested block of data. The centralized directory has the

information of all first level cache (FLC) blocks on the die. Each core may hold several memory

blocks in its cache to accommodate the data fetched from the main memory.

The centralized directory updates the data information for every change in subnets and

tracks the network traffic. WNoC-CD is capable of transferring packets through wired and wireless

links. In WNoC-CD, processing cores are divided into various subnets which have one wireless

router, responsible for providing wireless communication for the cores. The entire network is

divided into subnets and each node is identified within its subnet using a local address. The address

has three components (as shown in Figure 3.1 [81]) – subnet’s X value, subnet’s Y value, and a

number for each node. Here, X ≥ 0, Y ≥ 0, the (X, Y) subnet specifies the subnet location in the

network, and the node number identifies the processing core within the subnet. The directory is

centralized and keeps track of each core. The features of addressing a specific core in a network

37

helps WNoC-CD provide much faster routing decisions as well as a scalable hierarchical system.

In short, it’s a hybrid combination of WNoC and DASH architectures. The DASH system supports

directory for each cluster and the message passing technique among the clusters [58]. The minimal

adaptive routing algorithm delivers shortest path and the directory maintains data sync among the

cores.

However, in WNoC-CD, synchronization is complicated as it must put the requests from

other cores in a queue and they are updated in a sequential order. This indicates traffic congestion

and demand of bandwidth with larger capacity of directory, which makes us to think about

optimizing the drawbacks of centralized directory. The distributed directories use broadcasting

technique to update/sync and resolves the drawbacks of centralized directory. However, the

distributed directories slightly rise power consumption for within subnet cases but reduces route

time and hop counts for all cases.

3.4 Proposed Architecture 2: Introduction of Distributed Directories in WNoC

 Architecture with Uniform Partition of Subnets

To improvise the performance of WNoC architecture with centralized directory, distributed

directories are introduced in WNoC that can manage data sync of all subnets, minimal routing

path, which allows faster execution and minimal energy [82]. The proposed architecture is an

improvement of the WNoC with distributed directories, wireless routers, and DASH architecture.

The major goal of the proposed multicore architecture is to reduce the communication latency

among the cores by decreasing the number of hops required to travel from a source core to a

destination core using the distributed directories and wireless routers. The key design

considerations include: communication between directories and the directory data update policy.

38

Unlike centralized directory, the major advantage of the distributed directories is performing the

data sync by broadcasting the updates to all other directories without any waiting time.

3.4.1 Clustering Cores into Uniform Subnets with an Individual Directory

In this model, cores are divided into uniform subnets, and center core of each subnet is

substituted with a directory and wireless router and is illustrated in Figure 3.2.

Figure3.2: WNoC architecture with distributed directories

Considering a 6x6 mesh topology, the cores are structured into 3x3-core subnets, forming

four quadrants. In every subnet of Figure 3.2, Core-4 (0, 0.x) is a center core that contains a

wireless router and an individual directory. The dotted line represents the wireless connections

with the other subnets’ center core and they are connected to one another.

39

3.4.2 Communication between Subnets with Distributed Directories

In this architecture, all the cores inside a subnet are local to the subnet and the cores outside

of a subnet are remote cores for that subnet. The nature of communication in this design is different

compared to mesh and WNoC architecture with centralized directory. Initially, a source core places

its request for the data on the bus and if the data is not found among the caches of all the cores in

the subnet, a request is sent by the subnet wireless router with directory to the subnet destination

directory for the requested block of data. Each of the distributed directories has the information of

all first level cache blocks on the die. All directories are synced to maintain data consistency. Each

core may hold a few memory blocks in its cache to accommodate the data fetched from the main

memory.

The directory contains the information of all other subnets that includes data sync, minimal

routing path, and it is integrated with wireless router in the central core (Core-4 in Figure 3.2) of

each subnet. In WNoC-DDs, all directories are identical with equal priority. The directory contains

cores’ subnet addresses, the status of each cached block, and the addresses of the blocks that have

been cached. The directory is dynamic in nature and the total number of directory entries depends

on the number of cache blocks/lines per core.

Unlike the centralized directory, the design of distributed directories reduces the pressure

of accomplishing tasks on each directory. In WNoC-DDs, customized MESI protocol is used to

address cache coherency. The directories with the help of customized MESI protocol can exchange

data information between directories. The directories will take care of data synchronization and

thus the cores are free from the role of synchronization. The directories are responsible to update

their individual status and information to directories. The cores are responsible to send the

information to neighbors only. Whenever the information reaches the directory, then the directory

40

performs the necessary operations such as sending the data to the destination core or requesting

the data from any selective core. The data in and out from cores, as well as read or write data into

block memory of a core is handled by the directories only.

The communication among cores inside a subnet follows mesh principle and so the delay

in all three architectures is uniform and they go through the wired network. The directory is

updated on every task individually. To communicate with cores in different subnets, directory and

wireless routers are used. A directory is implemented in a special powerful core as illustrated in

Figure 3.2 (Core-4 of each subnet). The directory quickly provides information regarding the status

and address of a block cached by cores. The cores association is essential to improve

communication excellence. If the destination core is physically one hop, then the cores go through

wired link and finally update the directory. As a result, the communication latency among the cores

is reduced significantly; this is because the source core gets the information about the destination

core (i.e., requested data) quickly from the directory instead of searching other subnets.

WNoC-CD and WNoC-DDs architectures with small number of cores are not complex.

With the increased number of cores, several challenges raise and the most important is the type of

partition applied. Fixed subnets (i.e., uniform subnets) can’t efficiently process all kinds of

applications. Non-uniform subnets with distinct size of applications serve real-time workloads as

they are not identical in nature. The shift in center core of subnet in non-uniform partition brings

the advantage of routing with shortest hop count compared to uniform partition. To address the

issues of uniform partition with large cores, non-uniform partitions are introduced. The shift of

center core in non-uniform subnets reduces the multihopping drawback of uniform subnets

partition.

41

3.5 Proposed Architecture 3: Non-Uniform Partition of Subnets in WNoC Architecture

 with Distributed Directories

In today’s trend, multicore architecture is grabbing a full attention in commercial market

as they are designed to perform better compared to traditional chip architecture. However, the

bottlenecks are also accumulating and there is always a necessity to address the issues to gain more

advantage on multicore or network-on-chip architectures. As the number of cores increases, they

are several challenges such as, whether to assign only one task to the entire multicore CPU or

assign multiple tasks to the multicore CPU. To address that, the concept of subnets that is partition

of cores in WNoC has heightened. There are challenges with the fixed/uniform subnet partitioning.

In general, multicore architectures are uniformly divided and each individual partition is

considered as a subnet. Instead of communicating with peer cores as an entire network, the

subnetwork selection allows to communicate between the subnets which will bring the latency,

power consumption, and some other related parameters down when compared to non-subnet

multicore architectures. Nowadays, the needs of running multiple applications are also increasing

tremendously. Here comes the challenge, as the fixed subnets can only take the tasks according to

the number of subnets distributed. In some cases, the number of cores required for a task or an

application may be insufficient. For some applications, the cores in a subnet are more than required

in a fixed subnet size, that increases the latency as well as power consumption. To address the

problem of insufficient number or excess number of cores in a subnet, we examine non-uniform

subnets in WNoC that should minimize latency and power consumption [83]. Non-uniform subnets

have potential to bring improvement of core usage.

42

3.5.1 Clustering Cores into Uniform and Non-Uniform Subnets with an Individual

Directory

To illustrate this approach, we consider a 64-core system with four subnets. Each subnet is

segregated with 16-core and so we have four subnets. Figure 3.3 illustrates a 64-core architecture

partitioned into four uniform subnets. The dark colored cores (e.g., core-9, 13, 41, and 45) are

center cores with the directory and wireless router features.

Each subnet is having its own directory. Previously, results of 36-core WNoC architectures

with centralized and distributed directories are discussed. In this model, centralized directory is

not considered as the number of cores increased, the latency for serving a subnet request will

increase and so it is evaded from the discussion.

Figure 3.3: Uniform partition of subnets in 64-core architecture

43

• Selection of Center Core in Even Size Subnet

The size of a subnet is always described in row x column approach. So, m x m subnet size

indicates m number of rows and m number of columns. Finding a center for even subnet size is

always challenging. For example, considering Subnet 0 of Figure 3.3, the possibility of retrieving

exact center core is difficult. Going closer, the opportunity for being center core is of equal priority

to the cores 9, 10, 17, and 18. In this work, we are not considering any additional special cores and

so we can’t make the even subnet size into an odd series. Selection of any above listed cores have

equal priority. There is no special reason of considering core-9 as the center core in Subnet 0.

Similarly, cores 13, 41, and 45 in other subnet can be center cores. Based on specific workloads,

each may offer the best performance. The dotted lines in Figure 3.3 denote wireless links between

the directories with wireless routers.

• Partitioning Cores into Non-Uniform Subnets

Uniform subnets partition has few challenging issues and they can be addressed with an

alternative way to partition subnets. Figure 3.4 illustrates the representation of non-uniform

subnets of 64-core architecture and the dark colored core in each subnet is a directory with wireless

router. The dotted lines in Figure 3.4 represents the wireless links between the directories. Each

directory communicates with other subnet directories through wireless links.

One of the major drawbacks of uniform subnets is the latency and it depends on the type

of path it follows. Every task must update the directory and so if the center directory is far from

other cores, it could weak the performance of the system. Considering the drawbacks of uniform

partition, subnets with assorted sizes are developed. In this way it gets benefits of assigning the

subnets to different workloads. However, the non-uniform partition is fixed, and it relies on initial

logical partition only.

44

Figure 3.4: Non-uniform partition of subnets in 64-core architecture

3.5.2 Communication between Distributed Directories with Different Assignments

The communication between directories happens the same way as described for previous

WNoC distributed directories architecture. However, as the size of the subnet is large, the

performance improvement is not linear as several challenges rise such as wiring delays. In contrast

to the previous workloads of other proposed architectures, distinctive workload with different jobs

are used. Each job is sub divided into individual tasks. In this research, the jobs are given

sequentially and so the waiting latency is not considered. Unlike other architectures, the path

45

between source to destination is not only considered between directories but the complete path of

serving the request.

For every message transmission between the source and destination, unlike mesh

architectures, the update of data of its subnet directory is the first or initial step. Secondly, the

directories are updated through broadcasting. As there are only four directories, the interference

between directories with wireless links are negotiable. Several types of jobs with individual tasks

are considered where the distance between source and destination is minimum to maximum. If

there is a message passing between two cores and the distance is one hop, then the destination core

process the data request of source and finally the source core updates the directory. If the

destination core is at a distance greater than one hop, then the source finds the route to directory

of its subnet only. For in-subnet tasks, more than one hop distance, the directory after receiving

the request from source, it informs the destination core to send the data directly to source core.

After that the individual directory is updated and then it synchronizes other directories by

broadcasting. In a similar fashion, for out-subnet tasks, directories communicate each other to find

the path and status of destination core and then collecting the destination cores data through

intermediate cores to source via directories. The synchronization of data through directories is

faster and reduces the pressure on cores individually.

46

CHAPTER 4

 EXPERIMENTAL DETAILS

In this chapter, we discuss experimental details to evaluate our proposed architectures. The

proposed architectures are modeled using VisualSim tool. In the following sections, we discuss

assumptions, tools workload used during simulation, etc.

4.1 Assumptions

The characteristics of all three architectures with wired communication are assumed as of

unique behavior. Firstly, in proposed architectures 1 and 2, multicore systems with a small number

of cores (36-core) are considered so that the performance of the architectures can be observed

closely. Same workload is used for proposed architectures 1 and 2, to run the simulation programs

of different systems. The wireless routers used in the traditional WNoC, WNoC-CD and WNoC-

DDs architectures are identical. The update of directory is essential in WNoC-CD and WNoC-

DDs. However, unlike WNoC-DDs, WNoC-CD need extra hops to update the directory (for some

tasks) as it is centralized. For power consumption, WNoC-DDs must update through directory and

thus WNoC-DDs may take more power for some tasks compared to WNoC-CD, but less power

compared to mesh.

In proposed architecture 3, there are 64-core. The performance improvements with

increased number of cores can be established only with the adoption of few techniques in

clustering. In WNoC, subnets communicate with other subnets and cores communicate to other

cores in an individual subnet to complete the data transfer requested by source core. The

assumptions for the design of proposed architecture 3 is like proposed 1 and 2 architectures. The

major difference is partition of subnets in non-uniform method. However, there are some

additional changes in proposed architecture 3, that are used in calculating the performance

47

parameters such as communication latency, hop count, and power consumption. In these

architectures, we calculate the complete path of requests that involves from source to destination

requests and vice-versa to complete the requests of data. In the workload, source core is the one

who requests the data and the destination core is the one who delivers the data to source core upon

request. Mesh architecture is not considered in the non-uniform study as they are not satisfactory

when compared to directory-based WNoC architectures. This is proven in the proposed 1 and

proposed 2 architectures. So, the performance evaluation is only evaluated for uniform and non-

uniform partition of subnets. As stated, the path considerations are different, they are explained in

detail with the exploration of parameters.

• Communication Latency

Communication latency is a measure of time taken for transmitting a packet from source

core to destination core. Communication latency depends on hop count, type of architecture and

protocols used for transmission of packets. The latency is a major performance parameter, which

is essential to consider in any architecture for real-time or any kind of applications [84], [85], [86].

Wormhole packet switching is considered for data delivery as it has very low transfer latency in

transmitting packets. Say, a packet size of 64-bit flits is considered [87]. Where, the first flit is the

header flit, which has the control information for delivering the packet to the destination address

and followed by the actual payload. Intermediate nodes process just the first flit of the packet to

know whether the packet is intended for itself or any other core. Only the destination core would

process the whole packet. Because of that the delay caused by the intermediate nodes is less

compared to the delay caused by the destination core. In an intermediate core, the delay is caused

due to processing only the first flit (say, 8 Bytes). However, in a destination core, the delay is

48

caused due to processing the entire packet (say, 80 Bytes). Here are some of the major assumptions

to calculate communication latency:

1) Delay due to an intermediate core is 4 units.

2) Delay caused due to a destination core is assumed to be 40 units.

• Hop Count

Hop count refers to the number of intermediate cores or routers involved for data packets

transmission between source core to destination core. However, the hop count may be less or high

depending upon the protocol and the type of architecture used [88], [89]. In multicore architectures

with subnet mechanism, the routing methodology or algorithm differs from traditional methods

and thus the number of hops differ in each architecture [90], [91]. Hop count increases if the

distance between source node and destination core increases, and thus increases communication

latency [92]. Here are some of the major assumptions to calculate hop count:

1) Each core is assumed to be at one hop distance from all its neighboring cores to which

it is directly connected to it.

2) Wireless router cores are also assumed to be at one hop distance from its peer wireless

routers.

3) Wireless router cores to the centralized directory are also assumed to be at one hop

distance.

4) In WNoC-DDs, the distance between a directory to directory is also assumed as one

hop.

In all three architectures, the hop count is calculated based on the number of intermediate

cores, wired and wireless hops involved in successfully completing the packet transmission

between source core and destination core.

49

• Power Consumption

Power consumption in all the three architectures depends on the hop count and the cores

(center core needs more power) participated in the routing path for any given task. The

considerations and assumptions that are made for exploring the power consumption of the three

simulated architectures are listed in Table 4.1. Here are some of the major assumptions to calculate

power consumption:

Table 4.1: Considerations and assumptions for power calculations

No. Consideration Notation Power
(Unit)

1 Power consumed by a wired link Pwr 1.0
2 Power consumed by a wireless link Pwl 1.1
3 Power consumed by a core with wired router Pcwr 3.0
4 Core average of network- Mesh Pcanw 19.5
5 Average links of wired network-Mesh Palwr 5.5
6 Number of wired links Nwr (vary)
7 Number of cores wired Ncwr (vary)
8 Number of wireless links Nwl (vary)
9 Power consumed by a core with a wireless router Pcwl 3.3
10 Power consumed by the wired links in a subnet on an average Pawrsn 2.5
11 Power consumed between source and directory-WNoC-CD Psdr (vary)
12 Power consumed by the directory- WNoC-CD Pdr 6.0
13 Power consumed by the directory core in WNoC-CD Pcdr 9.3
14 Power consumed between destination to source in WNoC-CD Pds (vary)

15 Power consumed between source and distributed directories-
WNoC-DDs Psdd (vary)

16 Power consumed by each of the distributed directories with wireless
router- WNoC-DDs Pddr 6

17 Power consumed between destination to source distributed
directories- WNoC-DDs Pdsddr (vary)

• Average of Parameters for Proposed Architectures

The performance parameters such as communication latency, hop count, and power

consumption are derived from the proposed architectures 1 and 2 by providing 25 different tasks

as workload. The tasks are considered with the scenarios, that has minimum length to maximum

50

length between nodes. The performance of tasks can be observed individually as task wise for

communication latency, hop count, and power consumption. The overall performance such as

average calculation of each parameter gives precise statistics, whether to consider the new

proposed architecture is beneficial compared to the other architectures. To find the decrease or

improved performance of any parameter, the total column of each architecture is summed initially.

The summed column of proposed architecture is subtracted from other architectures individually

and finds the reduced difference.

