
Abstract—Neural networks are an emerging technology of great 
interest. Many neural networks are implemented using the 
TensorFlow library. TensorFlow abstracts the process of 
constructing and training neural networks, and has supports for 
several parallel computing interfaces including Compute Unified 
Device Architecture (CUDA) and Direct Machine Learning 
(DirectML). However,  the structure and training process may not 
be able to take full advantage of the underlying hardware due to 
how TensorFlow parallelizes computations. In this paper, we 
examine how changing a training variable, the batch size, affects 
the performance of a sample Convolutional Neural Network 
(CNN). We use the CNN to classify images from the Modified 
National Institute of Standards and Technology (MNIST) 
database of handwritten digits. We run the CNN on a desktop with 
eight central processing unit (CPU) cores plus 4608 graphics 
processing unit (GPU) cores and on a high-performance 
computing (HPC) system with 2x18 CPU cores plus 5120 GPU 
cores. According to the experimental results, larger batch size may 
reduce training time with negligible or recoverable losses in 
accuracy for certain CNN parameters. Results also suggest that 
optimization must be taken on a case-by-case basis to determine 
the best parameters. 

Keywords—Batch size, convolutional neural networks, 
parallel computing, TensorFlow, training time 

I. INTRODUCTION

In the fields of deep learning, the optimization of neural 
networks stands as a critical quest for enhancing model 
performance across various applications. CNNs have become an 
area of intensive research as they have novel applications and 
have become more accessible in recent years due to growing 
access to increasingly powerful computer systems and 
programming libraries, such as TensorFlow, which abstract the 
mathematical and computational complexity of operating these 
networks. TensorFlow itself subdivides the tasks involved with 
using a neural network into simple operations which are 
dispatched to an underlying high-performance math library such 
as CUDA, DirectML, or Intel Math Kernel Library (MKL). 
While TensorFlow itself has many optimizations for organizing 
and scheduling these operations, it can still be bottlenecked by 
how the task is programmed and the parameters are supplied to 
the task. This paper examines how altering one of the training 
parameters, the batch size, affects the performance of the 
training process. The batch size affects the maximum parallelism 
that can be achieved during training, and is observed to impact 
training time, particularly on highly parallel systems such as 

GPUs. This research seeks to provide valuable insights that can 
guide practitioners and researchers in making informed 
decisions to harness the full potential of CNNs in diverse 
machine learning tasks. 

II. BACKGROUND

Convolutional neural networks have emerged as a core in the 
field of computer vision, image recognition, and object 
detection. TensorFlow, a machine learning framework from 
Google, has played a pivotal role in enabling the implementation 
and training of complex neural network architectures, including 
CNNs. TensorFlow’s optimizations are described in greater 
detail in its 2015 whitepaper [1]; one key point is that 
TensorFlow builds its computation on a single fundamental unit 
called a tensor, which is simply a multidimensional array or 
matrix. TensorFlow can identify certain devices on a system 
which can perform accelerated computations on these tensors 
and will perform the appropriate work scheduling when an 
operation on a tensor is requested. It attempts to dispatch as 
many operations as possible and uses a dependency graph to 
identify which operations must complete before others begin. 
TensorFlow will dispatch these operations to any available 
devices it can identify [2], including CPUs, GPUs, and 
specialized Tensor Processor Units (TPUs). TensorFlow can use 
these devices to perform the operations needed for the process 
of training a model or to deploy one in an application. 

The process of training a neural network can be roughly 
described in two different steps performed repeatedly [3]. First, 
forward propagation, where a sample of training data is fed 
through the network to get predicted outputs. Second, 
backpropagation, where the error between the predicted and 
actual output is fed to an optimization algorithm which will then 
modify the weights and bias within the network to bring the 
output of the model closer to the expected values. 

TensorFlow employs two types of parallelism in operations, 
model parallelism and data parallelism [3]. Model parallelism is 
parallel computations involved in the process of propagating 
values through the network (e.g., the multiplication of vectors 
and matrices), which is performed by the underlying math 
library. Data parallelism is the processing of multiple pieces of 
training data in parallel. TensorFlow performs data parallelism 
by dividing a training dataset into batches of a certain size and 
will attempt to process each batch in parallel. The accumulated 
error from the entire batch is then used by the optimization 
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algorithm to update the weights. Figure 1 shows two variations 
of how TensorFlow may accomplish data parallelism (namely, 
synchronous and asynchronous). TensorFlow dispatches 
training data to each device by accumulating the error and 
synchronously updating the parameters of the model or by using 
multiple training clients asynchronously generating updates. 

