
Abstract—Technology has quickly progressed with the aid of the
continuation of Moore’s law, which states a doubling of transistor
density every two years. However, the complementing principle of
Moore’s Law, the Dennard Scaling, which states that power
density would stay constant as transistor sizes shrunk, stopped
being true in 2004. With the breaking down of Dennard Scaling,
new challenges were introduced including in power management
and heat dissipation, particularly for smaller devices like
embedded systems. This ushered in a search for innovative
solutions, eventually leading to heterogeneous design, where
various processing units like CPUs, GPUs, and FPGAs are
integrated into a single device. With the introduction and
advancement of heterogeneous systems, new capabilities are
becoming possible within small, but fast and energy-efficient
devices. However, with the high complexity of the systems and with
the power and heat-dissipating constraints, multiple challenges are
involved. It is vital to help advance heterogeneous embedded
systems since it is such versatile technology; advancing
heterogeneous systems can help propel various sectors.

Keywords-component; heterogeneity; embedded systems; inernet
of things (IoT); power constraints; heat dissipation

I. INTRODUCTION

The introduction of heterogeneity addresses several critical
challenges that were not properly addressed by homogeneous
multicore solutions or “dark silicon” practices [1].
Homogeneous solutions became wasteful by all cores being
available for usage but not being fully utilized. Homogeneous
systems are limited due to thermal constraints which require
thermal throttling [1]. Thermal throttling is the process of
lowering the component’s clock speed/frequency to slow down
processing. However, this would cause significantly worsened
performance [1]. As technology has advanced to involve
multiple high computing specialties, such as artificial
intelligence, graphics rendering, and real-time data processing,
it has become important to be as efficient as possible [2].

Heterogeneity was introduced after the realization that a one-
size-fits-all approach to processing elements is no longer
sufficient to meet more specific functionalities. Thus,
heterogeneous systems and their underlying concepts have
emerged at the forefront of advanced computing. At their core,
heterogeneous systems are unified in a single device and
include multiple elements such as CPUs, GPUs, FPGAs, and

specialized accelerators [3]. Each element is used in
collaboration with each other, taking advantage of the unique
strengths available in the overall computational workload.
Heterogeneity acknowledges that certain tasks are best suited
for specialized processors, giving rise to a more efficient device.

This change in system architecture does not come without
challenges. Heterogeneous systems are highly complex in both
the hardware architecture and software programmability
aspects. The multidisciplinary nature of heterogeneous system
development, involving engineers with diverse expertise,
creates synchronization challenges between the several
components in the overall system [3]. Such issues can lead to
project management difficulties and cause problems when time
constraints are important [3]. Heat dissipation and power
consumption are also notable issues, specifically for small
devices such as embedded systems. These are factors that are
important to consider as embedded systems are small in nature,
are often found in unsuitable environments, often have small
batteries, and rarely have internal cooling.

In response to these challenges, a spectrum of solutions is
being explored and implemented. Such solutions include
creating new software development strategies, creating new
programming paradigms, improving performance prediction,
and strategically choosing which processors/accelerators to use
depending on each task.

II. HETEROGENEOUS CONCEPTS

Heterogeneous systems can be composed of multiple
elements, each having their own unique strengths and specific
use cases. The goal of using such a wide range of components
on a single device is to use the available resources as efficiently
as possible to achieve the best possible performance.

There are two main types of heterogeneity, functional
heterogeneity, and performance heterogeneity [1].

Functional heterogeneity occurs when different kinds of
processing units with different instruction architectures are used
within the same device [1]. Example processing units include:

 Central processing units (CPUs)
 Graphics processing units (GPUs)
 Tensor processing units (TPUs)
 Neural processing units (NPUs)
 Field programmable field arrays (FPGAs)

ECE 790 | Fall 2023 | DRZ

Applying Heterogeneous Concepts in Embedded / IoT
Systems

Ricardo Castanon Ureno

 Digital signal processors (DSPs)
 Specialized accelerators
All units work in collaboration with one another as part of

the same system but how exactly they are implemented depends
on the specific use case.