To find the average in percentage, the ratio of reduced difference when the proposed

architecture is compared with other architectures to other individual architecture summed column,

and then multiplied by 100. Mathematically, it can be represented as follows:

To calculate average of parameters for n (n>1) number of tasks, when compared to mesh

in %=

∑ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑜𝑜𝑜𝑜 𝑀𝑀𝑃𝑃𝑀𝑀ℎ −𝑛𝑛>1
𝑖𝑖 =1 ∑ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑜𝑜𝑜𝑜 𝑃𝑃𝑃𝑃𝑜𝑜𝑃𝑃𝑜𝑜𝑀𝑀𝑃𝑃𝑃𝑃𝑛𝑛>1

𝑖𝑖 =1

∑ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑜𝑜𝑜𝑜 𝑀𝑀𝑃𝑃𝑀𝑀ℎ𝑛𝑛>1
𝑖𝑖 =1

𝑋𝑋 100

To calculate average of parameters for n (n>1) number of tasks, when compared to WNoC-

CD in %=

∑ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑜𝑜𝑜𝑜 𝑊𝑊𝑊𝑊𝑜𝑜𝑊𝑊 𝑤𝑤𝑤𝑤𝑃𝑃ℎ 𝑊𝑊𝐶𝐶 −𝑛𝑛>1
𝑖𝑖 =1 ∑ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑜𝑜𝑜𝑜 𝑃𝑃𝑃𝑃𝑜𝑜𝑃𝑃𝑜𝑜𝑀𝑀𝑃𝑃𝑃𝑃𝑛𝑛>1

𝑖𝑖 =1

∑ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑜𝑜𝑜𝑜 𝑊𝑊𝑊𝑊𝑜𝑜𝑊𝑊 𝑤𝑤𝑤𝑤𝑃𝑃ℎ 𝑊𝑊𝐶𝐶𝑛𝑛>1
𝑖𝑖 =1

 𝑋𝑋 100

Using Eq. (1) and Eq. (2), the average of all parameters in percentage are calculated. If we

know the average, the performance of proposed can be estimated by considering the worst and

best scenarios.

For proposed architecture 3, the performance of each parameter such as communication

delay, hop count, and power consumption are derived for uniform and non-uniform subnets

architecture with the random workloads that has 6 jobs and/or 31 individual tasks in total. The

(1)

(2)

51

performance of tasks can be observed individually as job basis/task basis for communication

latency, hop count, and power consumption. The average computation of parameters gives overall

advantage of the architectures and so it is easy to analyze the best of the architectures. The statistics

of each parameter in task wise explains the best and worst condition of each architecture, which

will help to make changes in design to overcome the drawbacks. To find the improved performance

of any parameter, the total column of each architecture is summed initially. The summed column

of proposed architecture is subtracted from other architectures individually and finds the reduced

difference.

To find the average in percentage, the ratio of reduced difference when the proposed

architecture is compared with other architectures to other individual architecture summed column,

and then multiplied by 100. Mathematically, it can be represented as follows:

To calculate average of parameters for n (n>1) number of tasks, when compared to uniform

subnets in %=

∑ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑜𝑜𝑜𝑜 𝑈𝑈𝑈𝑈𝑤𝑤𝑜𝑜𝑜𝑜𝑃𝑃𝑃𝑃 𝑆𝑆𝑆𝑆𝑆𝑆𝑈𝑈𝑃𝑃𝑃𝑃𝑀𝑀 −𝑛𝑛>1
𝑖𝑖 =1 ∑ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑜𝑜𝑜𝑜 𝑊𝑊𝑜𝑜𝑈𝑈 − 𝑈𝑈𝑈𝑈𝑤𝑤𝑜𝑜𝑜𝑜𝑃𝑃𝑃𝑃 𝑆𝑆𝑆𝑆𝑆𝑆𝑈𝑈𝑃𝑃𝑃𝑃𝑀𝑀𝑛𝑛>1

𝑖𝑖 =1

∑ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑜𝑜𝑜𝑜 𝑈𝑈𝑈𝑈𝑤𝑤𝑜𝑜𝑜𝑜𝑃𝑃𝑃𝑃 𝑆𝑆𝑆𝑆𝑆𝑆𝑈𝑈𝑃𝑃𝑃𝑃𝑀𝑀𝑛𝑛>1
𝑖𝑖 =1

𝑋𝑋 100

Using Eq. (3), the average of all parameters in percentage are calculated. If we know the

average on job basis as well as task basis, the performance of proposed can be estimated and thus

it is easy to identify the best and poor scenarios.

4.2 Simulation Tool

In this work, we use VisualSim Architect [93] tool to design, model, and simulate the

architectures such as traditional mesh, traditional WNoC, WNoC with centralized and distributed

directories, uniform and non-uniform subnets.

(3)

52

VisualSim Architect is a graphical modeling and simulation software for designing and

validating systems that has capability of interfacing different fields such as core architectures,

networking, semiconductors, real-time constraints, etc. The simulation-based results could be

useful to explore different core architectures in terms of reliability, functionality, energy aware,

routing protocols, and performance [94], [95]. VisualSim Architect is available with large libraries

for modeling specific application components and several templates which are already modeled.

The templates can be modified and extended if necessary, to explore that specific application. The

engineers can model any customized design and can assemble different models using graphics

editor. They can export or import data into excel, or into any graph representations. The

analyzation of data could be so easy, and the statistical results will help the engineers to finalize

system performance and they could check whether the demands of the system such as latency,

bandwidth, power, cost, and reliability are fulfilled. Figure 4.1 illustrates the model of a subnet

with a directory and wireless router. Here, the model of a single node/core with a wired router is

shown in Circle A. Node ‘_X’ Output is connected to each node and keeps track of that node

assignments for all tasks. In Node ‘_X’ Output, X represents the node number. Circle B is the

model of a directory with wired and wireless router. The router is basically a switch, and the switch

works according to the routing protocol. In Circle C, ‘Transaction_Source’ is a random workload

traffic generator. The generated traffic is copied into database and so the same workload can be

applied to other architectures to compare the performance improvements. The processing units

help to carry out the generated traffic to the subnet and tracks the routing path of packets for every

task. The routing table in Figure 4.1, has the routing information of topology that lists the routes

between cores. The routing table serves as a map in delivering the packets to the destination cores.

53

The destination node may be directly connected to source node or it might be routed via other

nodes.

Figure 4.1: Model of the subnet with a directory and wireless router

VisualSim Architect is advantageous because of its architecture modeling capabilities as

they are useful in prior to the physical implementation of system design or algorithms. This

modeling helps in time saving, useful to finalize whether the system is practically implementable,

pros and cons of designs, trade-offs between different architectures or technologies, validation of

modeled designs and many other features can be derived. In short, VisualSim Architect allows us

to formalize the system specifications by providing organized and quantitative solutions.

54

4.3 Workload

Workload is used in the experiments to run the simulation programs and calculate latency,

hop count, and power consumption. In this work, workload for proposed architectures 1 and 2 is

the same and so the performance improvements can be observed clearly. This method allows us to

closely observe the performance improvement in each task. In this way, the advancements in

architecture can be analyzed and it can convey the followed procedure is acceptable or not

acceptable. In proposed architecture 3 with 64-core, a complex workload is considered to evaluate

the performance comparison through application basis with distinct subtasks load.

• Workload for Proposed Architectures 1 and 2

In this work, we consider 25 different tasks as illustrated in Table 4.2 for the proposed

architectures 1 and 2. The tasks 1 to 20 represent the requests from one subnet to other and the

cases 21 to 25 represents the requests from one node to another node within the same subnet. The

workload to represent the communications between source nodes and destination nodes are

generated using VisualSim Architect tool.

Table 4.2: Source and destination cores for different communication tasks
Different
Scenarios Source Core (S) Destination Core (D) Subnet Location

Task 1 Core - > (0, 0.0) Core - > (1, 1.8) Out-Subnet
Task 2 Core - > (0, 0.4) Core - > (1, 1.4) Out-Subnet
Task 3 Core - > (0, 0.7) Core - > (1, 0.1) Out-Subnet
Task 4 Core - > (0, 0.3) Core - > (0, 1.5) Out-Subnet
Task 5 Core - > (1, 0.5) Core - > (0, 1.2) Out-Subnet
Task 6 Core - > (1, 0.7) Core - > (0, 1.5) Out-Subnet
Task 7 Core - > (0, 1.0) Core - > (1, 0.0) Out-Subnet
Task 8 Core - > (0, 0.8) Core - > (1, 1.6) Out-Subnet
Task 9 Core - > (0, 0.7) Core - > (0, 1.1) Out-Subnet
Task 10 Core - > (1, 1.5) Core - > (1, 0.2) Out-Subnet
Task 11 Core - > (0, 1.3) Core - > (0, 0.1) Out-Subnet
Task 12 Core - > (0, 1.4) Core - > (1, 0.6) Out-Subnet
Task 13 Core - > (1, 0.1) Core - > (1, 1.1) Out-Subnet

55

Table 4.2 (continued)
Different
Scenarios Source Core (S) Destination Core (D) Subnet Location

Task 14 Core - > (1, 1.2) Core - > (0, 0.8) Out-Subnet
Task 15 Core - > (1, 0.6) Core - > (0, 1.2) Out-Subnet
Task 16 Core - > (1, 0.4) Core - > (0, 1.7) Out-Subnet
Task 17 Core - > (1, 1.3) Core - > (0, 1.3) Out-Subnet
Task 18 Core - > (0, 1.2) Core - > (1, 1.0) Out-Subnet
Task 19 Core - > (0, 0.1) Core - > (1, 0.7) Out-Subnet
Task 20 Core - > (1, 0.2) Core - > (0, 1.6) Out-Subnet
Task 21 Core - > (0, 0.6) Core - > (0, 0.5) In-Subnet
Task 22 Core - > (1, 0.7) Core - > (1, 0.8) In-Subnet
Task 23 Core - > (0, 1.4) Core - > (0, 1.2) In-Subnet
Task 24 Core - > (1, 1.6) Core - > (1, 1.2) In-Subnet
Task 25 Core - > (0, 1.7) Core - > (0, 1.1) In-Subnet

• Workload for Proposed Architecture 3

Unlike 36-core architecture, a different workload is considered for the 64-core architecture.

This workload allows us to compute the performance in different parameters according to job and

individual task basis. The details of the workload are listed in Table 4.3.

In this workload, tasks are included with in-subnet scenarios and out-subnet scenarios. The

performance evaluation of the architecture is derived on job basis as well as individual task basis.

The jobs are given sequentially and are serviced according to the request order. Here the jobs are

not identical, where they differ in number of tasks and location of subnets that is in or out.

To evaluate the best of the architectures, random tasks are generated where few tasks may

give advantage to uniform subnets and some other to non-uniform subnet partition. Non-uniform

subnet is a trade-off approach for large core architectures like more than 64-core. The method of

proposed architecture 3 can be extended to any large number of cores. The random scenarios are

generated using VisualSim tool for jobs, with an instruction to consider in or out-subnets.

56

Table 4.3: Workload for uniform and non-uniform subnets in 64-core architecture

Different
Scenarios

Subtasks
between
Cores

Uniform Partition Non-Uniform Partition
Subnets
Involved

Subnet
Location

Subnets
Involved

Subnet
Location

Job 1

18-54 S0, S3 Out S0, S3 Out
59-19 S3, S0 Out S2, S0 Out
19-51 S0, S3 Out S0, S2 Out
18-50 S0, S2 Out S0, S2 Out
58-26 S2, S0 Out S2, S0 Out

Job 2

19-20 S0,S1 Out S0 In
60-51 S3,S2 Out S2 In
52-50 S3,S2 Out S2 In
24-20 S0,S1 Out S0 In

Job 3

6-28 S1 In S1, S0 Out
31-20 S1 In S1, S0 Out
63-39 S3 In S3, S1 Out
59-35 S2 In S2, S0 Out

Job 4

 19-35 S0, S2 Out S0 In
17-34 S0, S2 Out S0 In
38-14 S3, S1 Out S1 In
49-52 S2, S3 Out S2 In
23-20 S1 In S1 Out
4-31 S1 In S1 Out
60-39 S3 In S2, S1 Out

Job 5

54-63 S3 In S3 In
53-55 S3 In S3 In
47-61 S3 In S3 In
63-62 S3 In S3 In
53-45 S3 In S3 In
46-62 S3 In S3 In
55-47 S3 In S3 In

Job 6

9-45 S0, S3 Directory S0, S3 Out
54-50 S3, S2 Out S3, S2 Directory
18-22 S1 Out S0, S1 Directory
13-41 S1,S3 Directory S1, S2 Out

4.4 Simulation of Proposed Architecture 1

In this architecture, the performance is compared by assigning the unique workload for the

architectures like mesh, traditional WNoC, and proposed WNoC with centralized directory

(WNoC-CD). In proposed architecture 1, with the introduction of directory, traditional method of

57

multiple routing in mesh topology, and traffic as well as broadcasting issues of traditional WNoC

can be avoided. Data synchronization is easy with the directories as they are having proven history

to address cache coherence and scaling issues when compared to snoopy protocols. The

performance is observed through randomly assigned workloads and the parameters considered are

communication latency, hop count, and power consumption.

4.4.1 Communication Latency

The communication latency of an architecture depends on their routing methodology. The

information from source to destination flows through intermediate nodes. In mesh multicasting,

XY routing algorithm is followed which is an orthodox strategy and that can eventually lead to a

longer delay, especially for the end-to-end communications. The information is generally

transmitted in packets that have header, payload and trailer. Tasks 1 through 20 can be better

executed by WNoC architecture. In traditional WNoC, the routing to destination is primarily

checked within subnet and if the address is not in the subnet, then it broadcasts the same

information to all other subnets. While broadcasting, the communication is through wireless

routers, so it has the possibility of skipping the unnecessary intermediate nodes and thus reduces

the latency. Even though the destination is just one hop away from its subnet, WNoC will follow

the broadcasting methodology and it may take longer path compared to the mesh multicasting in

few tasks.

As illustrated in Table 4.4, for some tasks (such as Tasks 8 and 9) traditional WNoC takes

more time than mesh, for some tasks (such as Task 10) traditional WNoC and mesh take same

amount of time, and for some tasks (such as Tasks 1, 2, and 20) traditional WNoC takes less time

than mesh. However, for all the tasks WNoC-CD takes less or equal time compared to traditional

mesh and traditional WNoC architectures.

58

If the destination is only one hop distance (Tasks such as 9, 18 and 22), then all the

networks behave as mesh and the communication latency is identical in mesh and WNoC-CD, but

traditional WNoC takes additional latency to update the subnets.

Table 4.4: Communication latency compared to WNoC-CD architecture

Different Scenarios Traditional Mesh
(ms)

Traditional
WNoC

(ms)

Proposed WNoC-CD
(ms)

Task 1: (0,0.0)-(1,1.8) 4x9+40=76 4x4+40=56 4x2+40=48
Task 2: (0,0.4)-(1,1.4) 4x5+40=60 4x0+40=40 4x0+40=40
Task 3: (0,0.7)-(1,0.1) 4x4+40=56 4x2+40=48 4x1+40=44
Task 4: (0,0.3)-(0,1.5) 4x4+40=56 4x2+40=48 4x1+40=44
Task 5: (1,0.5)-(0,1.2) 4x4+40=56 4x3+40=52 4x1+40=44
Task 6: (1,0.7)-(0,1.5) 4x3+40=52 4x2+40=48 4x1+40=44
Task 7: (0,1.0)-(1,0.0) 4x5+40=60 4x4+40=56 4x2+40=48
Task 8: (0,0.8)-(1,1.6) 4x3+40=52 4x4+40=56 4x2+40=48
Task 9: (0,0.7)-(0,1.1) 4x0+40=40 4x2+40=48 4x0+40=40
Task 10: (1,1.5)-(1,0.2) 4x3+40=52 4x3+40=52 4x1+40=44
Task 11: (0,1.3)-(0,0.1) 4x4+40=56 4x2+40=48 4x1+40=44
Task 12: (0,1.4)-(1,0.6) 4x3+40=52 4x2+40=48 4x0+40=40
Task 13: (1,0.1)-(1,1.1) 4x2+40=48 4x2+40=48 4x1+40=44
Task 14: (1,1.2)-(0,0.8) 4x3+40=52 4x4+40=56 4x2+40=48
Task 15: (1,0.6)-(0,1.2) 4x1+40=44 4x4+40=56 4x2+40=48
Task 16: (1,0.4)-(0,1.7) 4x6+40=64 4x1+40=44 4x0+40=40
Task 17: (1,1.3)-(0,1.3) 4x2+40=48 4x2+40=48 4x1+40=44
Task 18: (0,1.2)-(1,1.0) 4x0+40=40 4x4+40=56 4x0+40=40
Task 19: (0,0.1)-(1,0.7) 4x4+40=56 4x2+40=48 4x1+40=44
Task 20: (1,0.2)-(0,1.6) 4x9+40=76 4x4+40=56 4x2+40=48
Task 21: (0,0.6)-(0,0.5) 4x2+40=48 4x2+40=48 4x2+40=48
Task 22: (1,0.7)-(1,0.8) 4x0+40=40 4x0+40=40 4x0+40=40
Task 23: (0,1.4)-(0,1.2) 4x1+40=44 4x1+40=44 4x1+40=44
Task 24: (1,1.6)-(1,1.2) 4x3+40=52 4x3+40=52 4x3+40=52
Task 25: (0,1.7)-(0,1.1) 4x1+40=44 4x1+40=44 4x1+40=44

The detailed explanation of Table 4.4 for each architecture can be better known by

discussing with any task. Let’s consider the Task 1, which is the maximum distance between

source and destination cores. The information is generally transmitted in packets that have header,

payload and trailer. Here the header size, say 8 bytes and the whole packet is 80 bytes. Therefore,

59

if the delay due to an intermediate core is four units, the delay caused due to a destination core is

assumed to be 40 units. The intermediate cores check only the header flit and so each intermediate

core causes four units of delay. In mesh, for Task 1, they are nine intermediate cores and one

destination core excluding source core. So, delay due to nine intermediate cores will be 36

(4*9=36) units and the destination core takes 40 units, which will make the total as 76 units. In

WNoC-CD, the centralized directory is considered as destination core. So, in Task 1, it has two

intermediate cores and one destination core (centralized directory) involved. In detail, delay due

to intermediate cores is 8 (4*2=8) units and the destination core takes 40 units, which will make

the total as 48 units.

