
Abstract—Neural networks are an emerging technology of great
interest. Many neural networks are implemented using the
TensorFlow library. TensorFlow abstracts the process of
constructing and training neural networks, and has supports for
several parallel computing interfaces including Compute Unified
Device Architecture (CUDA) and Direct Machine Learning
(DirectML). However, the structure and training process may not
be able to take full advantage of the underlying hardware due to
how TensorFlow parallelizes computations. In this paper, we
examine how changing a training variable, the batch size, affects
the performance of a sample Convolutional Neural Network
(CNN). We use the CNN to classify images from the Modified
National Institute of Standards and Technology (MNIST)
database of handwritten digits. We run the CNN on a desktop with
eight central processing unit (CPU) cores plus 4608 graphics
processing unit (GPU) cores and on a high-performance
computing (HPC) system with 2x18 CPU cores plus 5120 GPU
cores. According to the experimental results, larger batch size may
reduce training time with negligible or recoverable losses in
accuracy for certain CNN parameters. Results also suggest that
optimization must be taken on a case-by-case basis to determine
the best parameters.

Keywords—Batch size, convolutional neural networks,
parallel computing, TensorFlow, training time

I. INTRODUCTION

In the fields of deep learning, the optimization of neural
networks stands as a critical quest for enhancing model
performance across various applications. CNNs have become an
area of intensive research as they have novel applications and
have become more accessible in recent years due to growing
access to increasingly powerful computer systems and
programming libraries, such as TensorFlow, which abstract the
mathematical and computational complexity of operating these
networks. TensorFlow itself subdivides the tasks involved with
using a neural network into simple operations which are
dispatched to an underlying high-performance math library such
as CUDA, DirectML, or Intel Math Kernel Library (MKL).
While TensorFlow itself has many optimizations for organizing
and scheduling these operations, it can still be bottlenecked by
how the task is programmed and the parameters are supplied to
the task. This paper examines how altering one of the training
parameters, the batch size, affects the performance of the
training process. The batch size affects the maximum parallelism
that can be achieved during training, and is observed to impact
training time, particularly on highly parallel systems such as

GPUs. This research seeks to provide valuable insights that can
guide practitioners and researchers in making informed
decisions to harness the full potential of CNNs in diverse
machine learning tasks.

II. BACKGROUND

Convolutional neural networks have emerged as a core in the
field of computer vision, image recognition, and object
detection. TensorFlow, a machine learning framework from
Google, has played a pivotal role in enabling the implementation
and training of complex neural network architectures, including
CNNs. TensorFlow’s optimizations are described in greater
detail in its 2015 whitepaper [1]; one key point is that
TensorFlow builds its computation on a single fundamental unit
called a tensor, which is simply a multidimensional array or
matrix. TensorFlow can identify certain devices on a system
which can perform accelerated computations on these tensors
and will perform the appropriate work scheduling when an
operation on a tensor is requested. It attempts to dispatch as
many operations as possible and uses a dependency graph to
identify which operations must complete before others begin.
TensorFlow will dispatch these operations to any available
devices it can identify [2], including CPUs, GPUs, and
specialized Tensor Processor Units (TPUs). TensorFlow can use
these devices to perform the operations needed for the process
of training a model or to deploy one in an application.

The process of training a neural network can be roughly
described in two different steps performed repeatedly [3]. First,
forward propagation, where a sample of training data is fed
through the network to get predicted outputs. Second,
backpropagation, where the error between the predicted and
actual output is fed to an optimization algorithm which will then
modify the weights and bias within the network to bring the
output of the model closer to the expected values.

TensorFlow employs two types of parallelism in operations,
model parallelism and data parallelism [3]. Model parallelism is
parallel computations involved in the process of propagating
values through the network (e.g., the multiplication of vectors
and matrices), which is performed by the underlying math
library. Data parallelism is the processing of multiple pieces of
training data in parallel. TensorFlow performs data parallelism
by dividing a training dataset into batches of a certain size and
will attempt to process each batch in parallel. The accumulated
error from the entire batch is then used by the optimization

CS 498 | Spring 2021 | DRZ

Impact of Batch Size on Performance of TensorFlow
Based Convolutional Neural Networks

Duncan Campbell

algorithm to update the weights. Figure 1 shows two variations
of how TensorFlow may accomplish data parallelism (namely,
synchronous and asynchronous). TensorFlow dispatches
training data to each device by accumulating the error and
synchronously updating the parameters of the model or by using
multiple training clients asynchronously generating updates.