Performance heterogeneity occurs when cores have the
same instruction set architecture but have different underlying
micro-architectures [1]. Sharing the same instruction set
architecture but having differing micro-architectures gives
added flexibility in the areas of execution efficiency, power
consumption, and overall processing capabilities. Having
different micro-architectures allows systems to utilize the
specific areas in the system that best fit what it is being used
for. For example, one micro-architecture may offer high
throughput which would be beneficial for cases that require
rapid data processing. Another micro-architecture may instead
be better suited to perform parallel tasks at the same time. These
are just two examples of contrasting micro-architectures that
could be present in a performance heterogeneous system.
However, many more micro-architectures that bring their own
benefits and use cases can be implemented in the same system.

III. EMBEDDED AND IOT SYSTEMS

Heterogeneity can be applied within a wide range of
computing systems as it can bring improved performance in
several types of applications. Two notable areas in which
heterogeneity can specifically be applied are embedded systems
and Internet of Things (IoT) systems.

A. Embedded Systems

Embedded systems are computer systems that combine
computer hardware and software to be utilized for a specific
function. They are often found within larger, more complex
systems. They are low-cost, low-power consuming, small
computers that are embedded within other systems [4].
Embedded systems are typically composed of processors, power
supply, memory, memory ports, and communication ports [4].
They transmit data between other system peripherals, including
other embedded systems, that make up the macro system.
Embedded system functionality can vary a lot depending on how
it is being used and implemented.

Embedded systems are currently being applied in several
sectors for several uses. The ways that they are being used are
continuously growing as technology is advancing. Some of the
current use cases include [4]:

 Automobiles: Modern cars are composed using several
computers, in the form of embedded systems. Each
embedded system has its own functionality but is vital
for the proper performance of the car.

 Mobile phones: Embedded systems are often used to
implement Graphical User Interface (GUI) software and
hardware, Operating Systems, and Input/Output (I/O
modules.

 Industrial machines: Sensors within embedded systems,
or in the form of embedded systems, are commonly

found in industrial machines. These sensors may be used
for monitoring the system or to apply automation.

Due to the extensive architectural and software organization
ways possible for embedded systems, applying heterogeneity
effectively in their architecture can produce more efficient
systems.

B. Internet of Things

Internet of Things (IoT) is a network of interconnected
devices in which the devices can communicate with each other
and the cloud [5]. IoT devices are typically embedded with
other technological components such as sensors and software.
IoT networks consist of web-enabled smart devices that use
embedded systems to manipulate data within the network [5].
A main benefit that IoT provides is that IoT devices can do a lot
of tasks in the background, without human operators having to
intervene throughout the process. This saves a lot of time and
ultimately helps improve the lives of humans.

Similarly, to embedded systems, IoT technology is a rapidly
growing technological sector and has a lot of use cases. Some
of the current use cases include [5]:

 Automobiles: Modern cars are composed using several
embedded systems, many of which are interconnected
through Internet of Things. IoT is being used more in
the automobile industry as the autonomous vehicle
sector grows.

 Wearable smart technology: Technology such as
smartwatches can be used as an IoT device for multiple
reasons including for health applications.

 Household appliances: Adding intelligence to
interconnected household appliances such as vacuums,
laundry machines, and refrigerators makes these devices
easier to use. This makes humans’ lives easier by
simplifying tedious household tasks.

IoT networks consisting of a wide range of devices working
with one another are an example of heterogeneity. It is critical to
create heterogeneous IoT devices to be as efficient as possible to
attain the best performance. Likewise, communication between
the different devices must also be effectively arranged. The
unique heterogeneity in IoT makes it difficult to proficiently
execute but doing so adds to the benefits generated by IoT.

Embedded system and Internet of Things system usage is
ever-expanding and brings many benefits to their use cases and
human lives. As automation expands and data processing moves
toward the edge, making these systems as effective as possible
will unlock new possibilities. Applying heterogeneity to these
systems will allow the systems to become more intelligent,
environmentally friendly, smaller, and more power efficient [3].