4.4.2 Hop Count

Hop count is another significant performance characteristic to ensure the architecture could

be faster with reliable communication. To determine hop count, the number of hops involved in

data transmission are counted and they differ based on the architecture. The calculation of hop

count for each task is illustrated in Table 4.5.

In some scenarios, even though the hop count is less, it may not ensure faster

communication or data transmission. This is because the communication latency also varies based

on selected path, such as single path with higher number of hops or multiple paths with low hop

count. Generally, multiple paths may cause more delay as intermediate routers or devices may take

long time for processing the data transmission. In most cases, if the packet exceeds the large hop

count for a network, then that packet is discarded and there should be a retransmission of packet

to accomplish successful task completion. To ensure that the communication is successful in mesh

architecture, return path or acknowledgement is essential. So, the total number of hops (HT) is 2x

the number of hops between the source and destination.

60

Table 4.5: Hop count compared to WNoC-CD architecture

Different Scenarios Traditional
Mesh

Traditional
WNoC Proposed WNoC-CD

Task 1: (0,0.0)-(1,1.8)

HC= HT *2 (S to
D)+

HT *2 (D to
S)=20+20=40

HC= HT *2 (S to
D)+

HT *2 (D to
S)=10+10=20

HC= HT (S to
Directory)+

HT (D to S) =3+6=9

Task 2: (0,0.4)-(1,1.4) HC=12+12=24 HC=2+2=4 HC=1+2=3
Task 3: (0,0.7)-(1,0.1) HC=10+10=20 HC=6+6=12 HC=2+4=6
Task 4: (0,0.3)-(0,1.5) HC=10+10=20 HC=6+6=12 HC=2+4=6
Task 5: (1,0.5)-(0,1.2) HC=10+10=20 HC=8+8=16 HC=2+5=7
Task 6: (1,0.7)-(0,1.5) HC=8+8=16 HC=6+6=12 HC=2+4=6
Task 7: (0,1.0)-(1,0.0) HC=12+12=24 HC=10+10=20 HC=3+6=9
Task 8: (0,0.8)-(1,1.6) HC=8+8=16 HC=10+10=20 HC=3+6=9
Task 9: (0,0.7)-(0,1.1) HC=2+2=4 HC=6+6=12 HC=1+1+2=4
Task 10: (1,1.5)-(1,0.2) HC=8+8=16 HC=8+8=16 HC=2+5=7
Task 11: (0,1.3)-(0,0.1) HC=10+10=20 HC=6+6=12 HC=2+4=6
Task 12: (0,1.4)-(1,0.6) HC=8+8=16 HC=6+6=12 HC=1+4=5
Task 13: (1,0.1)-(1,1.1) HC=6+6=12 HC=6+6=12 HC=2+4=6
Task 14: (1,1.2)-(0,0.8) HC=8+8=16 HC=10+10=20 HC=3+6=9
Task 15: (1,0.6)-(0,1.2) HC=4+4=8 HC=10+10=20 HC=3+6=9
Task 16: (1,0.4)-(0,1.7) HC=14+14=28 HC=4+4=8 HC=1+3=4
Task 17: (1,1.3)-(0,1.3) HC=6+6=12 HC=6+6=12 HC=2+4=6
Task 18: (0,1.2)-(1,1.0) HC=2+2=4 HC=10+10=20 HC=1+1+3=5
Task 19: (0,0.1)-(1,0.7) HC=10+10=20 HC=6+6=12 HC=2+4=6
Task 20: (1,0.2)-(0,1.6) HC=20+20=40 HC=10+10=20 HC=3+6=9
Task 21: (0,0.6)-(0,0.5) HC=6+6=12 HC=6+6=12 HC=3+3=1=7
Task 22: (1,0.7)-(1,0.8) HC=2+2=4 HC=2+2=4 HC=1+1+2=4
Task 23: (0,1.4)-(0,1.2) HC=4+4=8 HC=4+4=8 HC=2+2+1=5
Task 24: (1,1.6)-(1,1.2) HC=8+8=16 HC=8+8=16 HC=4+4+1=9
Task 25: (0,1.7)-(0,1.1) HC=4+4=8 HC=4+4=8 HC=2+2+1=5

However, the proposed architecture does not require any acknowledgement path for

identifying the status as well as fetching the data. The routing path has become straightforward

and less due to the introduction of directory in a multicore architecture. The directory works as a

commander and supervises the purpose without any acknowledgement.

The detailed explanation of any task for each architecture can be simplified by considering

a task. Let’s consider Task 1, which has maximum end-to-end communication. In mesh, to

61

communicate between source and destination core it has 10 intermediate hops. Usually in mesh, it

should get an acknowledgement to send any information. So, it has double path for source and

destination which makes 20 hop counts. Similarly, to acknowledge the information is completely

received from destination to source is also double which makes 20 hop count and so in total it has

40 hop counts. In WNoC-CD, the request to fetch data is up to centralized directory that is three

hops and then the return path is from destination to source core that is six hops, which makes the

total as nine hops. In WNoC-DDs, the request to fetch is to its individual directory only as the

directories are synced that takes two hops, and then the return path is five hops which makes the

total as seven hops.

4.4.3 Power Consumption

To calculate the power (assumptions in Table 4.1) consumed for a task, there are several

considerations such as cores, routers, and directories involved in reaching destination core from

source core. It is assumed that each wired link consumes one unit of power (Pwr). Studies indicate

a wired network connection would take less power than a wireless network [96], [97], [98], [99].

Therefore, a wireless link is assumed to consume 1.1 unit of power (Pwl). To be in the conservative

side, we assume that a core with wired router consumes three units of power (Pcwr). The XY routing

algorithm [100], [101], [102] does not have a unique pattern path towards destination. So, the

average power consumed by a core in a 6x6 mesh (Pcanw) is average number of cores travelled

multiplied by power needed for each wired core (19.5 units). Similarly, the average power

consumed by a wired link in a 6x6 mesh (Palwr) is 5.5 power units. The power consumption of each

individual task can be observed in Table 4.6.

62

Table 4.6: Power consumption compared to WNoC-CD architecture
Different
Scenarios

Traditional Mesh
 (mW)

Traditional WNoC
 (mW)

Proposed WNoC-CD
 (mW)

Task 1:
(0,0.0)-(1,1.8)

P1=24, P2=24, P3=25,
Ptot=73

Psd=37.6, Pds=24.7
Ptot=62.3

Psdr=6.9, Pcdr=9.3
Ptot=16.2

Task 2:
(0,0.4)-(1,1.4)

P1=24, P2=24, P3=25,
Ptot=73

Psd=37.6, Pds=24.7
Ptot =62.3

Psdr=6.9, Pcdr=9.3
Ptot=16.2

Task 3:
(0,0.7)-(1,0.1)

P1=23, P2=23, P3=25
Ptot=71

Psd=31.6, Pds=12.7
Ptot =44.3

Psdr=9.9, Pcdr=9.3
Ptot=19.2

Task 4:
 (0,0.3)-(0,1.5)

P1=23, P2=23, P3=25
Ptot=71

Psd=34.6, Pds=18.7
Ptot =53.3

Psdr=9.9, Pcdr=9.3
Ptot=19.2

Task 5:
(1,0.5)-(0,1.2)

P1=23, P2=23, P3=25
Ptot=71

Psd=34.6, Pds=21.7
Ptot =56.3

Psdr=9.9, Pcdr=9.3
Ptot=19.2

Task 6:
 (1,0.7)-(0,1.5)

P1=19, P2=19, P3=25
Ptot=63

Psd=34.6, Pds=18.7
Ptot =53.3

Psdr=9.9, Pcdr=9.3
Ptot=19.2

Task 7:
(0,1.0)-(1,0.0)

P1=27, P2=27, P3=25
Ptot=79

Psd=37.6, Pds=24.7
Ptot =62.3

Psdr=12.9, Pcdr=9.3
Ptot=22.2

Task 8:
(0,0.8)-(1,1.6)

P1=19, P2=19, P3=25
Ptot=63

Psd=37.6, Pds=24.7
Ptot =62.3

Psdr=12.9, Pcdr=9.3
Ptot=22.2

Task 9:
(0,0.7)-(0,1.1)

P1=7, P2=7, P3=25
Ptot=39

Psd=34.6, Pds=18.7
Ptot =53.3

Psdr=9.9, Pcdr=9.3
Ptot=19.2

Task 10:
(1,1.5)-(1,0.2)

P1=19, P2=19, P3=25
Ptot=63

Psd=34.6, Pds=21.7
Ptot =56.3

Psdr=9.9, Pcdr=9.3
Ptot=19.2

Task 11:
(0,1.3)-(0,0.1)

P1=23, P2=23, P3=25
Ptot=71

Psd=34.6, Pds=18.7
Ptot =53.3

Psdr=9.9, Pcdr=9.3
Ptot=19.2

Task 12:
(0,1.4)-(1,0.6)

P1=19, P2=19, P3=25
Ptot=63

Psd=31.6, Pds=18.7
Ptot=50.3

Psdr=6.9, Pcdr=9.3
Ptot=16.2

Task 13:
(1,0.1)-(1,1.1)

P1=15, P2=15, P3=25
Ptot=55

Psd=34.6, Pds=18.7
Ptot =53.3

Psdr=9.9, Pcdr=9.3
Ptot=19.2

Task 14:
(1,1.2)-(0,0.8)

P1=19, P2=19, P3=25
Ptot=63

Psd=37.6, Pds=24.7
Ptot=62.3

Psdr=12.9, Pcdr=9.3
Ptot=22.2

Task 15:
(1,0.6)-(0,1.2)

P1=11, P2=11, P3=25
Ptot=47

Psd=37.6, Pds=24.7
Ptot=62.3

Psdr=12.9, Pcdr=9.3
Ptot=22.2

Task 16:
(1,0.4)-(0,1.7)

P1=31, P2=31, P3=25
Ptot=87

Psd=37.6, Pds=24.7
Ptot=62.3

Psdr=6.9, Pcdr=9.3
Ptot=16.2

Task 17:
(1,1.3)-(0,1.3)

P1=15, P2=15, P3=25
Ptot=55

Psd=37.6, Pds=24.7
Ptot =62.3

Psdr=9.9, Pcdr=9.3
Ptot=19.2

Task 18:
(0,1.2)-(1,1.0)

P1=7, P2=7, P3=25
Ptot=39

Psd=31.6, Pds=12.7
Ptot =44.3

Psdr=12.9, Pcdr=9.3
Ptot=22.2

Task 19:
(0,0.1)-(1,0.7)

P1=23, P2=23, P3=25
Ptot=71

Psd=34.6, Pds=18.7
Ptot =53.3

Psdr=9.9, Pcdr=9.3
Ptot=19.2

Task 20:
(1,0.2)-(0,1.6)

P1=43, P2=43, P3=25
Ptot=111

Psd=34.6, Pds=21.7
Ptot =56.3

Psdr=12.9, Pcdr=9.3
Ptot=22.2

63

Table 4.6 (continued)

Different
Scenarios

Traditional Mesh
 (mW)

Traditional WNoC
 (mW)

Proposed WNoC-CD
 (mW)

Task 21:
(0,0.6)-(0,0.5)

P1=15, P2=15, P3=25
Ptot=55

Psd=14.5, Pds=14.5
Ptot=29

 Psdr=15.9, Pds=14.8
Ptot=30.7

Task 22:
(1,0.7)-(1,0.8)

P1=7, P2=7, P3=25
Ptot=39

Psd =8.5, Pds=8.5
Ptot=17

Psdr=12.9, Pds=8.5
Ptot=21.4

Task 23:
(0,1.4)-(0,1.2)

P1=11, P2=11, P3=25
Ptot=47

Psd =11.8, Pds=11.8
Ptot=23.6

Psdr=12.9, Pds=11.8
Ptot=24.7

Task 24:
(1,1.6)-(1,1.2)

P1=19, P2=19, P3=25
Ptot=63

Psd =17.5, Pds=17.5
Ptot=35

Psdr=18.9, Pds=17.8
Ptot=36.7

Task 25:
(0,1.7)-(0,1.1)

P1=11, P2=11, P3=25
Ptot=47

Psd =11.8, Pds=11.8
Ptot=23.6

Psdr=12.9, Pds=11.8
Ptot=24.7

For the WNoC-CD architecture, each wired core consumes three units of power (like a core

in mesh) and the special core with wireless router consumes 3.3 units of power (Pcwl). For a 3x3

subnet, the minimum number of links is one and the maximum number of links is four. So, the

average power consumed by a wired link in a subnet (Pawrsn) is 2.5 power units.

The power consumed by the directory (Pdr = 6 units) is assumed to be twice the power

consumed by the core, since the entire directory must be scanned in a worst scenario. Similarly,

the power consumed by the central directory-core with wireless router (Pcdr = Pdr + power needed

by a wireless core = 6 + 3.3) is 9.3. The following is an example for calculating power consumption

by considering Task 1 (0,0.0)-(1,1.8):

In Mesh multicasting:

P1= (Pwr*Nwr)+(Pcwr*Ncwr) = 43
P2 = (Pwr*Nwr)+(Pcwr*Ncwr) = 43
P3 = Palwr+Pcanw= 5.5 + 19.5 = 25
Ptot = P1 + P2 + P3 = 43 + 43 +25=111

In WNoC:

Psd=Pawrsn+(Pcwr*Ncwr)+Pcwl+3(Pwl+Pcasn) =2.5+(3*2)+3.3+25.8 = 37.6
Pds = Pdsn+Pwl+Pssn= 11.8+1.1+11.8 = 24.7
Ptot = Psd + Pds = 37.6+24.7=62.3

64

In WNoC-CD:

Ptot = Psdr + Pcdr (For Out-Subnet)
Psdr=Pawrsn+(Pcwr*Ncwr)+Pcwl+Pwl = 2.5+(3*2)+3.3+1.1=12.9
Pcdr= Pdr+Pcwl= 6 + 3.3 = 9.3
Ptot=12.9+9.3=22.2
Pds=Pawrsn+(Pcwr*Ncwr)+Pcwl (For In-Subnet)

4.5 Simulation of Proposed Architecture 2

In this architecture, the performance is compared by assigning the unique workload for the

architectures like traditional mesh, WNoC-CD, and proposed WNoC with distributed directories

(WNoC-DDs). In proposed architecture 2, with the introduction of the directory in each subnet

may improve the performance as a significant factor. In each subnet, directory is added to the

center core that has wireless router. As the directory is synced at every instant of tasks to the cores,

the data transfer is easy and faster. The directories transfer the data from the destination core to

the requested source core. Source cores in proposed WNoC-DDs architecture from any subnet,

need not to wait for other subnet cores as in WNoC-CD. In WNoC-CD, the requests from the

subnets can be executed sequentially as the directory is only one and it is the only medium of

communication. With the introduction of directory in each subnet, waiting time for directory is

terminated and so the tasks can be executed in parallel without the intervention of other subnets.

However, the directory synchronization may take additional time for an update from a subnet, but

it is very less when compared to waiting time in WNoC-CD architecture.

4.5.1 Communication Latency

In proposed architecture 2, the calculation of communication latency is like the proposed

architecture 1, which depends on their routing methodology. However, the major difference is the

way of data aggregating to the requested cores. In all these architectures, source core is the one

who requests data and the destination core is the one who sends the data. In proposed WNoC-DDs,

65

the communication is also subnet to subnet like proposed architecture 1 (WNoC-CD) but the

difference is the subnet is supervised with an individual directory which is integrated with wireless

router. The directory adds more intelligence in data transfer compared to WNoC-CD. Each

directory is holding the data of other subnets and so it reduces the latency at the cost of

broadcasting to all directories for every task execution. Table 4.7 illustrates the communication

latency of all the architectures and the performance can be observed for each task.