Figure 1. TensorFlow’s use of data parallelism [1]

Backpropagation, however, cannot be parallelized to the
same degree as forward propagation within the synchronous
training process because it cannot take full advantage of data
parallelism; it is only run once after each batch and must run
after each batch is entirely processed. The processing of the
batch, however, can theoretically be parallelized up to the size
of the batch; each piece of data can be processed independently
of each other and summation of the error is a common reduction
operation. Therefore, for neural networks in which the
computational cost of forward propagation for an individual
piece of data is low, the limiting factor in training speed will be
the backpropagation steps.

The batch size determines the maximum limit of how many
items can be processed in parallel concurrently, as TensorFlow
will dispatch work for the entire batch and wait before
performing backpropagation. If the total number of items in a
training dataset is much greater than the number of items in a
batch and the computational cost of each item is much smaller
than the capabilities of the underlying hardware, then it can be
assumed that the size of a batch may limit the speed at which the
entire dataset is processed; for small batch sizes, the hardware
may be able to process the entire batch in parallel but have
unutilized computing elements that a larger batch would be able
to use. Studies observe this phenomenon, noting that increasing
the batch size can yield greater time efficiency on parallel
systems [4][5]. Liu et al. focus on dynamically changing the
batch size while training to improve the efficiency of the training
process (loss improvement over time) [4]. Ramirez-Gargallo et
al. also observe the same increase in performance as both batch
size and thread counts increase [5]. Increasing the batch size may
decrease accuracy though, as the weights of the network are not
adjusted as often over the course of training as observed by Liu

et al. In this work, a sample CNN is created and run on two
different computer systems with varying parameters to evaluate
the impact of changing the batch size during training.

III. EXPERIMENTAL SETUP
The neural network used for testing the impact of batch size

is a CNN designed to classify images from the MNIST database
of handwritten digits. The structure of the network can be seen
in Figure 2, with a 28x28 input layer for each pixel of the input
images, followed by two alternating layers of convolutions and
pooling with a kernel size of 4x4 and a pooling size of 2x2. After
flattening the network incorporates two alternating layers of
dropout and densely connected neurons, the first dense layer
having 500 neurons and the final output layer having 10 neurons
corresponding to each digit.

Figure 2. Structure of the CNN used

Each convolution and dense layer is set to use rectified linear
unit (ReLU) activation except the final layer which was set to
use softmax activation to fit with the purpose of classification
and generate a set of percentages for each digit to determine
which it appears most like to the network. All weights and bias
are initialized using TensorFlow’s RandomNormal initializer
and all seeds for random number generation are set to 1000 to
ensure uniform initialization between runs.

The Python script implementing the network is run on two
systems, a desktop system with a Ryzen 1800X CPU and
Radeon RX 6800XT GPU, and Wichita State University’s
BeoShock system using two Intel Xeon Gold 6240 CPUs and a
Nvidia Tesla V100 GPU. The desktop is a standalone system;
when the CNN script is run on the desktop system, there is no
other CPU or GPU intensive tasks running. The desktop system
is later upgraded to a Ryzen 5700X CPU and the same tests are
run again. The BeoShock is a shared high-performance
computing (HPC) system; the CNN script is run using the Slurm
scheduling. More details on the hardware of each system are
given in Table 1, including memory capacities, core counts, and
nominal clock frequencies for each system.

TABLE I. SYSTEM HARDWARE

Component System 1 (Desktop) System 2 (HPC)

CPU
Ryzen 1800X @ 3.6GHz 2x Intel Xeon Gold 6240

@ 2.6GHz Ryzen 5700X @ 4 GHz
CPU Cores
/ Threads 8C / 16T 2x 18C / 36T

Memory 32 GB @ 2400MHz 384 GB

GPU Radeon RX 6800 XT @
1825MHz Tesla V100 @ 1245 MHz

GPU Cores 4608 5120

IV. SIMULATION RESULTS
In this section, we present the total training time and final

accuracy obtained by running the CNN program on the
described (i) desktop system with Ryzen 1800X, (ii) desktop
system with Ryzen 5700X, and (iii) BeoShock system for
various batch sizes and epochs.