  

Figure 1.  TensorFlow’s use of data parallelism [1] 

Backpropagation, however, cannot be parallelized to the 
same degree as forward propagation within the synchronous 
training process because it cannot take full advantage of data 
parallelism; it is only run once after each batch and must run 
after each batch is entirely processed. The processing of the 
batch, however, can theoretically be parallelized up to the size 
of the batch; each piece of data can be processed independently 
of each other and summation of the error is a common reduction 
operation. Therefore, for neural networks in which the 
computational cost of forward propagation for an individual 
piece of data is low, the limiting factor in training speed will be 
the backpropagation steps. 

The batch size determines the maximum limit of how many 
items can be processed in parallel concurrently, as TensorFlow 
will dispatch work for the entire batch and wait before 
performing backpropagation. If the total number of items in a 
training dataset is much greater than the number of items in a 
batch and the computational cost of each item is much smaller 
than the capabilities of the underlying hardware, then it can be 
assumed that the size of a batch may limit the speed at which the 
entire dataset is processed; for small batch sizes, the hardware 
may be able to process the entire batch in parallel but have 
unutilized computing elements that a larger batch would be able 
to use. Studies observe this phenomenon, noting that increasing 
the batch size can yield greater time efficiency on parallel 
systems [4][5]. Liu et al. focus on dynamically changing the 
batch size while training to improve the efficiency of the training 
process (loss improvement over time) [4]. Ramirez-Gargallo et 
al. also observe the same increase in performance as both batch 
size and thread counts increase [5]. Increasing the batch size may 
decrease accuracy though, as the weights of the network are not 
adjusted as often over the course of training as observed by Liu 

et al. In this work, a sample CNN is created and run on two 
different computer systems with varying parameters to evaluate 
the impact of changing the batch size during training. 

III. EXPERIMENTAL SETUP 
The neural network used for testing the impact of batch size 

is a CNN designed to classify images from the MNIST database 
of handwritten digits. The structure of the network can be seen 
in Figure 2, with a 28x28 input layer for each pixel of the input 
images, followed by two alternating layers of convolutions and 
pooling with a kernel size of 4x4 and a pooling size of 2x2. After 
flattening the network incorporates two alternating layers of 
dropout and densely connected neurons, the first dense layer 
having 500 neurons and the final output layer having 10 neurons 
corresponding to each digit. 

 

Figure 2.  Structure of the CNN used 



Each convolution and dense layer is set to use rectified linear 
unit (ReLU) activation except the final layer which was set to 
use softmax activation to fit with the purpose of classification 
and generate a set of percentages for each digit to determine 
which it appears most like to the network. All weights and bias 
are initialized using TensorFlow’s RandomNormal initializer 
and all seeds for random number generation are set to 1000 to 
ensure uniform initialization between runs. 

The Python script implementing the network is run on two 
systems, a desktop system with a Ryzen 1800X CPU and 
Radeon RX 6800XT GPU, and Wichita State University’s 
BeoShock system using two Intel Xeon Gold 6240 CPUs and a 
Nvidia Tesla V100 GPU. The desktop is a standalone system; 
when the CNN script is run on the desktop system, there is no 
other CPU or GPU intensive tasks running. The desktop system 
is later upgraded to a Ryzen 5700X CPU and the same tests are 
run again. The BeoShock is a shared high-performance 
computing (HPC) system; the CNN script is run using the Slurm 
scheduling. More details on the hardware of each system are 
given in Table 1, including memory capacities, core counts, and 
nominal clock frequencies for each system. 

TABLE I.  SYSTEM HARDWARE 

Component System 1 (Desktop) System 2 (HPC) 

CPU 
Ryzen 1800X @ 3.6GHz 2x Intel Xeon Gold 6240 

@ 2.6GHz Ryzen 5700X @ 4 GHz 
CPU Cores 
/ Threads 8C / 16T 2x 18C / 36T 

Memory 32 GB @ 2400MHz 384 GB 

GPU Radeon RX 6800 XT @ 
1825MHz Tesla V100 @ 1245 MHz 

GPU Cores 4608 5120 
 

IV. SIMULATION RESULTS 
In this section, we present the total training time and final 

accuracy obtained by running the CNN program on the 
described (i) desktop system with Ryzen 1800X, (ii) desktop 
system with Ryzen 5700X, and (iii) BeoShock system for 
various batch sizes and epochs.  

A. CNN on Desktop: CPU Only 
Figures 3 and 4 show the training time and accuracy, 

respectively, when CNN is run using only the system’s CPU 
(Ryzen 1800X at 3.6 GHz). As illustrated in Figure 3, the 
training time remains almost the same as the batch size 
increases. While the training time shows a small decrease with 
larger batch sizes, it is much shallower. 