Table 4.7: Communication latency compared to WNoC-DDs architecture

Different Scenarios
Traditional

Mesh
(ms)

WNoC-CD
(ms)

Proposed WNoC-DDs
(ms)

Task 1: (0,0.0)-(1,1.8) 4x9+40=76 4x2+40=48 4x1+40=44
Task 2: (0,0.4)-(1,1.4) 4x5+40=60 4x0+40=40 4x0+40=40
Task 3: (0,0.7)-(1,0.1) 4x4+40=56 4x1+40=44 4x0+40=40
Task 4: (0,0.3)-(0,1.5) 4x4+40=56 4x1+40=44 4x0+40=40
Task 5: (1,0.5)-(0,1.2) 4x4+40=56 4x1+40=44 4x0+40=40
Task 6: (1,0.7)-(0,1.5) 4x3+40=52 4x1+40=44 4x0+40=40
Task 7: (0,1.0)-(1,0.0) 4x5+40=60 4x2+40=48 4x1+40=44
Task 8: (0,0.8)-(1,1.6) 4x3+40=52 4x2+40=48 4x1+40=44
Task 9: (0,0.7)-(0,1.1) 4x0+40=40 4x0+40=40 4x0+40=40
Task 10: (1,1.5)-(1,0.2) 4x3+40=52 4x1+40=44 4x0+40=40
Task 11: (0,1.3)-(0,0.1) 4x4+40=56 4x1+40=44 4x0+40=40
Task 12: (0,1.4)-(1,0.6) 4x3+40=52 4x0+40=40 4x0+40=40
Task 13: (1,0.1)-(1,1.1) 4x2+40=48 4x1+40=44 4x0+40=40
Task 14: (1,1.2)-(0,0.8) 4x3+40=52 4x2+40=48 4x1+40=44
Task 15: (1,0.6)-(0,1.2) 4x1+40=44 4x2+40=48 4x1+40=44
Task 16: (1,0.4)-(0,1.7) 4x6+40=64 4x0+40=40 4x0+40=40
Task 17: (1,1.3)-(0,1.3) 4x2+40=48 4x1+40=44 4x0+40=40
Task 18: (0,1.2)-(1,1.0) 4x0+40=40 4x0+40=40 4x0+40=40
Task 19: (0,0.1)-(1,0.7) 4x4+40=56 4x1+40=44 4x0+40=40
Task 20: (1,0.2)-(0,1.6) 4x9+40=76 4x2+40=48 4x1+40=44
Task 21: (0,0.6)-(0,0.5) 4x2+40=48 4x2+40=48 4x2+40=48
Task 22: (1,0.7)-(1,0.8) 4x0+40=40 4x0+40=40 4x0+40=40
Task 23: (0,1.4)-(0,1.2) 4x1+40=44 4x1+40=44 4x1+40=44
Task 24: (1,1.6)-(1,1.2) 4x3+40=52 4x3+40=52 4x3+40=52
Task 25: (0,1.7)-(0,1.1) 4x1+40=44 4x1+40=44 4x1+40=44

66

WNoC-DDs perform better as they reduce the intermediate cores in performing data

transfer between source to destination. WNoC-DDs follow the adaptive XY routing algorithm to

transfer data between cores and it is advantageous as it searches for alternative paths if the traffic

is high at the intermediate cores. The worst scenarios of mesh multicasting (such as end-to-end

communication) and one hop away between two subnets scenarios of WNoC can be avoided in

WNoC-DDs architecture. WNoC-DDs should take less time in all those scenarios. The detailed

statistics of the use of the subnets is maintained and monitored by the directory. The destination

cores are considered based on the activities of the subnets. Thus, the directory should help balance

load by selecting the destination cores from different subnets (if possible). However, the routing

path to communicate within the subnet (Tasks 21 to 25) is the same and so the delay is unique for

all the three architectures namely traditional mesh, WNoC-CD, and proposed WNoC-DDs and is

illustrated in Table 4.7.

WNoC-DDs takes less time due to the introduction of distributed directories. The

directories sync the data of their own subnet as well as other subnets through neighbor directories

by using customized MESI protocol. As the directories are synced, they avoid broadcasting issues

as well as bandwidth issues. So, when the source reaches its own subnet directory then it could be

considered as it reached the destination. In WNoC-DDs, the individual directory is considered as

destination. So, in Task 1 (0,0.0)-(1,1.8), it has only one intermediate core that takes four units and

one destination (directory) core that takes 40 units, which will make the total as 44 units whereas

the traditional mesh takes 76 units and WNoC-CD takes 48 units.

4.5.2 Hop Count

Hop count determines the number of hops involved in transferring data between source and

destination. The performance can be higher if the number of hops reduced. In WNoC-DDs, the

67

hops are reduced as they skip the intermediate cores and mostly receives the data through its own

subnet directory with minimal latency compared to WNoC-CD and other architectures. The

number of hops involved for data transmission in each task is considered as hop count. The

calculation of hop count for each task is illustrated in Table 4.8.

Table 4.8: Hop count compared to WNoC-DDs architecture

Different Scenarios Traditional Mesh WNoC-CD Proposed WNoC-DDs

Task 1: (0,0.0)-(1,1.8)

HC= HT *2 (S to
D)+

HT *2 (D to
S)=20+20=40

HC= HT (S to
Directory)+

HT (D to S) =3+6=9

HC= HT (S to
Directory)+

HT (D to S) =2+5=7

Task 2: (0,0.4)-(1,1.4) HC=12+12=24 HC=1+2=3 HC=0+1=1
Task 3: (0,0.7)-(1,0.1) HC=10+10=20 HC=2+4=6 HC=1+3=4
Task 4: (0,0.3)-(0,1.5) HC=10+10=20 HC=2+4=6 HC=1+3=4
Task 5: (1,0.5)-(0,1.2) HC=10+10=20 HC=2+5=7 HC=1+4=5
Task 6: (1,0.7)-(0,1.5) HC=8+8=16 HC=2+4=6 HC=1+3=4
Task 7: (0,1.0)-(1,0.0) HC=12+12=24 HC=3+6=9 HC=2+5=7
Task 8: (0,0.8)-(1,1.6) HC=8+8=16 HC=3+6=9 HC=2+5=7
Task 9: (0,0.7)-(0,1.1) HC=2+2=4 HC=1+1+2=4 HC=1+1=2
Task 10: (1,1.5)-(1,0.2) HC=8+8=16 HC=2+5=7 HC=1+4=5
Task 11: (0,1.3)-(0,0.1) HC=10+10=20 HC=2+4=6 HC=1+3=4
Task 12: (0,1.4)-(1,0.6) HC=8+8=16 HC=1+4=5 HC=0+3=3
Task 13: (1,0.1)-(1,1.1) HC=6+6=12 HC=2+4=6 HC=1+3=4
Task 14: (1,1.2)-(0,0.8) HC=8+8=16 HC=3+6=9 HC=2+5=7
Task 15: (1,0.6)-(0,1.2) HC=4+4=8 HC=3+6=9 HC=2+5=7
Task 16: (1,0.4)-(0,1.7) HC=14+14=28 HC=1+3=4 HC=0+2=2
Task 17: (1,1.3)-(0,1.3) HC=6+6=12 HC=2+4=6 HC=1+3=4
Task 18: (0,1.2)-(1,1.0) HC=2+2=4 HC=1+1+3=5 HC=1+1=2
Task 19: (0,0.1)-(1,0.7) HC=10+10=20 HC=2+4=6 HC=1+3=4
Task 20: (1,0.2)-(0,1.6) HC=20+20=40 HC=3+6=9 HC=2+5=7
Task 21: (0,0.6)-(0,0.5) HC=6+6=12 HC=3+3=1=7 HC=3+3=6
Task 22: (1,0.7)-(1,0.8) HC=2+2=4 HC=1+1+2=4 HC=1+1=2
Task 23: (0,1.4)-(0,1.2) HC=4+4=8 HC=2+2+1=5 HC=2+2=4
Task 24: (1,1.6)-(1,1.2) HC=8+8=16 HC=4+4+1=9 HC=4+4=8
Task 25: (0,1.7)-(0,1.1) HC=4+4=8 HC=2+2+1=5 HC=2+2=4

Unlike WNoC-CD, WNoC-DDs has the advantage of skipping subnets for many cases as

each subnet is accommodated with an individual directory. WNoC-DDs need not to wait for the

68

serving the requests of a source core from a subnet. But in WNoC-CD, the subnets request the

centralized directory and the requests are queued and they must wait until their turn arise. Thus,

the centralized directory adds an extra hop as well as delay due to waiting time in queue. The hop

count in WNoC-CD needs more hops compared to WNoC-DDs model to update the directory to

maintain data consistency for Tasks such as 9, 18, 21, 22, 23, 24, and, 25 as the network is designed

with centralized directory. WNoC-DDs has the advantage of having wireless router with individual

directory to each subnet and thus avoids extra hop counts compared to WNoC-CD and traditional

mesh architecture.

4.5.3 Power Consumption

In calculating the power consumed for each task, number of cores, routers, and directories

involved in reaching destination node from source node is identified. Then the power consumption

for each task is calculated by using the assumptions in Table 4.1. WNoC-DDs consume less power

when compared to other architectures as the directory in each subnet handles the data. The power

consumption of each individual task can be observed in Table 4.9. The assumptions for calculating

power is like proposed architecture 1. Due to the existence of directory in each subnet the power

consumption from a subnet is high but the overall power consumption for a task is less as it avoids

the subnet communication at every instant. For example, Task 1 power consumption can be easily

inferred with the formula given below.

In WNoC-DDs:

Ptot = Psdd
Psdd=Pawrsn+(Pcwr*Ncwr)+Pddr core+ 3 (Pwl)=2.5+(3*1)+6 +3(1.1)= 14.8
Ptot=14.8

Ptot= Psdd + Pdsddr (For In-Subnet)
Pdsddr=Pawrsn+(Pcwr*Ncwr)+Pddr

69

Table 4.9: Power consumption compared to WNoC-DDs architecture

Different Scenarios Traditional Mesh
(mW)

WNoC-CD
(mW)

Proposed
WNoC-DDs

(mW)

Task 1: (0,0.0)-(1,1.8) P1=24, P2=24, P3=25,
Ptot=73

Psdr=6.9, Pcdr=9.3
Ptot=16.2

Ptot=14.8

Task 2: (0,0.4)-(1,1.4) P1=24, P2=24, P3=25,
Ptot=73

Psdr=6.9, Pcdr=9.3
Ptot=16.2 Ptot=11.8

Task 3: (0,0.7)-(1,0.1) P1=23, P2=23, P3=25
Ptot=71

Psdr=9.9, Pcdr=9.3
Ptot=19.2 Ptot=11.8

Task 4: (0,0.3)-(0,1.5) P1=23, P2=23, P3=25
Ptot=71

Psdr=9.9, Pcdr=9.3
Ptot=19.2 Ptot=11.8

Task 5: (1,0.5)-(0,1.2) P1=23, P2=23, P3=25
Ptot=71

Psdr=9.9, Pcdr=9.3
Ptot=19.2 Ptot=11.8

Task 6: (1,0.7)-(0,1.5) P1=19, P2=19, P3=25
Ptot=63

Psdr=9.9, Pcdr=9.3
Ptot=19.2 Ptot=11.8

Task 7: (0,1.0)-(1,0.0) P1=27, P2=27, P3=25
Ptot=79

Psdr=12.9, Pcdr=9.3
Ptot=22.2 Ptot=14.8

Task 8: (0,0.8)-(1,1.6) P1=19, P2=19, P3=25
Ptot=63

Psdr=12.9, Pcdr=9.3
Ptot=22.2 Ptot=14.8

Task 9: (0,0.7)-(0,1.1) P1=7, P2=7, P3=25
Ptot=39

Psdr=9.9, Pcdr=9.3
Ptot=19.2 Ptot=11.8

Task 10: (1,1.5)-(1,0.2) P1=19, P2=19, P3=25
Ptot=63

Psdr=9.9, Pcdr=9.3
Ptot=19.2 Ptot=11.8

Task 11: (0,1.3)-(0,0.1) P1=23, P2=23, P3=25
Ptot=71

Psdr=9.9, Pcdr=9.3
Ptot=19.2 Ptot=11.8

Task 12: (0,1.4)-(1,0.6) P1=19, P2=19, P3=25
Ptot=63

Psdr=6.9, Pcdr=9.3
Ptot=16.2 Ptot=11.8

Task 13: (1,0.1)-(1,1.1) P1=15, P2=15, P3=25
Ptot=55

Psdr=9.9, Pcdr=9.3
Ptot=19.2 Ptot=11.8

Task 14: (1,1.2)-(0,0.8) P1=19, P2=19, P3=25
Ptot=63

Psdr=12.9, Pcdr=9.3
Ptot=22.2 Ptot=14.8

Task 15: (1,0.6)-(0,1.2) P1=11, P2=11, P3=25
Ptot=47

Psdr=12.9, Pcdr=9.3
Ptot=22.2 Ptot=14.8

Task 16: (1,0.4)-(0,1.7) P1=31, P2=31, P3=25
Ptot=87

Psdr=6.9, Pcdr=9.3
Ptot=16.2 Ptot=11.8

Task 17: (1,1.3)-(0,1.3) P1=15, P2=15, P3=25
Ptot=55

Psdr=9.9, Pcdr=9.3
Ptot=19.2 Ptot=11.8

Task 18: (0,1.2)-(1,1.0) P1=7, P2=7, P3=25
Ptot=39

Psdr=12.9, Pcdr=9.3
Ptot=22.2 Ptot=11.8

Task 19: (0,0.1)-(1,0.7) P1=23, P2=23, P3=25
Ptot=71

Psdr=9.9, Pcdr=9.3
Ptot=19.2 Ptot=11.8

Task 20: (1,0.2)-(0,1.6) P1=43, P2=43, P3=25
Ptot=111

Psdr=12.9, Pcdr=9.3
Ptot=22.2 Ptot=14.8

70

Table 4.9 (continued)

Different Scenarios Traditional Mesh
(mW)

WNoC-CD
(mW)

Proposed
WNoC-DDs

(mW)

Task 21: (0,0.6)-(0,0.5) P1=15, P2=15, P3=25
Ptot=55

Psdr=15.9, Pds=14.8
Ptot=30.7

Ptot= Psdd + Pdsddr
=20.8+17.5

=38.3

Task 22: (1,0.7)-(1,0.8) P1=7, P2=7, P3=25
Ptot=39

Psdr=12.9, Pds=8.5
Ptot=21.4

Ptot=17.8+8.5
=26.3

Task 23: (0,1.4)-(0,1.2) P1=11, P2=11, P3=25
Ptot=47

Psdr=12.9, Pds=11.8
Ptot=24.7

Ptot=17.8+14.5
=32.3

Task 24: (1,1.6)-(1,1.2) P1=19, P2=19, P3=25
Ptot=63

Psdr=18.9, Pds=17.8
Ptot=36.7

Ptot=23.8+20.5
=44.3

Task 25: (0,1.7)-(0,1.1) P1=11, P2=11, P3=25
Ptot=47

Psdr=12.9, Pds=11.8
Ptot=24.7

Ptot=17.8+14.5
=32.3

In WNoC-DDs architecture, the power consumed by each of the distributed directories

with the wireless router (Pddr) is 6 units. In WNoC-DD, with the introduction of individual

directory in every subnet, the update sync is easy and reduces hop count as well as traffic compared

to WNoC-CD. The reduced hop count due to WNoC-DDs architecture should minimize the power

consumption and offer better performance when compared with traditional mesh, and WNoC-CD

architectures (see Tasks 1 to 20 in Table 4.9).

4.6 Simulation of Proposed Architecture 3

Unlike 36-core architectures of proposed 1 and 2, different workload is considered for the

64-core architectures with uniform and non-uniform partition of subnets. In this section, firstly 64-

core architecture is evaluated with uniform partition where each subnet has equal number of cores

but lacked in finding the exact center core. This is because the number of cores is even that is 16-

core subnet in this architecture. If we investigate the subnet division, the possibility of becoming

center core is equal to 4-core for example cores’-9, 10, 17, and 18 in subnet 0. The selection of

any above cores as center core can ensure greater performance only to the tasks that are directly

connected to it. The other neighbor cores in that subnet will not get enough benefit of the center

71

core and thus increases latency. Hence non-uniform subnets are introduced to overcome the

latency issues. The thumb rule in determining the subnet size in non-uniform partition is to select

odd number of cores like 9, 15, and 25. This sort of clustering, benefits to find the approximate

center core and it brings a tradeoff superiority to all the neighbor cores in a subnet. Also, the small

and large subnet division allows us to assign subnets for distinct application loads. As each subnet

is assigned with a directory as well as wireless router like proposed architectures 1 and 2, the

latency and power consumption can be reduced.

To reach an agreement, which partition is better, uniform or non-uniform, one should go

through the examination of performance parameters. In these architectures, different jobs are

considered as loads and the performance is observed as an average of all jobs as well as individual

jobs. The performance parameters examined in these architectures are communication latency, hop

count, and power consumption. In the proposed architecture 3, traditional mesh, traditional WNoC,

and WNoC-CD discussions are avoided as it is significantly proven that distributed directory

architecture performs better than the above-mentioned architectures.

4.6.1 Communication Latency

The communication latency is calculated on job basis and on individual task basis. When

a request for data is processed through source core, the tool starts the initiating time and it counts

on until the request is completed by obtaining the data from the destination core. In this

architecture, we also include the latency in updating its directory. It is very essential to consider,

to avoid data synchronizations. Like the other proposed architectures, adaptive XY routing

algorithm is used and the performance is good even though the number of cores increased. The

message or data between cores is in the form of packets. Every packet is not processed completely

through intermediate cores.

72

The detailed calculations of communication latency can be observed in Table 4.10. There

are 6 jobs in total and individual tasks are 31 in total.