IV. APPLICATION OF HETEROGENOUS CONCEPTS IN

EMBEDDED / IOT SYSTEMS

Tremendous progress has been made in heterogeneous
computing which has been applied to embedded and IoT
systems. Heterogeneity allows cramming more components
together into smaller systems, which results in smaller yet more

efficient systems. Achieving this sounds great and is a
possibility with the continuous shrinking of transistors and
improved silicon manufacturing processes. This allows for
improved systems while maintaining cheap costs. However,
producing these proposed heterogeneous systems is easier said
than done. Implementing heterogeneity in these systems brings
about several unique challenges. Exploring these issues as well
as some proposed solutions gives a better idea of the current
state of applying heterogeneous in embedded and IoT systems.

A. Software Complexity

Heterogeneous hardware architecture is highly complex as
many micro-architectures and devices are interconnected in the
same system. With this hardware complexity, also comes
software complexity which is more difficult to address [3].
Combining the diversity between the hardware and software
architectures creates problems corresponding to time-to-
market, cost decrease, transparency, scalability, flexibility, and
maintainability [6]. Designing parallel software for
homogeneous computing systems was already a complicated
enough challenge. Software development for heterogeneous
computing takes it to another level. Notable questions that arise
when producing heterogeneous systems are [1]:

 Which core or accelerator is best to use for the
application?

 How is an application executed using multiple cores and
accelerators?

 How can the system remain within the Thermal Design
Power (TDP) constraint?

 How can battery life be maximized?

These questions are not simple to theoretically answer,
executing the solutions is an added level of complexity.

Additionally adding complexity to heterogeneous systems is
the embedded system-specific operating system [3]. A popular
embedded system operating system is the GNU/Linux system.
This system is complex and is nothing like utilizing an
operating system for another device such as using Raspbian for
a Raspberry Pi [3]. Using embedded Linux requires everything
to be done within the command line. Very little is instantly
available in the embedded Linux OS, requiring everything to be
built from the ground up [3]. Some external tools and
manufactured prebuilt boot images have been made available to
automate embedded Linux system setup [3]. However, it is still
certain that the build will need to be modified to meet the
specific needs.

B. Project Management

Applying heterogeneity to embedded systems and IoT
outputs many benefits including producing smaller devices.
However, what does not shrink is the level of expertise needed
for teams producing such complex systems.

Heterogeneous systems are highly complex and require
highly experienced people from multiple areas. Creating a

heterogeneous system requires performing good engineering in
all areas [3]. This is not an easy task and is not easy for the
project manager to handle. When developing heterogeneous
systems, a group of engineers of varying specialties work
together to implement their individual pieces together. The
most strenuous task, however, is getting the whole system to
work correctly [3]. To do so, extensive test and integration
engineering is required. This is a labor-intensive but essential
task in development [3]. These engineers must exit their
comfort zones and delve into other engineering disciplines in
which they are less experienced.

Due to the system being composed of several devices which
several engineers specialize in, keeping barriers between each
other’s work and components stifles productivity. On the other
hand, cutting down limits and barriers between the different
areas increases productivity [3]. This can be done by increasing
visibility into the internals of the different device sections.
Doing so makes it easier to test and log between the different
devices with varying input/output ports and varying flag
states/events [3]. This will ultimately make it easier for non-
specialists to understand when something goes wrong, and to
assign the appropriate developer to resolve the issue.

Something that aids in designing with a smaller team is tools
given by semiconductor device manufacturers. These tools can
help automate the development tasks. However, this brings
another factor to keep in mind, as it is important to decide just
how much of the development will be done autonomously. The
more a tool automates a task, the less it is understood of what is
truly going on [3]. By default, these tools do more than what is
required, which can cause problems in the development later
down the line [3]. These autonomous developing tools can be
used as a massive productivity help but leaving it all to them is
not a great idea. A balance between manual implementation and
autonomous implementation is the way to go.

Developing such a complex system as an embedded
heterogeneous system requires a lot of planning, management,
and expertise. Many factors such as the embedded OS,
autonomous development, team size, and area transparency
must be decided before development commences [3]. General
tips for good practices include creating a functioning core
platform and avoiding unnecessary features [3]. Because the
development team varies in specialties and expertise, ideas
must be limited, and rather have the project led by a dedicated
technical project leader [3]. This will steer the project in a
single, correct direction.