According to Figure 4, the accuracy is somewhat decreased 
with larger batch sizes, but remains above 90%. The training 
time overall is also much larger compared to the GPU. 

We repeat the CNN tests on the desktop system with the 
newer Ryzen 5700X processor. As shown in Figure 5, we notice 
a significant improvement in training time but the same patterns 
emerge as the previous tests; increasing the batch size only 

provides marginal improvements at relatively small numbers 
and plateaus quickly with no performance gain. 

 
Figure 3.  Training time for the desktop with Ryzen 1800X CPU  

 

  
Figure 4.  Accuracy for the desktop with Ryzen 1800X CPU  

 

  
Figure 5.  Training time for the desktop with Ryzen 5700X CPU  
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The accuracy plot in Figure 6 again shows similar behavior 
to previous tests, with accuracy rising with the number of 
epochs. This behavior seems to be consistent across all 
variations, with larger batch sizes reducing accuracy when the 
number of epochs is small, but rising with the number of epochs 
regardless of the batch size until an upper limit is reached. 

 
Figure 6.  Accuracy for the desktop with Ryzen 5700X CPU  

B. CNN on Desktop: GPU Only 
Figures 7 and 8 show the training time and accuracy, 

respectively, when CNN is run using only the system’s GPU. 
The training time shows a significant decrease as the batch size 
increases, indicating that the GPU can process more items in 
parallel than the initial batch size value would allow, tapering 
off around 800 items. The training time also scales linearly with 
the number of epochs, as each epoch requires approximately the 
same amount of time to process the entire dataset. The 
performance improvement with larger batch sizes in this case is 
so significant that it is faster to process 5 epochs with a batch 
size of 1000 than it is to process a single epoch with a batch size 
of 100. 

  
Figure 7.  Training time for the desktop with 6800XT GPU 

  

Figure 8.  Accuracy for the desktop with 6800XT GPU 

The accuracy is somewhat decreased with larger batch sizes, 
but remains above 94% even for one epoch and quickly 
improves to near 99% for five epochs.  

The total GPU usages is captured during training using 
AMD’s Adrenaline management software and can be seen in 
Figure 9. The pre- and post-training periods show a background 
level of GPU usage, while the training period shows spikes 
above 50% as the neural network trains. As the batch size 
increases, the utilization also increases while the period of each 
test decreases. 

  
Figure 9.  Training time for the desktop with 6800XT GPU 

C. CNN on BeoShock 

The CNN program was also run on the BeoShock system 
using the Slurm scheduler, producing very different results as 
seen in Figures 10 and 11.  

 

Figure 10.  Training time for the BeoShock system using CPU 
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Accuracy for the BeoShock trials showed the same trends as 
with the desktop, decreasing with higher batch sizes but 
recovering with more epochs. 

  
Figure 11.  Training time for the BeoShock system using GPU 

Unlike the desktop system, for BeoShock, both the CPU and 
GPU tests show no significant improvement with larger batch 
sizes. The GPU run took significantly longer than its equivalent 
on the desktop system (see Figures 7 and 11). A possible 
explanation for this large difference is that BeoShock is a shared 
system with different users running concurrent HPC tasks, 
while the desktop was a single-user system only running 
background tasks, meaning the BeoShock system would have a 
much lower limit on the maximum effective computational 
throughput and would be more easily saturated with work by a 
smaller batch size. This is a good reminder that optimal 
performance depends on the conditions of the environment the 
program is running in. 

V. CONCLUSION 
The impact of batch size on the training time and accuracy 

of TensorFlow-based CNNs is a crucial consideration that can 

significantly influence the overall model performance. This 
study investigates the impact of the batch size on the 
performance of a CNN. The CNN is employed for image 
classification using the MNIST database of handwritten digits. 
The experiments are conducted on two computing platforms: a 
desktop equipped with eight CPU cores and 4608 GPU cores, 
and an HPC system featuring two sets of 18 CPU cores and 5120 
GPU cores. Through the exploration of various batch sizes and 
epochs, it becomes evident that choosing an appropriate batch 
size is a balancing act, influenced by factors such as model 
architecture and dataset characteristics. This is because the 
method TensorFlow uses to schedule the computational 
workload. Simulation results suggest that larger batch sizes may 
reduce training time with negligible or recoverable losses in 
accuracy. However, the environment a CNN is running in can 
affect the point at which it effectively saturates the computing 
system with work. Therefore, optimization must be taken on a 
case-by-case basis to determine the best parameters. In 
particular, these effects are observed on a small-scale dedicated 
system and larger multi-computer systems or shared computing 
systems may not see the benefits of this tuning. 
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