A. CNN on Desktop: CPU Only
Figures 3 and 4 show the training time and accuracy,

respectively, when CNN is run using only the system’s CPU
(Ryzen 1800X at 3.6 GHz). As illustrated in Figure 3, the
training time remains almost the same as the batch size
increases. While the training time shows a small decrease with
larger batch sizes, it is much shallower.

According to Figure 4, the accuracy is somewhat decreased
with larger batch sizes, but remains above 90%. The training
time overall is also much larger compared to the GPU.

We repeat the CNN tests on the desktop system with the
newer Ryzen 5700X processor. As shown in Figure 5, we notice
a significant improvement in training time but the same patterns
emerge as the previous tests; increasing the batch size only

provides marginal improvements at relatively small numbers
and plateaus quickly with no performance gain.

Figure 3. Training time for the desktop with Ryzen 1800X CPU

Figure 4. Accuracy for the desktop with Ryzen 1800X CPU

Figure 5. Training time for the desktop with Ryzen 5700X CPU

0

50

100

150

200

100 300 500 700 900

Tr
ai

ni
ng

 T
im

e
(s

)

Batch Size

Training Time vs. Batch Size (CPU, 1800X)

1 Epoch 2 Epochs 3 Epochs
4 Epochs 5 Epochs

94%
95%
96%
97%
98%
99%

100%

100 300 500 700 900

A
cc

ur
ac

y

Batch Size

Accuracy vs. Batch Size (CPU, 1800X)

1 Epoch 2 Epochs 3 Epochs
4 Epochs 5 Epochs

0

50

100

150

200

100 300 500 700 900

Tr
ai

ni
ng

 T
im

e
(s

)

Batch Size

Training Time vs. Batch Size (CPU, 5700X)

1 Epoch 2 Epochs 3 Epochs
4 Epochs 5 Epochs

The accuracy plot in Figure 6 again shows similar behavior
to previous tests, with accuracy rising with the number of
epochs. This behavior seems to be consistent across all
variations, with larger batch sizes reducing accuracy when the
number of epochs is small, but rising with the number of epochs
regardless of the batch size until an upper limit is reached.

Figure 6. Accuracy for the desktop with Ryzen 5700X CPU

B. CNN on Desktop: GPU Only
Figures 7 and 8 show the training time and accuracy,

respectively, when CNN is run using only the system’s GPU.
The training time shows a significant decrease as the batch size
increases, indicating that the GPU can process more items in
parallel than the initial batch size value would allow, tapering
off around 800 items. The training time also scales linearly with
the number of epochs, as each epoch requires approximately the
same amount of time to process the entire dataset. The
performance improvement with larger batch sizes in this case is
so significant that it is faster to process 5 epochs with a batch
size of 1000 than it is to process a single epoch with a batch size
of 100.

Figure 7. Training time for the desktop with 6800XT GPU

Figure 8. Accuracy for the desktop with 6800XT GPU

The accuracy is somewhat decreased with larger batch sizes,
but remains above 94% even for one epoch and quickly
improves to near 99% for five epochs.

The total GPU usages is captured during training using
AMD’s Adrenaline management software and can be seen in
Figure 9. The pre- and post-training periods show a background
level of GPU usage, while the training period shows spikes
above 50% as the neural network trains. As the batch size
increases, the utilization also increases while the period of each
test decreases.

Figure 9. Training time for the desktop with 6800XT GPU

C. CNN on BeoShock

The CNN program was also run on the BeoShock system
using the Slurm scheduler, producing very different results as
seen in Figures 10 and 11.

Figure 10. Training time for the BeoShock system using CPU

94%

95%

96%

97%

98%

99%

100%

100 300 500 700 900

A
cc

ur
ac

y

Batch Size

Accuracy vs. Batch Size (CPU, 5700X)

1 Epoch 2 Epochs 3 Epochs
4 Epochs 5 Epochs

0

10

20

30

40

50

100 300 500 700 900

Tr
ai

ni
ng

 T
im

e
(s

)

Batch Size

Training Time vs. Batch Size (GPU, 6800XT)

1 Epoch 2 Epochs 3 Epochs
4 Epochs 5 Epochs

94%

96%

98%

100%

100 300 500 700 900

A
cc

ur
ac

y

Batch Size

Accuracy vs. Batch Size (GPU, 6800XT)

1 Epoch 2 Epochs 3 Epochs
4 Epochs 5 Epochs

0

100

200

100 300 500 700 900

Tr
ai

ni
ng

 T
im

e
(s

)

Batch Size

Training Time vs. Batch Size (Beoshock, CPU)

1 Epoch 2 Epochs 3 Epochs
4 Epochs 5 Epochs

Accuracy for the BeoShock trials showed the same trends as
with the desktop, decreasing with higher batch sizes but
recovering with more epochs.