C. Power Consumption and Heat Dissipation

Power consumption and heat dissipation are factors that must
be considered when it comes to creating heterogeneous
systems. Although heterogeneous systems perform better in
terms of power consumption and heat dissipation than
heterogeneous systems or single-core systems, it is still difficult
to stay within the low power and heat constraints needed from
small-sized embedded systems and IoT systems.

Heterogeneous systems achieve better power efficiency than
traditional systems because they allow a more specialized
system execution depending on what the application needs in

real-time. Instead of using the same cores with the same code,
different cores are used which specialize in specific
functionalities [1]. The most appropriate core is used depending
on what is needed. This results in very energy-efficient and
high-performance execution. [7].

Power and heat must be monitored and limited to not go
above the thermal design power (TDP) constraint. It is
important to not exceed the power budget or thermal limits of a
device to avoid hardware damage, inadequate performance, or
even full shutdown. [1]

A solution to limiting heat dissipation is thermal throttling.
This is the process of lowering a component’s clock
speed/frequency to meet thermal constraints [1]. However, this
has its downfalls, as implementing thermal throttling
significantly impacts co-execution performance. [1] A system
decides when to trigger thermal throttling depending on the
importance of maintaining a balance between performance and
temperature control [1]. However, based on its drawbacks, it is
better to limit thermal throttling as much as possible and instead
choose the best application execution method using
heterogeneity.

V. RESEARCH RESULTS

A. Solving Software Complexity

Software complexity is a daunting hurdle to overcome during
heterogeneous system design, but it is possible to do. Yang-
Hsin Fan, et al. proposed and tested a custom-made software
synthesis middleware to respond to the issues caused by
software complexity [6] This middleware’s functionality
included automatically generating system software. Some
benefits of adopting middleware on embedded systems include
that it adds convenience by adding a unified interface, adding
reconfigurability, adding scalability, and adding
transplantability [6]. The authors created and tested their
middleware schemes intending to demonstrate the feasibility of
their software synthesis middleware. They conducted their tests
using two systems. First, an e-book system (Figure 1a) that
allows reading from a graphical user interface. Second, a digital
photo frame (Figure 1b) that scrolls through pictures. Both
applications were implemented using a software synthesis
middleware, embedded Linux OS, 2.6.15 kernel, EXT3 file
system, and miniGUI. Software synthesis of the middleware
was used to automatically generate software for the systems.
Both studied systems were created and demonstrated correct
functionality which demonstrates using the proposed software
synthesis middleware was a success. With these results, it is
demonstrated that the software synthesis process can solve
issues concerning the high software complexity for
heterogeneous systems.

Figure 1. Heterogeneous embedded system platform [6]

B. Demonstrating Power Consumption, Heat Dissipation, and
Performance Improvement

Tulika Mitra tested heterogeneity’s effect on runtime,
speedup, and heat dissipation. Mitra used OPTIC which is a tool
used to select which processors are chosen to execute tasks
while minimizing thermal throttling and maximizing
performance. The results were positive, showing an
improvement in runtime, speedup, and heat dissipation.

First, the runtime and runtime improvements were measured
by running several computing tasks. The results are
demonstrated in Figure 2. The x-axis represents different
computing tasks or benchmarks. The left y-axis measures the
runtime for each computing task in seconds. The right y-axis
measures the runtime improvement in percentage. The blue bar
represents the runtime for the computing task when executed on
the CPU alone. The orange bar represents the runtime for the
computing task when executed on the GPU alone. The green
bar represents the combined runtime when both the CPU and
GPU are combined. The gray bar represents the improvement
in runtime achieved when using a combination of CPU and
GPU compared to running on either the CPU or GPU alone.

The average improvement for the runtimes was 19%. This
proves runtime is improved when using heterogeneous systems.
This is a positive sign because it shows that the heterogeneous
system increases runtime in the combination of both the CPU
and GPU. This demonstrates both processors are utilized more
when combined. This leads to the workload being distributed
more evenly between the two instead of focusing all the
workload on a single processor. This leads to better
performance, less heat dissipation, and decreases the chances of
a processor being damaged.