Table 4.10: Communication latency of 64-core architecture with uniform and non-uniform
subnets

Different
Scenarios

Subtasks
between Cores

Uniform Partition
(ms)

Non-Uniform Partition
(ms)

Job 1

18-54 3x4+4x4+4x4+40=84 0+2x4+0x4+40=48
59-19 5x4+5x4+7x4+40=108 3x4+3x4+3x4+40=76
19-51 4x4+5x4+6x4+40=100 2x4+3x4+2x4+40=68
18-50 3x4+4x4+4x4+40=84 0+2x4+2x4+40=56
58-26 4x4+5x4+6x4+40=100 2x4+3x4+2x4+40=68

Job 2

19-20 0+2x4+0x4+40=48 0+2x4+0x4+40=48
60-51 4x4+5x4+6x4+40=100 4x4+2x4+3x4+40=76
52-50 3x4+4x4+4x4+40=84 3x4+0+1x4+40=56
24-20 4x4+4x4+5x4+40=92 4x4+3x4+4x4+40=84

Job 3

6-28 3x4+4x4+4x4+40=84 3x4+5x4+5x4+40=92
31-20 5x4+3x4+3x4+40=84 3x4+4x4+4x4+40=84
63-39 5x4+4x4+2x4+40=80 3x4+5x4+5x4+40=92
59-35 5x4+4x4+2x4+40=80 3x4+5x4+5x4+40=92

Job 4

19-35 4x4+5x4+6x4+40=100 2x4+4x4+1x4+40=68
17-34 2x4+4x4+3x4+40=76 2x4+3x4+2x4+40=68
38-14 3x4+3x4+3x4+40=76 3x4+2x4+2x4+40=68
49-52 2x4+4x4+3x4+40=76 2x4+3x4+2x4+40=68
23-20 4x4+3x4+2x4+40=76 2x4+4x4+3x4+40=76
4-31 3x4+5x4+5x4+40=92 5x4+4x4+5x4+40=96
60-39 4x4+4x4+5x4+40=92 4x4+5x4+6x4+40=100

Job 5

54-63 3x4+5x4+1x4+40=76 0+3x4+1x4+40=56
53-55 2x4+4x4+1x4+40=68 2x4+2x4+1x4+40=60
47-61 3x4+4x4+3x4+40=76 3x4+3x4+3x4+40=76
63-62 0+2x4+0x4+40=48 0+2x4+0+40=48
53-45 2x4+0x4+0x4+40=48 2x4+0+0+40=48
46-62 2x4+4x4+1x4+40=68 2x4+2x4+1x4+40=60
55-47 0+2x4+0x4+40=48 0+2x4+0+40=48

Job 6

9-45 0+2x4+0x4+40=48 3x4+4x4+4x4+40=84
54-50 3x4+4x4+4x4+40=84 0+2x4+0+40=48
18-22 3x4+4x4+4x4+40=84 0+2x4+0+40=48
13-41 0+2x4+0x4+40=48 3x4+4x4+4x4+40=84

The critical combination of a packet are header, payload, and trailer. The cores just forward

the packets to its neighbors if they are not the destination core, which is revealed from the header

73

packet. The latency between intermediate cores through a single hop is four units and the

destination core include a latency of 40 units as it must read the full packet. These assumptions are

like previous architectures and the details are well explained in the above sections for 36-core

architectures. An individual core always knows, its one hop distance cores that is East, West,

North, and South cores. For any task, the latency is evaluated by considering the number of cores

involved in the process from source to destination and vice-versa. Generally, the cores involved in

each task is based on the routing strategy and size of subnet where partition plays a vital role. On

average, non-uniform partition has more potential than uniform and the results are quite

satisfactory.

The path calculation for computing latency in mathematical representation is as follows:

Latency= Know the destination (Source to Directory) + Directory request to destination

core (Directory to destination) + Send data from destination to source core directly.

By using the above mathematical expression, the latency for each job is calculated for both

uniform and non-uniform partitions and then finally compared to analyze the performance.

4.6.2 Hop Count

Hop is a link between two cores that is wired, or wireless connected. Cores communicate

each other with these links and the error-free connection ensures trustworthy communication. The

computation of hop count is analyzed for job and individual task basis. The hop count in both

uniform and non-uniform partitions, does not require any return or acknowledgement. This

approach will reduce the number of hops in larger when compared to traditional mesh

architectures. Number of hops required for any job is based on the number of links that are

connected to cores. If a greater number of hops involved for data transmission, then the

comprehensive hop counts of that task will be larger.

74

The detailed calculations of latency can be observed in Table 4.11. There are six jobs in

total and 31 individual tasks in total.

Table 4.11: Hop count of 64-core architecture with uniform and non-uniform subnets

Different
Scenarios

Subtasks
between Cores Uniform Partition Non-Uniform Partition

Job 1

18-54 2+3+5=10 0+1+1=2
59-19 4+4+8=16 2+2+4=8
19-51 3+4+7=14 1+2+3=6
18-50 2+3+5=10 0+1+1=2
58-26 3+4+7=14 1+2+3=6

Job 2

19-20 0+1+1=2 1+1+1=3
60-51 3+4+7=14 3+1+2=6
52-50 2+3+5=10 2+0+2=4
24-20 3+3+6=12 3+2+5=10

Job 3

6-28 2+3+5=10 2+4+6=12
31-20 4+2+4=10 2+3+5=10
63-39 4+3+3=10 2+4+6=12
59-35 4+3+3=10 2+4+6=12

Job 4

19-35 3+4+7=14 1+3+2=6
17-34 1+3+4=8 1+2+3=6
38-14 2+2+4=8 2+1+3=6
49-52 1+3+4=8 1+2+3=6
23-20 3+2+3=8 1+3+4=8
4-31 2+4+6=12 4+3+7=14
60-39 3+3+6=12 3+4+7=14

Job 5

54-63 2+4+2=8 0+2+2=4
53-55 1+3+2=6 1+1+2=4
47-61 2+2+4=8 2+2+4=8
63-62 1+1+4=6 1+1+1=3
53-45 1+0+1=2 0+1+1=2
46-62 1+3+2=6 1+1+2=4
55-47 1+1+4=6 1+1+1=3

Job 6

9-45 0+1+1=2 2+3+5=10
54-50 2+3+5=10 0+1+1=2
18-22 2+3+5=10 0+1+1=2
13-41 0+1+1=2 2+3+5=10

In these architectures, directories play a key role as they define the path between source

and destination cores. However, selection of center core is complicated and so partition of subnets

75

are given highest priority which will resolve the performance of the system. Unlike uniform

partition, non-uniform partition has small and large subnets. Eventually, smaller subnets require

less hops when compared to larger subnets. However, it takes more hops if larger subnet is

considered. As the workload is random, the outcome performance in both partition methods will

determine the best approach of logical splitting of subnets.

Two cores communicate directly only when they are at one hop distance. However, after

data exchange between cores, it is essential to update the directory to get rid of data

synchronization issues. In such cases, mesh topology may be advantage but on average of random

workloads, the directory-based architectures proved their performance is immense. We can also

write an algorithm to check the number of hops required for any task in advance before transmitting

data and we can decide to follow mesh topology path or directory path. But this approach typically

increases the delay and power consumption as they must compute multiple paths and logics

possible. So, directory-based architecture with non-uniform partition assures a trade-off solution

for large core architectures.

The calculation of computing total hops involved in data transmission can be expressed in

mathematical representation as follows:

Hop Count= Know the destination (Source to Directory) + Directory request to destination

core (Directory to destination) + Send data from destination to source core directly.

By using the above mathematical expression, the hop count for each job is calculated on

both uniform and non-uniform partitions and then finally compared to analyze the performance.

4.6.3 Power Consumption

Power consumption is one of the major parameters, where this is highly concerned to

consider any architecture. This is a bit complex to compute compared to latency and hop count

76

calculations. The total power consumption includes the involvement of cores, routers, directories,

subnets, etc. As the directories are superintendent or controller of the individual subnets, it is

assumed that the power consumption of directory is six units, which is double to an ordinary core.

For data transmission, if the number of cores involved is less eventually, it reduces the power

consumption in total. The detailed calculations of power consumption can be observed in Table

4.12. There are six jobs in total and individual tasks are 31 in total.

Table 4.12: Power consumption of 64-core architecture with uniform and non-uniform subnets

Different
Scenarios

Subtasks
between Cores

Uniform Partition
(mW)

Non-Uniform Partition
(mW)

Job 1

18-54 Psd =27.3, Pds=27.3
Ptot=54.6

Psd =15.3, Pds=15.3
Ptot=30.6

59-19 Psd =36.3, Pds=36.3
Ptot=72.6

Psd =24.3, Pds=24.3
Ptot=48.6

19-51 Psd =33.3, Pds=33.3
Ptot=66.6

Psd =21.3, Pds=21.3
Ptot=42.6

18-50 Psd =27.3, Pds=27.3
Ptot=54.6

Psd =15.3, Pds=15.3
Ptot=30.6

58-26 Psd =33.3, Pds=33.3
Ptot=66.6

Psd =21.3, Pds=21.3
Ptot=42.6

Job 2

19-20 Psd =18, Pds=18.3
Ptot=36.3

Psd =6, Pds=18.3
Ptot=24.3

60-51 Psd =33.3, Pds=33.3
Ptot=66.6

Psd =24, Pds=12.3
Ptot=36.3

52-50 Psd =27.3, Pds=27.3
Ptot=54.6

Psd =15.3, Pds=12
Ptot=27.3

24-20 Psd =30.3, Pds=30.3
Ptot=60.6

Psd =30.3, Pds=18
Ptot=48.3

Job 3

6-28 Psd =30.3, Pds=18
Ptot=48.3

Psd =30.3, Pds=30.3
Ptot=60.6

31-20 Psd =33.3, Pds=15
Ptot=48.3

Psd =27.3, Pds=27.3
Ptot=54.6

63-39 Psd =36.3, Pds=12
Ptot=48.3

Psd =30.3, Pds=30.3
Ptot=60.6

59-35 Psd =36.3, Pds=12
Ptot=48.3

Psd =30.3, Pds=30.3
Ptot=60.6

77

Table 4.12 (continued)

Different
Scenarios

Subtasks
between Cores

Uniform Partition
(mW)

Non-Uniform Partition
(mW)

Job 4

19-35 Psd =33.3, Pds=33.3
Ptot=66.6

Psd =27.3, Pds=9
Ptot=36.3

17-34 Psd =24.3, Pds=24.3
Ptot=48.6

Psd =24.3, Pds=12
Ptot=36.3

38-14 Psd =24.3, Pds=24.3
Ptot=48.6

Psd =24.3, Pds=15
Ptot=39.3

49-52 Psd =24.3, Pds=24.3
Ptot=48.6

Psd =24.3, Pds=15
Ptot=39.3

23-20 Psd =30.3, Pds=12
Ptot=42.3

Psd =24.3, Pds=24.3
Ptot=48.6

4-31 Psd =33.3, Pds=21
Ptot=54.3

Psd =33.3, Pds=33.3
Ptot=66.6

60-39 Psd =33.3, Pds=21
Ptot=54.3

Psd =33.3, Pds=33.3
Ptot=66.6

Job 5

54-63 Psd =27.3, Pds=27.3
Ptot=54.6

Psd =15.3, Pds=15.3
Ptot=30.6

53-55 Psd =27.3, Pds=9
Ptot=36.3

Psd =21.3, Pds=12
Ptot=33.3

47-61 Psd =27.3, Pds=15
Ptot=42.3

Psd =27.3, Pds=15
Ptot=42.3

63-62 Psd =27.3, Pds=6
Ptot=33.3

Psd =21.3, Pds=6
Ptot=27.3

53-45 Psd =12.3, Pds=9
Ptot=21.3

Psd =18.3, Pds=6
Ptot=24.3

46-62 Psd =27.3, Pds=9
Ptot=36.3

Psd =15.3, Pds=12
Ptot=27.3

55-47 Psd =24.3, Pds=6
Ptot=30.3

Psd =18.3, Pds=6
Ptot=24.3

Job 6

9-45 Psd =15.3, Pds=15.3
Ptot=30.6

Psd =27.3, Pds=27.3
Ptot=54.6

54-50 Psd =27.3, Pds=27.3
Ptot=54.6

Psd =15.3, Pds=15.3
Ptot=30.6

18-22 Psd =27.3, Pds=27.3
Ptot=54.6

Psd =15.3, Pds=15.3
Ptot=30.6

13-41 Psd =15.3, Pds=15.3
Ptot=30.6

Psd =27.3, Pds=27.3
Ptot=54.6

As discussed earlier, size of subnets and partitions also plays a critical role in computing

power consumption. Total power consumption includes two paths, where the power consumed in

78

source to destination path as request for data and return path that is from destination to source as

accomplishment path.

There are different scenarios of workload and the involvement of directories as controllers

and the ability of ordinary cores with single hop connected neighbors will have different routing

methods. Thus, the values or amount of power consumption differs according to task wise. The

principle of computing power in both uniform and non-uniform partition is identical, however the

values differ due to the number of directories, routers, cores, and subnets involved.

The calculation of computing power consumption is represented in mathematical form and

it is described as follows:

Power consumption= Power consumed from source to destination (Psd) + Power consumed

from source to destination (Pds).

For Out-subnet:

Psd = (Pcwr x Ncwr) + 2 Pddr + 3 (Pwl)

Pds = (Pcwr x Ncwr) + 2 Pddr + 3 (Pwl)

For Out-subnet: (Directory-Directory)

Psd = 2 Pddr + 3 (Pwl)

Pds = 2 Pddr + 3 (Pwl)

For Out-subnet/In-subnet: (One hop)

When the data exchange is within one hop, they communicate directly and simply update

directory, which is beneficiary in not requesting the directory that may increase power

consumption.

Psd = (Pcwr x Ncwr) + 2 Pddr

Pds = (Pcwr x Ncwr) + Power from source to directory intermediate cores (Psdr)+3 (Pwl)

79

For In-subnet:

The data transmission for in-subnet is slightly different from other scenarios. If they are

not at one hop distance, then the request goes to directory, but the return path is not necessarily

through directory as they are in same subnet. The directory informs the destination core to send

the data directly to source if the directory finds the destination is not busy.

Psd = Power from source to directory (Psdr) + Power from directory to destination

Pds = Power from destination to source + Update other directories

According to the experimental results, the power consumption in non-uniform subnets may

be higher for some special tasks (e.g., Job 6 Subtasks between cores 9-45 and 13-41), but on

average, the performance of non-uniform subnets compared to uniform partition of subnets with

large number of cores is impressive.

80

CHAPTER 5

 RESULTS AND DISCUSSION

In this chapter, first we discuss results of the proposed WNoC-CD, and WNoC-DDs

architectures. Then, we discuss the results of the non-uniform partition of subnets with WNoC-

DDs as proposed architecture 3. For proposed architectures 1 and 2, the same workload is used.

We use 25 different communication tasks as workload by considering in-subnet and out-subnet

scenarios. Then the performance characteristics such as communication latency, hop count, and

power consumption are derived for both WNoC-CD, and WNoC-DDs architectures. For proposed

architecture 3, distributed directories with uniform and non-uniform partition is the major

consideration and they are evaluated using six different jobs which are subdivided into 31

individual sub tasks. The results of proposed architectures 1 and 2 are discussed in the following

subsections.

5.1 Evaluation of Proposed Architecture 1

In this work, we introduce centralized directory with WNoC architecture and is discussed

as proposed architecture 1. The performance of each architecture is clearly observed when the

comparison is performed according to each task.

5.1.1 Communication Latency

In this work, we considered 20 scenarios for out-subnet and 5 scenarios for in-subnet. The

latency is same for all the in-subnet tasks as they are basically the mesh architecture. The path for

in-subnet tasks are identical. The hop count and power consumption may be different, because of

the wireless routers and directory. Figure 5.1 illustrates the communication latency due to the

mesh, traditional WNoC, and proposed WNoC-CD architectures for all 25 tasks.

81

Figure 5.1: Communication latency compared to WNoC-CD architecture

From Figure 5.2, by considering all the tasks, it is observed that the WNoC-CD architecture

help reduce the communication latency, in an average, by 16.01% compared to mesh architecture,

and 10.32% compared to traditional WNoC architecture.

Figure 5.2: Average communication latency compared to WNoC-CD architecture

0

10

20

30

40

50

60

70

80

T1 T2 T3 T4 T5 T6 T7 T8 T9 T1
0

T1
1

T1
2

T1
3

T1
4

T1
5

T1
6

T1
7

T1
8

T1
9

T2
0

T2
1

T2
2

T2
3

T2
4

T2
5

C
om

m
un

ic
at

io
n

L
at

en
cy

 (m
s)

Communication Latency Compared to WNoC-CD

Mesh Traditional WNoC WNoC-CD

1324

1240

1112

1000

1050

1100

1150

1200

1250

1300

1350

For all 25 tasks

C
om

m
un

ic
at

io
n

L
at

en
cy

 (m
s)

Average Communication Latency Compared to WNoC-CD

Mesh Traditional WNoC WNoC-CD

82

5.1.2 Hop Count

The hop counts due to the mesh, WNoC, and proposed WNoC-CD architectures for all 25

tasks are illustrated in Figure 5.3. WNoC-CD reduces extra hops compared to mesh or traditional

broadcasting WNoC as the directory supervises the routers in establishing the path between source

and destination cores. However, WNoC requires few extra hops based on the task to update the

directory for maintaining data sync. This process does not affect the performance compared to

mesh and traditional WNoC architectures. In traditional WNoC, for Task 14 and Task 15, the hop

count is maximum when compared to other architectures. For Task 15 in traditional WNoC, even

though the distance is between the source and destination is two hops, as they were in two different

subnets, the path is through wireless routers which makes long path compared all other

architectures. To process any request irrespective of destination subnet, the directory handles the

request and ensures delivery. If the destination core is at one hop distance, then the data transfer

takes place directly and updates the directory which is considered as extra hops compared to mesh

architecture.

