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Energy Efficient Software Development 

By Tyler McDonald 

Abstract 

There has been a lot of discussion over the past few years on climate change, and what 
we can do to lessen our impact on the environment.  One of the largest concerns is that people 
are simply using too much energy.  Many researchers in the industry have been looking for ways 
to reduce energy consumption in the technology that we use daily.  Much of this research focuses 
on making hardware components more efficient.  However, systems can also benefit from 
making the software efficient as well.  In this paper, we will investigate several different methods 
that can be used for developing energy efficient software.  The methods are not necessarily 
limited to programming.  There are also ways to consider energy efficiency in the design phase 
of software development that will be investigated as well. 

1. Introduction

Energy consumption has a large impact on the environment that we live in.  Information 
and Communications Technology (ICT) systems are a large contributor to that.  In fact, ICT 
systems are responsible for the same amount of CO2 emissions as global air travel, which 
accounts for 2% of global CO2 emissions [4].  Energy consumption also has a large impact on 
the wallets of the people that have to pay for it.  Therefore, it makes sense to try to do as much as 
we can to lessen these environmental and fiscal costs.  This is not a new point being brought up 
now, as this has been a subject of research for decades.  The need for energy efficient technology 
is only increasing as time moves forward, as technology continues to rapidly expand.  For a good 
example of this expansion, consider the fact that over 15 years, the global number of existing 
web servers rose from 376 thousand to 395 million [4].  Considering that these numbers are ten 
years old, the number of existing web servers now is likely even larger. 

Although there has been heavy research on the subject of energy efficiency in the ICT 
field, most of this research focuses on making hardware components more efficient.  This is 
absolutely helpful, but in many systems, the behavior of hardware components is controlled by 
software.  Because of this, if the software is not efficient, then the hardware it controls is not 
being utilized fully, and the gains in efficiency for the hardware are effectively lost.  To see the 
best results, both software and hardware should be improved as much as possible, so that the 
entire system is efficient. 

For the purposes of this paper, three major sources on the topic of energy efficiency in 
software were investigated.  The sources each contain their own unique viewpoints on how the 
goal of creating energy efficient software can be accomplished.  Each of these sources will be 
summarized here. 
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2. Energy Efficient Programming 

 The first of the major sources to be summarized is simply titled ‘Energy Efficient 
Programming.’ It is a huge paper that covers a lot of ground, but it does not necessarily go in 
depth on any topic it brings up.  For this reason it is a good starting point, as it introduces the 
reader to many different topics for further research.  For the purposes of this paper, we will focus 
on what is relevant here, and leave the rest out. 

2.1. Introduction 

 Energy efficiency and computing performance have basically been growing at the same 
rate, effectively canceling out improvements on the efficiency side.  Since the amount of 
computers in the world has been doubling every three years on average since 2008, the need for 
efficiency becomes bigger and bigger.  As mentioned earlier, the energy consumption of ICT 
systems impacts our environment.  The heat generated by the systems causes a demand for better 
thermal management, which impacts costs as well.  The current annual power and cooling costs 
of servers represent about 60% of a servers acquisition cost [1]. 

2.2. Foundations 

 One of the main motivations for anything in this world is money.  This is, of course, a 
factor in this research as well.  In 2007, ICT systems were responsible for 2% of the global 
power consumption, which is equivalent to the annual power production of eight nuclear plants 
[1].  Ten years later, this number has likely grown, and it will continue to grow for the 
foreseeable future.  Obviously, with that much power consumption, the cost is going to be 
enormous.  Thirty percent of a data center’s expenses are related to energy [1].  As power 
consumption increases, so too does the complexity of the design for power sources, which of 
course will also raise costs. 

 There are also environmental aspects to be considered as well.  The author goes into 
detail on many of the different effects that global warming can have on the environment, but as 
this is not the subject of our research, this will be excluded here.  That is not to say that they 
aren’t important, but there are much better sources for the effects of global warming than a paper 
on software efficiency. 

2.3. Measuring Energy Efficiency 

 In order to talk about energy efficiency, it is important to strictly define what that actually 
means in concrete terms.  As software systems are extremely diverse, there is currently no 
standard way to define efficiency for software.  Typically, efficiency is defined as the useful 
work done divided by the effort required.  However, as stated, software’s diversity makes it 
difficult to set a standard for what work done even means.  For example, how would one measure 
the work done by a text editor, and compare that to the work done by a web browser?  This 
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makes it clear that we will need different methods for different types of software, as there is no 
‘one size fits all’ here. 

 As seen in Figure 1, the author has provided a breakdown of some of the important 
methods for measuring energy efficiency in software.  We will discuss each of them here. 

2.3.1. Black Box Measurement 

 Black box measurement effectively treats the entire software system as one thing, 
ignoring all of the components that actually make up the system.  With this measurement 
method, we are only interested in the software as a whole, which means that should any 
problems be found, we will need a more sophisticated method to find where they are occurring 
within the system. 