A result in the graph that can be confusing to understand at
first is why the GPU Runtime for CORRELATION and
COVARIANCE was much much higher than for other tasks.
This result is caused by what the tasks of CORRELATION and
COVARIANCE consist of. Both computing tasks involve
multiple high-level mathematical operations. These operations
can be parallized which is a task that GPUs do a great job in.
This is why the GPU runtime is much higher for these tasks
compared to the others. This further demonstrates that by using
a heterogeneous system, the correct processor is chosen for
execution when it is more beneficial. In this case, the GPU was
utilized to take advantage of its strengths in parallelization.
Similarly, within a heterogeneous system, the correct processor

can be used depending on when each of its strengths can be
utilized during runtime.

Figure 2. Comparing processor runtime when running different tasks [1]

Next, speedups between different heterogeneous

configurations and a single CPU configuration were compared.
This is shown in Figure 3. The first configuration is a
combination of a CPU and NEON, demonstrated by the orange
bar. The second configuration is a combination of a CPU and
an FPGA, demonstrated by the purple bar. The third
configuration is a combination of a CPU with a more complex
heterogeneous system, demonstrated by the blue bar. All three
configurations are compared to a CPU-only configuration. They
were tested when processing 6 datasets with different neural
network architectures. These different datasets are labeled in
the x-axis. The y-axis indicates how much faster each
configuration is compared to running the task on the CPU alone.

 The graph shows positive results for all the heterogeneous
configurations. Each heterogeneous configuration
demonstrated a speedup improvement compared to the CPU-
only configuration. The CPU+heterogeneous system
configuration showed the best speedup results. For this
configuration, the lowest speedup was 4.47, the highest speedup
was 9.44, and the average speedup was 7.54. This proves
heterogeneous systems are the best system configuration to
improve speedup performance. Performance was improved
regardless of how complex the heterogeneous system was.

Figure 3. Comparing speedup for different architecture configurations [1]

Lastly, the CPU and GPU utilization were measured when

being used inside the same heterogeneous system. As
demonstrated within the other tests, splitting utilization
improves performance and speedup. Paired together, Figure 4

and Figure 5, demonstrate how alternating processor utilization
affects heat dissipation for the alternating processors. Figure 4
demonstrates the utilization of the GPU and CPU as time passes
by and the application requires different processing types.
Figure 5 demonstrates the heat map of the heterogeneous
system as the processor utilization alternates. Figure 5a
demonstrates when the CPU is being mainly used. Figure 5b
demonstrates when the GPU is being utilized more. From
Figure 5, it is easily noticeable that alternating processor
utilization avoids putting most of the heat dissipation on a single
processor. This can help avoid hindering system performance
and help avoid system damage.

Figure 4. Comparing CPU and GPU utilization [1]

Figure 5a. Heat map of the heterogeneous system, mainly CPU utilization [1]

Figure 5b. Heat map of the heterogeneous system, CPU & GPU utilization [1]

VI. CONCLUSION

This study delved into the realm of heterogeneous systems,
focusing on their application in embedded systems and Internet
of Things (IoT) devices. Challenges posed by power constraints
and heat dissipation were discussed, demonstrating why
innovative solutions in the form of heterogeneous systems are
important to understand and effectively produce. Lessons
learned encompassed a deep understanding of embedded
systems, IoT, and the significance of heterogeneity. The study
unveiled the benefits of heterogeneity, especially in the context

of small computers like embedded systems but also
demonstrated that the same strategies can be implemented in
larger systems such as servers and neural network applications
[8].

The insights gained revealed the complexity involved in
implementing heterogeneity, both in terms of hardware
architecture and software programmability. A notable lesson
was the intricate relationship between different processing
units, requiring synchronization and collaboration. The
application of heterogeneity in embedded systems and IoT
showcased its potential to enhance efficiency and performance
in various sectors, including, but not limited to, automobiles,
mobile phones, industrial machines, and wearable smart
technology.