Figure 5.3: Hop count compared to WNoC-CD architecture

0
5

10
15
20
25
30
35
40
45

T1 T2 T3 T4 T5 T6 T7 T8 T9 T1
0

T1
1

T1
2

T1
3

T1
4

T1
5

T1
6

T1
7

T1
8

T1
9

T2
0

T2
1

T2
2

T2
3

T2
4

T2
5

N
um

be
r

of
 h

op
s

Hop Count Compared to WNoC-CD

Mesh Traditional WNoC WNoC-CD

83

From Figure 5.4, it can be observed that the hop count due to the WNoC-CD architecture

is reduced by 62.03% when compared with the mesh architecture, and 52.65% when compared to

traditional WNoC architecture.

Figure 5.4: Average hop count compared to WNoC-CD architecture

5.1.3 Power Consumption

Power consumption due to the mesh, traditional WNoC, and proposed WNoC-CD

architectures for all the tasks is illustrated in Figure 5.5. It should be noted that the amount of

power consumption is different in each subnet as broadcasting is involved in traditional WNoC

and the update of data is essential with the centralized directory. Thus, the power consumption

varies for each individual task. The power consumption in mesh architecture is maximum because

the average of the whole network is considered, whereas the traditional WNoC and WNoC-CD

architectures consumes less power due to the introduction of subnets. WNoC-CD architecture

consumes power based on subnet usage and the non-active subnets are idle and the power

consumption of idle subnets is negligible.

424

340

161

0
50

100
150
200
250
300
350
400
450

For all 25 tasks

N
um

be
r

of
 h

op
s

Average Hop Count Compared to WNoC-CD

Mesh Traditional WNoC WNoC-CD

84

From Figure 5.6, it can be observed that the power consumption due to the proposed

WNoC-CD architecture is reduced by 66.96% when compared with that of the mesh architecture,

and 57.3% when compared with traditional WNoC architecture.

Figure 5.5: Power consumption compared to WNoC-CD architecture

Figure 5.6: Average power consumption compared to WNoC-CD architecture

0

20

40

60

80

100

120

T1 T2 T3 T4 T5 T6 T7 T8 T9 T1
0

T1
1

T1
2

T1
3

T1
4

T1
5

T1
6

T1
7

T1
8

T1
9

T2
0

T2
1

T2
2

T2
3

T2
4

T2
5

Po
w

er
 C

on
su

m
pt

io
n

(m
W

)

Power Consumption Compared to WNoC-CD

Mesh Traditional WNoC WNoC-CD

1617

1251.2

534.2

0

200

400

600

800

1000

1200

1400

1600

1800

For all 25 tasks

Po
w

er
 c

on
su

m
pt

io
n

(m
W

)

Average Power Consumption Compared to WNoC-CD

Mesh Traditional WNoC WNoC-CD

85

5.2 Evaluation of Proposed Architecture 2

In this work, we introduce directory in each subnet and so it is termed as WNoC

architecture with distributed directories (WNoC-DDs). The performance of each architecture is

clearly observed when the comparison is performed according to each task. WNoC-DDs

architecture results are promising in reducing the latency as well as hop counts and thus reduces

power consumption. This performance achievement is possible with the directory in each subnet.

The directory knows the address of each subnet and the core as well as the directory associated to

the subnet. Particularly, this capability of directory makes the communication between cores more

flexible and reduces the pressure of data synchronization at core level. Clustering subnets and

communicating through subnets is like divide and conquer strategy, which enhances the

performance of the architecture.

5.2.1 Communication Latency

In this work, we considered 25 tasks that has 20 scenarios for out-subnet and 5 scenarios

for in-subnet. If we observe the latency for in-subnet scenarios, it is clear they are performing

identical and is obvious as they are basically mesh architecture. However, with the introduction of

directory in each subnet, the hop count and power consumption may be different for proposed

WNoC-DDs architecture. Figure 5.7 illustrates the communication delay due to the mesh, WNoC-

CD, and proposed architectures for all 25 tasks.

For all tasks, the latency due to WNoC-DDs architecture is smaller or same compared to

that due to the mesh and WNoC-CD architectures. For Tasks 9, 18, and 22, the cores are next to

each other; WNoC-DDs, mesh and WNoC-CD provides the least and same latency as they relate

to one hop distance.

86

Figure 5.7: Communication latency compared to WNoC-DDs architecture

From Figure 5.8, by considering all the tasks, it is observed that the WNoC-DDs

architecture help reduce the communication delay, in an average, by 20.54% compared to mesh

architecture, and 5.40% compared to WNoC-CD architecture.

Figure 5.8: Average communication latency compared to WNoC-DDs architecture

0

10

20

30

40

50

60

70

80

T1 T2 T3 T4 T5 T6 T7 T8 T9 T1
0

T1
1

T1
2

T1
3

T1
4

T1
5

T1
6

T1
7

T1
8

T1
9

T2
0

T2
1

T2
2

T2
3

T2
4

T2
5

C
om

m
un

ic
at

io
n

L
at

en
cy

 (m
s)

Communication Latency Compared to WNoC-DDs

Mesh WNoC-CD WNoC-DDs

1324

1112
1052

0

200

400

600

800

1000

1200

1400

For all 25 tasks

C
om

m
un

ic
at

io
n

la
te

nc
y

(m
s)

Average Communication Latency Compared to WNoC-DDs

Mesh WNoC-CD WNoC-DDs

87

5.2.2 Hop Count

The hop counts due to the mesh, WNoC-CD, and proposed WNoC-DDs architectures for

all 25 tasks are illustrated in Figure 5.9. WNoC-CD needs extra hops (based on task) to update the

centralized directory for maintaining data sync. In WNoC, for Task 14 and Task 15, the hop count

is maximum when compared to other architectures. The directory handles the request of each

source core and ensures data transfer from the destination core to source core. WNoC-DDs

architecture broadcasts the accomplished task information to other subnets for maintaining the data

sync among directories/subnets.

Figure 5.9: Hop count compared to WNoC-DDs architecture

From Figure 5.10, it can be observed that the hop count due to the WNoC-DDs architecture

is reduced by 73.11% when compared with the mesh architecture, and 29.19% when compared to

WNoC-CD architecture. This is because the WNoC-DDs architecture does not require any

acknowledgement or any return path to the source to complete the task.

0

5

10

15

20

25

30

35

40

45

T1 T2 T3 T4 T5 T6 T7 T8 T9 T1
0

T1
1

T1
2

T1
3

T1
4

T1
5

T1
6

T1
7

T1
8

T1
9

T2
0

T2
1

T2
2

T2
3

T2
4

T2
5

N
um

be
r

of
 h

op
s

Hop Count Compared to WNoC-DDs

Mesh WNoC-CD WNoC-DDs

88

Figure 5.10: Average hop count compared to WNoC-DDs architecture

5.2.3 Power Consumption

Power consumption due to the mesh, WNoC-CD, and proposed WNoC-DDs architectures

for all the tasks is illustrated in Figure 5.11. It should be noted that the amount of power

consumption should be increased within the subnet, as the distributed directories with wireless

router is present in each subnet.

Figure 5.11: Power consumption compared to WNoC-DDs architecture

424

161

114

0
50

100
150
200
250
300
350
400
450

For all 25 tasks

N
um

be
r

of
 h

op
s

Average Hop Count Compared to WNoC-DDs

Mesh WNoC-CD WNoC-DDs

0

20

40

60

80

100

120

T1 T2 T3 T4 T5 T6 T7 T8 T9 T1
0

T1
1

T1
2

T1
3

T1
4

T1
5

T1
6

T1
7

T1
8

T1
9

T2
0

T2
1

T2
2

T2
3

T2
4

T2
5

Po
w

er
 C

on
su

m
pt

io
n

(m
W

)

Power Consumption Compared to WNoC-DDs

Mesh WNoC-CD WNoC-DDs

89

For Tasks 21, 22, 23, 24, and 25 the power consumption is slightly large compared to

WNoC-CD, but it is suitable for large network with reduced traffic. However, the proposed

architecture power consumption is less for any individual task when compared to mesh

architecture.

From Figure 5.12, it can be observed that the power consumption due to the proposed

architecture is reduced by 73.56% when compared with that of the mesh architecture, and 19.97%

when compared with that of the WNoC-CD architecture. This is because the proposed distributed

directories (Pddr) take less power than a centralized directory (Pcdr) with wireless core/router.

Figure 5.12: Average power consumption compared to WNoC-DDs architecture

5.3 Evaluation of Proposed Architecture 3

In this work, we considered six jobs where each job has individual subtasks and there are

31 tasks in total. The performance of these architectures is analyzed based on job basis and on

average of all jobs. Even though both uniform and non-uniform partitions are based on WNoC-

DDs architecture, the performance differs due to the shift of center cores and the size of subnets.

The results proved that with proper interpretation of subnets clustering, can bring significant

1617

534.2
427.5

0
200
400
600
800

1000
1200
1400
1600
1800

For all 25 tasks

Po
w

er
 c

on
su

m
pt

io
n

(m
W

)

Average Power Consumption Compared to WNoC-DDs

Mesh WNoC-CD WNoC-DDs

90

performance of the architecture. In this section, we compare the performance parameters such as

latency, hop count, and power consumption in both uniform and no-uniform partition of subnets.

5.3.1 Communication Latency

In this work, we considered 6 jobs where each job has individual subtasks. The

performance of these architectures is analyzed based on job basis. However, the individual job

performance could affect based on the individual tasks in number and short and large distance

between source and destination. The latency for uniform and non-uniform subnets for 64-core

architecture is illustrated in Figure 5.13.

Figure 5.13: Communication latency of uniform and non-uniform subnets in 64-core architecture

In these architectures, latency is determined from end-to-end message for data request and

data fetching. The latency is minimum if the cores are directly connected and it is maximum for

first core to last core. For any task, it is essential to update the directory and so it can maintain data

synchronization. Few in-subnet jobs may take more time and it varies based on the size of the

subnet. In uniform subnets, mostly the distance is identical and so the performance is steady. With

0

20

40

60

80

100

120

T
1

T
2

T
3

T
4

T
5

T
6

T
7

T
8

T
9

T
10

T
11

T
12

T
13

T
14

T
15

T
16

T
17

T
18

T
19

T
20

T
21

T
22

T
23

T
24

T
25

T
26

T
27

T
28

T
29

T
30

T
31

Job 1 Job 2 Job 3 Job 4 Job 5 Job 6

C
om

m
un

ic
at

io
n

L
at

en
cy

 (m
s)

Communication Latency of Uniform and Non-Uniform Subnets
Partition

Uniform Subnets Non-Uniform Subnets

91

the non-uniform partitions, where small to large subnets existence can improve performance for

many jobs on random. On average, non-uniform subnets perform well when compared to uniform.

Figure. 5.14 illustrates the average performance according to the job. From the Figure 5.14,

it can be observed that non-uniform partition of subnets performs better in 4 jobs out of 6 jobs. Job

6 performance is identical as the jobs are from directory to directory. These random workloads

generated by VisualSim tool provides substantial information that non-uniform partition of subnets

perform well.

Figure 5.14: Average communication latency on job basis

From Figure 5.15, by considering all the tasks, it is observed that the non-uniform subnets

64-core architecture help reduce the communication delay, in an average, by 11.11% compared to

uniform subnet architecture.

476

324 328

588

432

264

316

264

360

544

396

264

0

100

200

300

400

500

600

700

Job 1 Job 2 Job 3 Job 4 Job 5 Job 6

C
om

m
un

ic
at

io
n

L
at

en
cy

 (m
s)

Average Communication Latency on Job Basis

Uniform Subnets Non-Uniform Subnets

92

Figure 5.15: Average communication latency of 64-core architecture

5.3.2 Hop Count

The hop counts for uniform and non-uniform subnets architectures for all 6 jobs that has

31 individual subtasks are illustrated in Figure 5.16. In these architectures, the basic working

principle is identical where each subnet has a directory and wireless router. The working principle

of the architectures is like WNoC-DDs 36-core architecture. However, few advancements applied

in the algorithm to select the paths and considered the forward and return paths of communication.

So, the description is mostly by considering the partition strategy. The modifications in algorithm

agreed more practical approach. The workload on job basis for uniform and non-uniform

architectures, notifies their capacity and range. The drawbacks can be monitored closely, and it

could help to change logical modifications if possible.

Figure 5.17 illustrates the average performance of hop count according to the job. Like the

latency, the hop count performs well with non-uniform partition of subnets.

2412

2144

2000

2050

2100

2150

2200

2250

2300

2350

2400

2450

Job 1 - Job 6, T1-31

C
om

m
un

ic
at

io
n

L
at

en
cy

 (m
s)

Average Communication Latency of Uniform and Non-Uniform
Subnets Partition

Uniform Subnets Non-Uniform Subnets

93

Figure 5.16: Hop count of uniform and non-uniform subnets in 64-core architecture

Figure 5.17: Average hop count on job basis

From Figure 5.18, it can be observed that the hop count due to the non-uniform 64-core

architecture is reduced by 26.26% on average when compared with the uniform subnet

0
2
4
6
8

10
12
14
16
18

T
1

T
2

T
3

T
4

T
5

T
6

T
7

T
8

T
9

T
10

T
11

T
12

T
13

T
14

T
15

T
16

T
17

T
18

T
19

T
20

T
21

T
22

T
23

T
24

T
25

T
26

T
27

T
28

T
29

T
30

T
31

Job 1 Job 2 Job 3 Job 4 Job 5 Job 6

N
um

be
r

of
 h

op
s

Hop Count of Uniform and Non-Uniform Subnets Partition

Uniform Subnets Non-Uniform Subnets

64

38 40

70

42

2424 23

46

60

28
24

0

10

20

30

40

50

60

70

80

Job 1 Job 2 Job 3 Job 4 Job 5 Job 6

N
um

be
r

of
 h

op
s

Average Hop Count on Job Basis

Uniform Subnets Non-Uniform Subnets

94

architecture. This is because the non-uniform subnets have close center core with distinct size of

subnets in its architecture.

Figure 5.18: Average hop count of 64-core architecture

5.3.3 Power Consumption

Power consumption due to the uniform and non-uniform subnets 64-core architectures for

all jobs is illustrated in Figure 5.19. The power consumption is different from one other even

though both are WNoC-DDs architecture as they differ in logical partition. The change in subnet

size varies the position of center core and neighbor cores. Thus, the routing path for jobs through

individual tasks differ. The performance of the architecture will be considered best if the power

consumption is reduced. The selection of any architecture mostly relies on latency and power

consumption. The results of the architectures shown that non-uniform subnets perform well when

compared to traditional uniform subnets.

278

205

0

50

100

150

200

250

300

Job 1 - Job 6, T1-31

N
um

be
r

of
 h

op
s

Average Hop Count of Uniform and Non-Uniform Subnets Partition

Uniform Subnets Non-Uniform Subnets

95

Few in-subnet jobs may take more power as they traditionally follow mesh and updating

the directories. However, as the subnet size varies, eventually power consumption in both

architectures also varies.

Figure 5.19: Power consumption of uniform and non-uniform subnets in 64-core architecture

Power consumption calculation is determined by the number of cores, wired-wireless

routers, and directories involved in transferring the data between source and destination core. For

every job, the above listed resources are considered and is illustrated in Figure 5.20. To make the

calculations accurate and practically approved, the average of subnets is considered. Theoretically,

the cores which are not active in any route are idle and they consume less power. However, by

considering the average of the subnet is always a best case that is applicable in practical

implementations. The performance calculation of power consumption according to job basis is

similar to latency and hop count.

From Figure 5.21, it can be observed that the power consumption due to the non-uniform

subnet architecture is reduced by 14.76% when compared with that of the uniform subnet

architecture. This is because the center core directory and wireless router is assigned in unusual

0
10
20
30
40
50
60
70
80

T
1

T
2

T
3

T
4

T
5

T
6

T
7

T
8

T
9

T
10

T
11

T
12

T
13

T
14

T
15

T
16

T
17

T
18

T
19

T
20

T
21

T
22

T
23

T
24

T
25

T
26

T
27

T
28

T
29

T
30

T
31

Job 1 Job 2 Job 3 Job 4 Job 5 Job 6

Po
w

er
 C

on
su

m
pt

io
n

(m
W

)

Power Consumption of Uniform and Non-Uniform Subnets Partition

Uniform Subnets Non-Uniform Subnets

96

positions. The dissimilar sizes of subnet prove that the performance is improved, and they are

potential when considering other performance parameters too.

Figure 5.20: Average power consumption on job basis

Figure 5.21: Average power consumption of 64-core architecture

315

218.1
193.2

363.3

242.1

170.4
152.4

136.2

236.4

333

209.4

170.4

0

50

100

150

200

250

300

350

400

Job 1 Job 2 Job 3 Job 4 Job 5 Job 6

Po
w

er
 C

on
su

m
pt

io
n

(m
W

)

Average Power Consumption on Job Basis

Uniform Subnets Non-Uniform Subnets

1150

1200

1250

1300

1350

1400

1450

1500

1550

Job 1 - Job 6, T1-31

Po
w

er
 C

on
su

m
pt

io
n

(m
W

)

Average Power Consumption of Uniform and Non-Uniform Subnets
Partition

Uniform Subnets Non-Uniform Subnets

97

CHAPTER 6

CONCLUSIONS AND FUTURE EXTENSIONS

In this research, we analyzed different architectures such as mesh, WNoC, WNoC-CD,

WNoC-DD of 36-core capacity. Further, the research is extended to 64-core architecture. WNoC-

DDs proved they are best when compared to other architectures. WNoC-CD architecture is not

considered for 64-core as there are lot of bottlenecks such as traffic and subnet utilization to ensure

performance. A single directory is not good enough to handle 64-core and so its workload.