Figure 11. Training time for the BeoShock system using GPU

Unlike the desktop system, for BeoShock, both the CPU and
GPU tests show no significant improvement with larger batch
sizes. The GPU run took significantly longer than its equivalent
on the desktop system (see Figures 7 and 11). A possible
explanation for this large difference is that BeoShock is a shared
system with different users running concurrent HPC tasks,
while the desktop was a single-user system only running
background tasks, meaning the BeoShock system would have a
much lower limit on the maximum effective computational
throughput and would be more easily saturated with work by a
smaller batch size. This is a good reminder that optimal
performance depends on the conditions of the environment the
program is running in.

V. CONCLUSION
The impact of batch size on the training time and accuracy

of TensorFlow-based CNNs is a crucial consideration that can

significantly influence the overall model performance. This
study investigates the impact of the batch size on the
performance of a CNN. The CNN is employed for image
classification using the MNIST database of handwritten digits.
The experiments are conducted on two computing platforms: a
desktop equipped with eight CPU cores and 4608 GPU cores,
and an HPC system featuring two sets of 18 CPU cores and 5120
GPU cores. Through the exploration of various batch sizes and
epochs, it becomes evident that choosing an appropriate batch
size is a balancing act, influenced by factors such as model
architecture and dataset characteristics. This is because the
method TensorFlow uses to schedule the computational
workload. Simulation results suggest that larger batch sizes may
reduce training time with negligible or recoverable losses in
accuracy. However, the environment a CNN is running in can
affect the point at which it effectively saturates the computing
system with work. Therefore, optimization must be taken on a
case-by-case basis to determine the best parameters. In
particular, these effects are observed on a small-scale dedicated
system and larger multi-computer systems or shared computing
systems may not see the benefits of this tuning.

REFERENCES

[1] M. Abadi, A. Agarwal, P. Barham, et al., “TensorFlow: Large-scale

machine learning on heterogeneous distributed systems,” TensorFlow,
2015. http://download.tensorflow.org/paper/whitepaper2015.pdf

[2] M. Ramchandani, H. Khandare, P. Singh, et al., “Survey: TensorFlow in
Machine Learning,” Journal of Physics: Conference Series, vol. 2273, no.
1, May 2022.

[3] A. Gholami, A. Azad, P. Jin, K. Keutzer, and A. Buluc, “Integrated
Model, Batch, and Domain Parallelism in Training Neural Networks,” in
Symposium on Parallelism in Algorithms and Architectures (SPAA), pp.
77–86, July 2018. https://doi.org/10.1145/3210377.3210394

[4] B. Liu, W. Shen, P. Li, and X. Zhu, “Accelerate Mini-batch Machine
Learning Training With Dynamic Batch Size Fitting,” in International
Joint Conference on Neural Networks (IJCNN), pp. 1-8, Budapest,
Hungary, 2019. doi: 10.1109/IJCNN.2019.8851944

[5] G. Ramirez-Gargallo, M. Garcia-Gasulla, and F. Mantovani,
“TensorFlow on State-of-the-Art HPC Clusters: A Machine Learning use
Case,” in IEEE/ACM International Symposium on Cluster, Cloud and
Grid Computing (CCGRID), pp. 526-533, Larnaca, Cyprus, 2019. doi:
10.1109/CCGRID.2019.00067

0
20
40
60
80

100
120
140
160
180

100 300 500 700 900

Tr
ai

ni
ng

 T
im

e
(s

)

Batch Size

Training Time vs. Batch Size (Beoshock, GPU)

1 Epoch 2 Epochs
3 Epochs 4 Epochs
5 Epochs

	I. Introduction
	II. Background
	III. Experimental Setup
	IV. Simulation Results
	A. CNN on Desktop: CPU Only
	B. CNN on Desktop: GPU Only
	C. CNN on BeoShock

	V. Conclusion
	References