However, there are still open issues that must be addressed.
A large open issue is utilization predictability to correctly
predict the best execution method. Efficiently and rapidly
predicting execution time allows manufacturers to get the best
performance from heterogeneity. The rapid evolution of
technology, with new processors, CPUs, GPUs, and NPUs
emerging regularly, presents another ongoing challenge. It is
difficult to create a complex system before new technology is
released which then causes the produced heterogeneous system
to quickly lose value. Lastly, another open issue concerning
heterogeneous systems is the wide range of component
manufacturers that produce the components found inside
heterogeneous systems. With different manufacturers, come
different manufacturing habits and different architectural
methods. This can cause further issues in developing complex
systems as the system components may not be easily
compatible with one another.

In conclusion, while heterogeneous systems hold immense
potential, their successful implementation requires addressing
ongoing challenges, considering important production factors,
and using the best components depending on the use case.

REFERENCES
[1] Tulika Mitra, Vishnu Pendyala. Embedded Heterogeneous Computing: A

Software Perspective. (October 26, 2021). Accessed: Nov 19, 2023.
[Online Video]. Available: https://ieeetv.ieee.org/video/embedded-
heterogeneous-computing-SW-perspective.

[2] E. Worthman, “Trends and Opportunities in Embedded Processors and
Systems.” ElectronicDesign.com.
https://www.electronicdesign.com/technologies/embedded/whitepaper/2
1267561/texasinstruments-trends-and-opportunities-in-embedded-
processors-and-systems (accessed Nov. 25, 2023).

[3] C. Funnell, “The Rise of Heterogeneous Systems and the People
Problem.” eandt.org. https://eandt.theiet.org/2020/06/18/rise-
heterogeneous-devices-and-people-problem (accessed Nov. 25, 2023).

[4] B. Lutkevich, “embedded system.” techtarget.com.
https://www.techtarget.com/iotagenda/definition/embedded-system
(accessed Dec. 9, 2023).

[5] A. Gillis, “internet of things (IoT).” techtarget.com.
https://www.techtarget.com/iotagenda/definition/Internet-of-Things-IoT
(accessed Dec. 9, 2023).

[6] Y. -H. Fan, J. -O. Wu and S. -F. Wang, "Software synthesis of middleware
for heterogeneous embedded systems," 2012 2nd International
Conference on Consumer Electronics, Communications and Networks
(CECNet), Yichang, China, 2012, pp. 2084-2087, doi:
10.1109/CECNet.2012.6201427.
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6201427&is
number=6201368.

[7] A. Majumdar, S. Cadambi and S. T. Chakradhar, "An Energy-Efficient
Heterogeneous System for Embedded Learning and Classification," in
IEEE Embedded Systems Letters, vol. 3, no. 1, pp. 42- 45, March 2011,
doi: 10.1109/LES.2010.2100802.
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5672393&is
number=5735607.

[8] X. Lin, X. Zhou, R. Liu and X. Gao, "Compare with the Traditional
Heterogeneous Solution: Accelerate Neural Network Algorithm through
Heterogeneous Integrated CPU+NPU Chip on Server," 2023 IEEE 3rd
International Conference on Computer Communication and Artificial
Intelligence (CCAI), Taiyuan, China, 2023, pp. 45-49, doi:
10.1109/CCAI57533.2023.10201248.
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10201248&i
snumber=10201240.

[9] Wenheng Liu, W. J. Kostis and V. K. Prasanna, "Communication issues
in heterogeneous embedded systems," Proceedings of the 4th
International Workshop on Parallel and Distributed Real-Time Systems,
Honolulu, HI, USA, 1996, pp. 180-183, doi:
10.1109/WPDRTS.1996.557675.
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=557675&isn
umber=12101.

[10] S. Mostert, "Constructing a heterogeneous real-time system," Proceedings
of 11th IEEE Workshop on Real-Time Operating Systems and Software,
Seattle, WA, USA, 1994, pp. 34-38, doi: 10.1109/RTOSS.1994.292565.
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=292565&isn
umber=7232.