6.1 Conclusions

Multicore architectures help improve performance to power ratio by concurrently using

multiple cores. Contemporary multicore architectures have multilevel cache memory organization.

Due to the presence of caches, multicore architectures suffer from high core-to-core

communication latency and power consumption. Studies suggest that directory-based architecture

with wireless routers has potential to decrease communication latency in multicore architectures.

To address the cache coherence, latency and power consumption, we present a novel directory-

based mechanism in WNoC architecture with a centralized directory (WNoC-CD) and wireless

routers as proposed architecture 1. Instead of using the entire architecture for an application,

uniform partition of subnets is introduced with a wireless router assigned to its center core, which

helps in reducing the hops. We simulate a 2D mesh, traditional WNoC, and the proposed WNoC-

CD architecture. According to the experimental results, the proposed architecture helps decrease

the communication latency by up to 15.71% and the total power consumption by up to 67.58%

when compared to the mesh architecture. Similarly, the proposed architecture helps decrease the

communication latency by up to 10.01% and the total power consumption by up to 58.10% when

98

compared to the traditional WNoC architecture. The performance improvement in WNoC-CD

architecture is by reducing the total number of hops.

However, they are several challenges with WNoC-CD architecture such as latency due to

waiting time of tasks and for every out-subnet task the subnet must request the centralized

directory. WNoC-CD architectures are not suitable for larger number of cores. To address the

issues of WNoC-CD, we introduce a uniform subnet partition of WNoC architecture with

distributed directories (WNoC-DDs) as proposed architecture 2. A directory allows the tasks to

execute faster by providing adaptive minimal routing path to reach the destination node. VisualSim

Architect is used to model and simulate the architectures by using synthetic workload and the

workload is identical to proposed WNoC-CD. It is observed that the distributed directories

significantly improve the performance of WNoC architecture, which supports the adaptability of

WNoC-DDs to larger networks. With the proposed WNoC-DDs, individual subnets can operate

simultaneously if/as the cores acquire the required data from its own subnet. As the individual

directory maintains/tracks the status of other directories, it would take less time for processing

without or any further queries for the required data. Experimental results show that the proposed

WNoC-DDs reduces communication delay up to 20.54% and 5.40%, respectively, when compared

to mesh and WNoC-CD. Similarly, the proposed WNoC-DDs reduces power consumption up to

73.56% and 19.97%, respectively, when compared to mesh and WNoC-CD. Finally, each of the

distributed directories can control substantial number of cores compared to centralized directory.

With the increased number of cores, the performance may be improved but the

complexities in coordinating with peer cores is always challenging. A 64-core architecture is

considered with a different workload that has six jobs, which is divided into 31 subtasks. In WNoC

architectures, the performance is mostly based on partition of subnets and the routing algorithms

99

followed. Uniform partition with increased number of cores leads to underutilization of cores,

latency and power consumption due to the shift of center core. To address the issues of uniform

partition, we introduce a non-uniform partition in WNoC-DDs as proposed architecture 3 to get

advantage of getting closer center core in larger number of cores. The non-uniform partition is also

satisfactory to assign subnets according to the workload such as number of cores required to

complete the given job. The proposed technique can be applied to further large number of cores.

The designs and models are simulated using VisualSim tool. The tool allows to analyze the

parameters and conveys useful information and provides trade-off performance of architectures.

According to the experimental results, non-uniform WNoC-DD architectures helps in reducing the

communication delay by up to 11.11%, hop count is reduced up to 26.26%, and the total power

consumption by up to 14.76% when compared with the uniform subnets partition architecture.

This is due to the selection of closer center cores and serving the subnets according to the range of

cores required by a job. Thus, the introduction of non-uniform subnets is appropriate to address

the issues of uniform subnets. Non-uniform subnets are with different subnet sizes and thus they

give the opportunity of assigning workloads based on the subnet size. In such a way, the utilization

is extended and reducing the latency, hop count, and power consumption.

6.2 Future Extensions

This work can be extended for future multicore/many-core system analysis. Some possible

extensions are listed below:

• Designing, modeling, and simulating CPU-GPU architectures for big data analytics.

• Adding traffic parameters to the simulation of proposed architectures to check the range of

workload that is enforced on a single hop and calculate bandwidth utilization and the range

for each workload.

100

• Simulating multicore/many-core architectures to allow non-uniform subnets with dynamic

working strategy to study performance.

• Study on 3D NoC architectures and investigate the impact of combining 3D routers with

3D processor architectures.

101

REFERENCES

102

[1] Meindl, James D, “Beyond Moore's law: The interconnect era,” Computing in Science &
Engineering, Vol. 5, No. 1, pp. 20-24, 2003.

[2] Yeric, Greg, “Moore's Law at 50: Are we planning for retirement?,” In Electron Devices
Meeting (IEDM), 2015 IEEE International, IEEE, 2015.

[3] Bambagini, Mario, Marko Bertogna, and Giorgio Buttazzo, “On the effectiveness of
energy-aware real-time scheduling algorithms on single-core platforms,” In Emerging
Technology and Factory Automation (ETFA), 2014 IEEE, pp. 1-8, IEEE, 2014.

[4] He, Liqiang, “Computer architecture education in multicore era: Is the time to change,” In
Computer Science and Information Technology (ICCSIT), 2010 3rd IEEE International
Conference on, Vol. 9, pp. 724-728, IEEE, 2010.

[5] August, David, Keshav Pingali, Derek Chiou, Resit Sendag, and J. Yi Joshua,
“Programming multicores: Do applications programmers need to write explicitly parallel
programs?,” IEEE Micro, Vol. 30, No. 3, pp. 19-33, 2010.

[6] Atachiants, Roman, Gavan Doherty, and David Gregg, “Parallel performance problems on
shared-memory multicore systems: taxonomy and observation,” IEEE Transactions on
Software Engineering, Vol. 42, No. 8, pp. 764-785, 2016.

[7] Yu, Jie, Guangming Liu, Wenrui Dong, and Xiaoyong Li, “Using Locality-Enhanced
Distributed Memory Cache to Accelerate Applications on High Performance Computers,”
In Big Data Security on Cloud (BigDataSecurity), IEEE International Conference on High
Performance and Smart Computing (HPSC), and IEEE International Conference on
Intelligent Data and Security (IDS), 2017 IEEE 3rd International Conference on, pp. 160-
166, IEEE, 2017.

[8] Watanabe, Tadashi, “Future Technological Challenges for High Performance Computers,”
In PDCAT, p. 2, 2005.

[9] L. A. Barroso, K. Gharachorloo, R. McNamara, A. Nowatzyk, et al., “Piranha: A scalable
architecture based on single-chip multiprocessing,” in Proceedings of the 27th
International Symposium on Computer Architecture, Vancouver, B.C, pp. 282-293, 2000.

[10] “From a few cores to many: A Terascale computing research overview,” Intel, 2006,
http://download.intel.com/research/platform/terascale/terascale overview paper.pdf,
(accessed on 3/15/2017)

[11] Xue, Yuankun, Zhiliang Qian, Guopeng Wei, Paul Bogdan, Chi-Ying Tsui, and Radu
Marculescu. “An efficient network-on-chip (noc) based multicore platform for hierarchical
parallel genetic algorithms,” In Networks-on-Chip (NoCS), 2014 Eighth IEEE/ACM
International Symposium on, pp. 17-24, IEEE, 2014.

103

[12] Psathakis, Antonis, Vassilis Papaefstathiou, Manolis Katevenis, and Dionisios
Pnevmatikatos, “Design trade-offs in energy efficient NoC architectures,” In Networks-on-
Chip (NoCS), 2014 Eighth IEEE/ACM International Symposium on, pp. 186-187, IEEE,
2014.

[13] Silva, Douglas RG, Bruno S. Oliveira, and Fernando G. Moraes, “Effects of the NoC
Architecture in the Performance of NoC-based MPSoCs,” In Electronics, Circuits and
Systems (ICECS), 2014 21st IEEE International Conference on, pp. 431-434, IEEE, 2014.

[14] Rezaei, Amin, Farshad Safaei, Masoud Daneshtalab, and Hannu Tenhunen, “HiWA: A
hierarchical wireless network-on-chip architecture,” In High Performance Computing &
Simulation (HPCS), 2014 International Conference on, pp. 499-505, IEEE, 2014.

[15] C. Wang, W. H. Hu, and N. Bagherzadeh, “A wireless network-on-chip design for
multicore platforms,” in 19th Euromicro International Conference on Parallel, Distributed
and Network-Based Processing (PDP), pp. 409-416, 2011.

[16] Morales, Luis Germán García, José Edinson Aedo Cobo, and Nader Bagherzadeh,
“Simulation-Based Evaluation Strategy for Task Mapping Approaches in WNoC
Platforms,” In Parallel, Distributed and Network-based Processing (PDP), 2018 26th
Euromicro International Conference on, pp. 622-626, IEEE, 2018.

[17] Shreedhar, Tanya, and Sujay Deb, “Hierarchical Cluster based NoC design using Wireless
Interconnects for Coherence Support,” In VLSI Design and 2016 15th International
Conference on Embedded Systems (VLSID), 2016 29th International Conference on, pp.
63-68, IEEE, 2016.

[18] Joshi, Amit D., S. Indrajeet, N. Ramasubramanian, and B. Shameedha Begum, “Analysis
of multi-core cache coherence protocols from energy and performance perspective,”
In Recent Innovations in Signal processing and Embedded Systems (RISE), 2017
International Conference on, pp. 381-388, IEEE, 2017.

[19] Shao, Y. Sophia, Sam Xi, Viji Srinivasan, Gu-Yeon Wei, and David Brooks, “Toward
cache-friendly hardware accelerators,” In HPCA Sensors and Cloud Architectures
Workshop (SCAW), pp. 1-6, 2015.

[20] Davis, John D., Zhangxi Tan, Fang Yu, and Lintao Zhang, “A practical reconfigurable
hardware accelerator for Boolean satisfiability solvers,” In Design Automation
Conference, DAC 2008, 45th ACM/IEEE, pp. 780-785, IEEE, 2008.

[21] D. Lenoski, J. Laudon, K. Gharachorloo, W. D. Weber, et al., “The stanford dash
multiprocessor,” in J. of Computer, Vol. 25, No. 3, pp. 63-79, 1992.

[22] Cui, Jianqun, Yanxiang He, and Libing Wu, “More efficient mechanism of topology-aware
overlay construction in application-layer multicast,” In Networking, Architecture, and
Storage, 2007. NAS 2007. International Conference on, pp. 31-36, IEEE, 2007.

104

[23] Schley, Gert, and Martin Radetzki, “Optimal distribution of privileged nodes in networks-
on-chip,” In Intelligent Solutions in Embedded Systems (WISES), 2011 Proceedings of the
Ninth Workshop on, pp. 87-92, IEEE, 2011.

[24] Domke, Jens, Torsten Hoefler, and Satoshi Matsuoka, “Routing on the dependency graph:
A new approach to deadlock-free high-performance routing,” In Proceedings of the 25th
ACM International Symposium on High-Performance Parallel and Distributed
Computing, pp. 3-14, ACM, 2016.

[25] Wettin, Paul, Ryan Kim, Jacob Murray, Xinmin Yu, Partha P. Pande, Amlan Ganguly, and
Deukhyoun Heoamlan, “Design space exploration for wireless NoCs incorporating
irregular network routing,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, Vol. 33, No. 11, pp. 1732-1745, 2014.

[26] Shamim, Md Shahriar, Naseef Mansoor, Rounak Singh Narde, Vignesh Kothandapani,
Amlan Ganguly, and Jayanti Venkataraman, “A wireless interconnection framework for
seamless inter and intra-chip communication in multichip systems,” IEEE Transactions on
Computers, Vol. 66, No. 3, pp. 389-402, 2017.

[27] Yu, Zhiyi, “Towards High-Performance and Energy-Efficient Multi-core Processors,” In
CMOS Processors and Memories, pp. 29-51, Springer, Dordrecht, 2010.

[28] Pase, Douglas M., and Matthew A. Eckl, “A comparison of single-core and dual-core
Opteron processor performance for HPC,” IBM xSeries Performance Development and
Analysis, 2005.

[29] H. V. Caprita, and M. Popa, “Design methods of multithreaded architectures for multicore
microcontrollers,” in IEEE International Symposium on Applied Computational
Intelligence and Informatics (SACI), pp. 427-432, 2011.

[30] J. M. Li, P. Jiao, and C. G. Men, “The Heterogeneous architecture of Multicore research
and design,” in International Conference on Management and Service Science, pp. 1-6,
2009.

[31] William Stallings, “Computer Organization and Architecture Designing for Performance,”
8th edition, Prentice Hall, Pearson Publisher, 2010.

[32] R. Jeyapaul, F. Hong, A. Rhisheekesan, A. Shrivastava, et al., “UnSync-CMP: Multicore
CMP Architecture for Energy-Efficient Soft-Error Reliability,” in IEEE Transactions on
Parallel and Distributed Systems, Vol. 25, No. 1, pp. 254-263, 2014.

[33] Zhou, Qian, Yu-kun Song, Duo-li Zhang, and Gao-ming Du, “A design of multi-core
system based on Avalon bus,” In Computer Science and Network Technology (ICCSNT),
2011 International Conference, Vol. 3, pp. 1456-1459, IEEE, 2011.

[34] S. Bell, B. Edwards, J. Amann, R. Conlin, et al., “Tile64-processor: A 64-core soc with
mesh interconnect,” in IEEE International Conference on Solid-State Circuits, pp. 588-
598, 2008.

105

[35] M. J. Saikia and R. Kanhirodan, “High performance single and multi-GPU acceleration for
Diffuse Optical Tomography,” in 2014 International Conference on Contemporary
Computing and Informatics (IC3I), pp. 1320-1323, 2014.

[36] Jadon, Shruti, and Rama Shankar Yadav, “Multicore processor: Internal structure,
architecture, issues, challenges, scheduling strategies and performance,” In Industrial and
Information Systems (ICIIS), 2016 11th International Conference on, pp. 381-386, IEEE,
2016.

[37] Ahmed, Rana E., and Muhammad K. Dhodhi, “Directory-based cache coherence protocol
for power-aware chip-multiprocessors,” In Electrical and Computer Engineering
(CCECE), 2011 24th Canadian Conference on, pp. 001036-001039, IEEE, 2011.

[38] Lilja, David J, “Cache coherence in large-scale shared-memory multiprocessors: issues and
comparisons,” ACM Computing Surveys (CSUR), Vol. 25, No. 3, pp. 303-338, 1993.

[39] Gilabert, F., Daniele Ludovici, Simone Medardoni, Davide Bertozzi, Luca Benini, and
Georgi Nedeltchev Gaydadjiev, “Designing regular network-on-chip topologies under
technology, architecture and software constraints,” In International Conference on
Complex, Intelligent and Software Intensive Systems, pp. 681-687, IEEE, 2009.

[40] Ansari, Abdul Quaiyum, Mohammad Rashid Ansari, and Mohammad Ayoub Khan,
“Performance evaluation of various parameters of network-on-chip (noc) for different
topologies,” In India Conference (INDICON), 2015 Annual IEEE, pp. 1-4, IEEE, 2015.

[41] Wang, Ling, Jianye Hao, and Feixuan Wang, “Bus-based and NoC infrastructure
performance emulation and comparison,” In Information Technology: New Generations,
2009. ITNG'09. Sixth International Conference on, pp. 855-858, IEEE, 2009.

[42] DiTomaso, Dominic, Randy Morris, Avinash Karanth Kodi, Ashwini Sarathy, and Ahmed
Louri, “Extending the energy efficiency and performance with channel buffers, crossbars,
and topology analysis for network-on-chips,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, Vol. 21, No. 11, pp. 2141-2154, 2013.

[43] Sadeghi, Mostafa, Amir Reshadi Nezhad, and Faezeh Memarzadeh Zavareh, “A new
suggestion for improvement of mesh topology on NOC,” In Computer Science and
Network Technology (ICCSNT), 2016 5th International Conference on, pp. 667-671, IEEE,
2016.

[44] Dehyadgari, Masood, Mohsen Nickray, Ali Afzali-Kusha, and Zainalabein Navabi,
“Evaluation of pseudo adaptive XY routing using an object oriented model for NOC,” In
Microelectronics, ICM 2005, The 17th International Conference on, IEEE, 2005.

[45] Roy, Abinash, Jingye Xu, and Masud H. Chowdhury, “Multi-core processors: A new way
forward and challenges,” In Microelectronics, 2008. ICM 2008. International Conference
on, pp. 454-457, IEEE, 2008.

106

[46] Scott Mueller, and Mark Edward Soper, “Microprocessor Types and Specifications,” June
8, 2001, http://www.informit.com/articles/article.aspx?p=130978&seqNum=4.

[47] Mori, Yosuke, and Kenji Kise, “The cache-core architecture to enhance the memory
performance on multi-core processors,” In Parallel and Distributed Computing,
Applications and Technologies, 2009 International Conference on, pp. 445-450, IEEE,
2009.

[48] Asaduzzaman, Abu, Mark P. Allen, and Tania Jareen, “An effective locking-free caching
technique for power-aware multicore computing systems,” In Informatics, Electronics &
Vision (ICIEV), 2014 International Conference on, pp. 1-6, IEEE, 2014.

[49] Al-Waisi, Zainab, and Michael Opoku Agyeman, “An overview of on-chip cache
coherence protocols,” In Intelligent Systems Conference (IntelliSys), pp. 304-309, IEEE,
2017.

[50] Daya, Bhavya K., Chia-Hsin Owen Chen, Suvinay Subramanian, Woo-Cheol Kwon,
Sunghyun Park, Tushar Krishna, Jim Holt, Anantha P. Chandrakasan, and Li-Shiuan Peh,
“SCORPIO: a 36-core research chip demonstrating snoopy coherence on a scalable mesh
NoC with in-network ordering,” In Computer Architecture (ISCA), 2014 ACM/IEEE 41st
International Symposium on, pp. 25-36, IEEE, 2014.

[51] Cantin, Jason F., Mikko H. Lipasti, and James E. Smith, “Improving multiprocessor
performance with coarse-grain coherence tracking,” In ACM SIGARCH Computer
Architecture News, Vol. 33, No. 2, pp. 246-257, IEEE, 2005.

[52] Patel, Avadh, and Kanad Ghose, “Energy-efficient mesi cache coherence with pro-active
snoop filtering for multicore microprocessors,” In Proceedings of the 2008 international
symposium on Low Power Electronics & Design, pp. 247-252, ACM, 2008.

[53] Giri, Davide, Paolo Mantovani, and Luca P. Carloni, “NoC-Based Support of
Heterogeneous Cache-Coherence Models for Accelerators,” In 2018 Twelfth IEEE/ACM
International Symposium on Networks-on-Chip (NOCS), pp. 1-8, IEEE, 2018.

[54] Ahmed, Rana E., and Muhammad K. Dhodhi, “Directory-based cache coherence protocol
for power-aware chip-multiprocessors,” In Electrical and Computer Engineering
(CCECE), 2011 24th Canadian Conference on, pp. 001036-001039, IEEE, 2011.

[55] Asaduzzaman, Abu, and Kishore K. Chidella, “A novel directory based hybrid cache
coherence protocol for shared memory multiprocessors,” In Phased Array Systems and
Technology (PAST), 2016 IEEE International Symposium on, pp. 1-6, IEEE, 2016.

[56] Nawinne, Isuru, Haris Javaid, Roshan Ragel, Swarnalatha Radhakrishnan, and Sri
Parameswaran, “Exploring Multilevel Cache Hierarchies in Application Specific
MPSoCs,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, Vol. 34, No. 12, pp. 1991-2003, 2015.

107

[57] Huang, Xiaoping, Xiaoya Fan, Shengbing Zhang, and Yuhui Chen, “DLWAP-buffer: A
Novel HW/SW Architecture to Alleviate the Cache Coherence on Streaming-like Data in
CMP,” In Embedded Multicore Socs (MCSoC), 2012 IEEE 6th International Symposium
on, pp. 23-28, IEEE, 2012.

[58] H. Xiao, T. Isshiki, H. Kunieda, Y. Nakase, et al., “Hybrid shared-memory and message-
passing multiprocessor system-on-chip for UWB MAC,” in 2012 IEEE International
Conference on Consumer Electronics (ICCE), pp. 658-659, 2012.

[59] Shreedhar, Tanya, and Sujay Deb, “Hierarchical Cluster based NoC design using Wireless
Interconnects for Coherence Support,” In VLSI Design and 2016 15th International
Conference on Embedded Systems (VLSID), 2016 29th International Conference on, pp.
63-68, IEEE, 2016.

[60] Cerutti, Isabella, Aman Mohammed Behredin, Nicola Andriolli, Odile Liboiron
Ladouceur, and Piero Castoldi, “Ring versus bus topology: A network performance
comparison of photonic integrated NoC,” In Transparent Optical Networks (ICTON), 2016
18th International Conference on, pp. 1-4, IEEE, 2016.

[61] Pandey, Sujan, Manfred Glesner, and M. Muhlhauser, “On-chip communication topology
synthesis for shared multi-bus based architecture,” In Field Programmable Logic and
Applications, 2005 International Conference on, pp. 374-379, IEEE, 2005.

[62] Jang, Yongho, Jungsoo Kim, and Chong-Min Kyung, “Topology synthesis for low power
cascaded crossbar switches,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, Vol. 29, No. 12, pp. 2041-2045, 2010.

[63] Cakir, Cagla, Ron Ho, Jon Lexau, and Ken Mai, “Modeling and design of high-radix on-
chip crossbar switches,” In Proceedings of the 9th International Symposium on Networks-
on-Chip, p. 20, ACM, 2015.

[64] Mubeen, Saad, and Shashi Kumar, “Designing efficient source routing for mesh topology
network on chip platforms,” In Digital System Design: Architectures, Methods and Tools
(DSD), 2010 13th Euromicro Conference on, pp. 181-188, IEEE, 2010.

[65] Wang, Feng, Xiantuo Tang, Zuocheng Xing, and Hengzhu Liu, “UniMESH: The light-
weight unidirectional channel Network-on-Chip in 2D mesh topology,” In Electronics,
Communications and Computers (CONIELECOMP), 2015 International Conference on,
pp. 104-109, IEEE, 2015.

[66] Rohbani, Nezam, Zahra Shirmohammadi, Maryam Zare, and Seyed-Ghassem Miremadi,
“LAXY: A Location-Based Aging-Resilient Xy-Yx Routing Algorithm for Network on
Chip,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
Vol. 36, No. 10, pp. 1725-1738, 2017.

[67] Wang, Ling, Zhen Wang, and Yingtao Jiang, “A hybrid chip interconnection architecture
with a global wireless network overlaid on top of a wired network-on-chip,” In System on
Chip (SoC), 2012 International Symposium on, pp. 1-4, IEEE, 2012.

108

[68] Kumar, T. Ananth, and R. S. Rajesh, “Towards power efficient wireless NoC router for
SOC,” In Communication and Network Technologies (ICCNT), 2014 International
Conference on, pp. 254-259, IEEE, 2014.

[69] Liu, Chung-Hsin, and Chien-Yun Lo, “The study of WSN routing,” In Proceedings of the
2nd International Conference on Interaction Sciences: Information Technology, Culture
and Human, pp. 422-428, ACM, 2009.

[70] Wang, Chifeng, Wen-Hsiang Hu, and Nader Bagherzadeh, “A wireless network-on-chip
design for multicore platforms,” In Parallel, Distributed and Network-Based Processing
(PDP), 2011 19th Euromicro International Conference on, pp. 409-416, IEEE, 2011.

[71] Zhang, Wang, Ligang Hou, Jinhui Wang, Shuqin Geng, and Wuchen Wu, “Comparison
research between xy and odd-even routing algorithm of a 2-dimension 3x3 mesh topology
network-on-chip,” In Intelligent Systems, 2009. GCIS'09. WRI Global Congress on, Vol.
3, pp. 329-333, IEEE, 2009.

[72] Kim, Ryan, Jacob Murray, Paul Wettin, Partha Pratim Pande, and Behrooz Shirazi, “An
energy-efficient millimeter-wave wireless NoC with congestion-aware routing and
DVFS,” In Networks-on-Chip (NoCS), 2014 Eighth IEEE/ACM International Symposium
on, pp. 192-193, IEEE, 2014.

[73] Abadal, Sergi, Albert Mestres, Mario Nemirovsky, Heekwan Lee, Antonio González,
Eduard Alarcón, and Albert Cabellos-Aparicio, “Scalability of broadcast performance in
wireless network-on-chip,” IEEE Transactions on Parallel and Distributed Systems, Vol.
27, No. 12, pp. 3631-3645, 2016.

[74] Han, Xing, Yuzhuo Fu, Jiang Jiang, and Chang Wang, “A Subnetting Mechanism with
Low Cost Deadlock-Free Design for Irregular Topologies in NoC-based Manycore
Processors,” In Information Science and Control Engineering (ICISCE), 2016 3rd
International Conference on, pp. 110-114, IEEE, 2016.

[75] Wang, Xiaohang, Mei Yang, Yingtao Jiang, and Peng Liu, “On an efficient NoC
multicasting scheme in support of multiple applications running on irregular sub-
networks,” Microprocessors and Microsystems, Vol. 35, No. 2, pp. 119-129, 2011.

[76] Reza, Akram, Midia Reshadi, Ahmad Khademzadeh, and Maryam Bahmani, “Norma: A
hierarchical interconnection architecture for Network on Chip,” In Proceedings of the 3rd
International Design and Test Workshop (IDT), pp. 5-10, 2008.

[77] Holsmark, Rickard, and Shashi Kumar, “An abstraction to support design of deadlock-free
routing algorithms for large and hierarchical nocs,” In Computer and Information
Technology (CIT), 2011 IEEE 11th International Conference on, pp. 59-66, IEEE, 2011.

[78] Singh, Jayant Kumar, Ayas Kanta Swain, Tetala Neel Kamal Reddy, and Kamala Kanta
Mahapatra, “Performance evaluation of different routing algorithms in Network on Chip,”
In Microelectronics and Electronics (PrimeAsia), 2013 IEEE Asia Pacific Conference on
Postgraduate Research in, pp. 180-185, IEEE, 2013.

109

[79] Ezz-Eldin, Rabab, Magdy Ali El-Moursy, and Hesham FA Hamed, “Network on Chip
Aspects,” In Analysis and Design of Networks-on-Chip Under High Process Variation, pp.
11-44, Springer, Cham, 2015.

[80] Morales, Luis Germán García, José Edinson Aedo Cobo, and Nader Bagherzadeh,
“Simulation-Based Evaluation Strategy for Task Mapping Approaches in WNoC
Platforms,” In Parallel, Distributed and Network-based Processing (PDP), 2018 26th
Euromicro International Conference on, pp. 622-626, IEEE, 2018.

[81] Asaduzzaman, Abu, Kishore K. Chidella, and Divya Vardha, “An energy-efficient
directory based multicore architecture with wireless routers to minimize the
communication latency,” IEEE Transactions on Parallel and Distributed Systems, Vol. 28,
No. 2, pp. 374-385, 2017.

[82] Chidella, Kishore K., and Abu Asaduzzaman, “A novel Wireless Network-on-Chip
architecture with distributed directories for faster execution and minimal energy,”
Computers & Electrical Engineering, Vol. 65, pp. 18-31, 2018.

[83] Neishaburi, Mohammad Hossein, and Zeljko Zilic, “NISHA: A fault-tolerant NoC router
enabling deadlock-free Interconnection of Subnets in Hierarchical Architectures,” Journal
of Systems Architecture, Vol. 59, No. 7, pp. 551-569, 2013.

[84] Chu, Slo-Li, Sheng-Jie Shu, Ching-Chung Chen, and Ching-Jung Chen, “Camellia: A
Novel High Performance On-Chip Network for Multicore Architectures,” In Semantics,
Knowledge and Grids (SKG), 2015 11th International Conference on, pp. 186-191, IEEE,
2015.

[85] Saneei, Mohsen, Ali Afzali-Kusha, and Zainalabedin Navabi, “Low-latency multi-level
mesh topology for NoCs,” The 18th International Confernece on Microelectronics (ICM),
pp. 36-39, 2006.

[86] Ghosal, Prasun, and Tuhin Subhra Das, “L2star: A star type level-2 2d mesh architecture
for noc,” In Microelectronics and Electronics (PrimeAsia), 2012 Asia Pacific Conference
on Postgraduate Research in, pp. 155-159, IEEE, 2012.

[87] O. Villa, D. P. Scarpazza, and F. Petrini, “Accelerating Real-Time String Searching with
Multicore Processors,” in IEEE Computer, Vol. 41, No. 4, pp. 42-50, 2008.

[88] Funabiki, Nobuo, Junki Shimizu, Toru Nakanishi, Kan Watanabe, and Shigeru Tomisato,
“An Extension of Active Access-Point Selection Algorithm for Throughput Maximization
in Wireless Mesh Networks,” In Intelligent Networking and Collaborative Systems
(INCoS), 2011 Third International Conference on, pp. 367-372, IEEE, 2011.

[89] Mamidi, Aditya Vamsi, Sarath Babu, and B. S. Manoj, “Dynamic Multi-hop Switch
Handoffs in Software Defined Wireless Mesh Networks,” In Advanced Networks and
Telecommuncations Systems (ANTS), 2015 IEEE International Conference on, pp. 1-6,
IEEE, 2015.

110

[90] Gharavi, Hamid, and Chong Xu, “Distributed application of the traffic scheduling
technique for smart grid advanced metering applications using multi-gate mesh networks,”
In Global Telecommunications Conference (GLOBECOM 2011), pp. 1-6, IEEE, 2011.

[91] Lankes, Andreas, Thomas Wild, and Andreas Herkersdorf, “Hierarchical NoCs for
optimized access to shared memory and IO resources,” In Digital System Design,
Architectures, Methods and Tools, 2009. DSD'09. 12th Euromicro Conference on, pp. 255-
262, IEEE, 2009.

[92] DiTomaso, Dominic, Avinash Kodi, Savas Kaya, and David Matolak, “iWISE: Inter-router
wireless scalable express channels for network-on-chips (NoCs) architecture,” In High
Performance Interconnects (HOTI), 2011 IEEE 19th Annual Symposium on, pp. 11-18,
IEEE, 2011.

[93] VisualSim Architect. Mirabilis Design. http://mirabilisdesign.com/new/visualsim/; 2016
[accessed on 6/20/17].

[94] Muhammad, Huda S., and Assim Sagahyroon, “Virtual prototyping and performance
analysis of two memory architectures,” EURASIP Journal on Embedded Systems 2009,
No. 1, 2009.

[95] Asaduzzaman, Abu, Md Moniruzzaman, Kishore K. Chidella, and Perlekar Tamtam, “An
efficient simulation method using VisualSim to assess autonomous power systems,” In
SoutheastCon, 2016, pp. 1-7, IEEE, 2016.

[96] Fang J, Lu J, She C, “Research on topology and policy for low power consumption of
network-on-chip with multicore processors,” In Computational Science and
Computational Intelligence (CSCI). IEEE. 2015 International Conference, pp. 621-625,
2015.

[97] Biagetti G, Crippa P, Curzi A, Orcioni S, Turchetti C, “ToLHnet: A low-complexity
protocol for mixed wired and wireless low-rate control networks,” In Education and
Research Conference (EDERC). IEEE. 2014 6th European Embedded Design, pp. 177-
181, 2014.

[98] Mondal HK, Deb S, “An energy efficient wireless Network-on-Chip using power-gated
transceivers,” In System-on-Chip Conference (SOCC), 2014 27th IEEE International, pp.
243-248, 2014.

[99] Deb S, Ganguly A, Pande PP, Belzer B, Heo D, “Wireless NoC as interconnection
backbone for multicore chips: Promises and challenges,” IEEE Journal on Emerging and
Selected Topics in Circuits and Systems, Vol. 2, No. 2, pp. 228-39, 2012.

[100] Johari S, Sehgal VK, “Master-based routing algorithm and communication-based cluster
topology for 2D NoC,” The Journal of Supercomputing, Vol. 71, No. 11, pp. 4260-86,
2015.

111

[101] Chawade SD, Gaikwad MA, Patrikar RM, “Review of XY routing algorithm for network-
on-chip architecture,” International Journal of Computer Applications, Vol. 43, No. 21,
2012.

[102] Wang, Xiaofang, “A novel on-chip interconnection topology for mesh-connected
processor arrays,” In VLSI (ISVLSI), 2010 IEEE Computer Society Annual Symposium on,
pp. 450-451, IEEE, 2010.

	1.1.1 Single-Core Architectures
	1.1.2 Multicore Architectures
	2.1 Cache Memory Hierarchy
	2.1.1 Cache in Single-Core Architectures
	2.1.2 Cache in Multicore Architectures
	2.1.3 Cache Coherence Protocols in Multicore Architectures
	2.2 Directory-Based DASH Architecture
	2.3 Interconnection Network Topologies
	2.3.1 Bus Topology
	2.3.2 Crossbar Topology
	2.3.3 Mesh Topology
	2.4 Wired-Wireless Network-on-Chip Topology
	2.4.1 Clustering Cores into Subnets
	2.4.2 Wireless Routers into Subnets
	2.4.3 Uniform and Non-Uniform Partition of Subnets
	2.4.4 Adaptive XY Routing Algorithm for Wireless Network-on-Chip Architecture
	3.3.1 Clustering Cores into Uniform Subnets of WNoC Architecture
	3.3.2 Communication between Subnets with Centralized Directory
	3.4.1 Clustering Cores into Uniform Subnets with an Individual Directory
	3.4.2 Communication between Subnets with Distributed Directories
	3.5.1 Clustering Cores into Uniform and Non-Uniform Subnets with an Individual Directory
	 Selection of Center Core in Even Size Subnet
	 Partitioning Cores into Non-Uniform Subnets
	3.5.2 Communication between Distributed Directories with Different Assignments
	 Workload for Proposed Architectures 1 and 2
	 Workload for Proposed Architecture 3
	4.4.1 Communication Latency
	4.4.2 Hop Count
	4.4.3 Power Consumption
	4.5.1 Communication Latency
	4.5.2 Hop Count
	4.5.3 Power Consumption
	4.6.1 Communication Latency
	4.6.2 Hop Count
	4.6.3 Power Consumption
	5.1.1 Communication Latency
	5.1.2 Hop Count
	5.1.3 Power Consumption
	5.2.1 Communication Latency
	5.2.2 Hop Count
	5.2.3 Power Consumption
	5.3.1 Communication Latency
	5.3.2 Hop Count
	5.3.3 Power Consumption