 One of the methods falling under this category is known as benchmarking.  This involves 
simply running the software against a standard set of tests.  While the tests are running, energy 
consumption is measured.  There are several different benchmarks that can be used for 
measuring energy efficiency, such as EnergyBench. 

 The other method falling under this category is individual measurement.  This process 
involves coming up with several specific use cases, and measuring the performance of different 
configurations or types of software by running through the scenarios.  These performance 
measurements can then be compared. 

2.3.2. White Box Measurement 

 Unlike black box measurement, the white box methods look at software for what it really 
is: a complex system of different modules interacting together.  These methods allow you to 
pinpoint where deficiencies in energy efficiency lie.  However, they require a greater 
understanding of the system being measured, as the tester must interact with the code itself. 
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 The white box method mentioned by the author is called source code instrumentation.  
This involves inserting instructions into the code itself meant to monitor different aspects of the 
system.  It is much more difficult to implement than the black box methods, and because of this, 
there are not many examples that can be given. 

2.4. Energy Efficient Programming Methodologies and Common Problems 

 This section is basically the meat of the paper, and discusses a lot of different methods to 
assist in developing energy efficient software.  The methods are broken up into three categories: 
application software, system software, and general. 

2.4.1. Application Software Efficiency 

 In this section the author lays out many different methods for improving the efficiency of 
application software. Application software is the software that is designed for end users.  
Examples include web browsers, text editors, etc.  These methods should be kept in mind when 
developing such software. 

2.4.1.1. Computational Efficiency 

 These methods are pretty general, and can be applied to most software development.  
Basically the goal here is to get the task at hand done as quickly as possible in order to get the 
computer back to an idle state.  The computer consumes the most energy when it is actually 
working, so the quicker we can get back to idle, the better. 

 The first method brought up is using the best, most efficient algorithms for the task at 
hand.  There are always multiple ways to go about solving a problem, and obviously some ways 
are faster than others.  We want to pick the fastest method available.  For example, there are 
many different sorting algorithms available for use in different situations.  In an experiment 
conducted, 200,000 double values were sorted using two popular sorting algorithms known as 
bubble sort and heap sort.  In order to complete the same task, bubble sort consumed 10,800 
Joules, while heap sort only consumed 7,325 Joules [1].  This demonstrates that you should 
always analyze the running times of the available algorithms and determine which one fits your 
needs best.  This idea also applies to the data structures you choose.  For example, if the most 
frequent operations you are doing with stored data are insertion and deletion, you would want to 
stay away from a tree, as those operations increase in running time depending on the size of the 
tree. 

 Another way to increase the energy efficiency of a program is to be careful with loops.  
Loops can cause a lot of overhead, since on each iteration of a loop a comparison must be made 
to determine if it is time to halt the loop and move on.  There are also often counters involved 
with this process, which means we have the added operation of adding or subtracting from this 
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counter.  In some situations it can be beneficial to get rid of the loop entirely, and simply repeat 
the instructions that would have been executed individually to get rid of this overhead.  Although 
this may look ugly, it can help. 

 A third method for reducing energy consumption is to utilize multi-threaded approaches 
where you can.  For a task that does not require all of its steps to be done in sequence, many 
times parts of the task can be split and done simultaneously.  Although this can be difficult to 
manage, it obviously has the benefit of getting the work done faster, which meets the goal of 
increasing idle time.  Figure 2 shows the benefits of this approach.  As you can see, increasing 
the number of threads causes an increase in the power consumption at the start, but since the task 
is completed much quicker, the power drops off to idle much faster. 

 Another consideration to make is whether or not there is already an existing library that 
can handle your task.  Many software developers prefer to write their own code for everything, 
but often enough, there is already an excellent solution that has been proven to be energy 
efficient, saving you the effort. 
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 Finally, choosing the right programming language for your task can make a huge 
difference as well.  All languages handle things differently, meaning that energy consumption 
can vary drastically depending on which language a system is implemented in.  This may require 
expert knowledge of the ins and outs of different languages, but it has been shown to have a 
dramatic effect on energy consumption.  Figure 3 shows the results of an experiment running the 
same recursive algorithm in different languages.  It is clear that in this case, the best language is 
C++, but this could simply be owed to how C++ handles function calls.  In other cases, there will 
obviously be different results. 

2.4.1.2. Data Efficiency 

 This section deals with methods to improve the efficiency of data movement.  The basic 
idea here is to complete a task with as few memory accesses as possible, and moving data over 
as short a distance as possible. 

 The closer data is stored to the processor, the less energy is consumed when accessing 
that data.  This basically means that you should try to store data as close to the processor as 
possible.  This can be accomplished by utilizing caching methods.  With the same energy to 
access external RAM once, the computer can execute 7 instructions or access cache 40 times or 
access Tightly Coupled Memory (TCM) around 170 times [1].  There is plenty of very detailed 
research on caching available if the reader wishes to go further into this topic. 

2.4.2. Operating Systems 

 This section focuses on methods to keep in mind when designing system level software, 
or operating systems.  For the purposes of this paper we will not go into depth on this section, as 
most developers will never touch an operating system themselves.  However, it is important to 
keep your target environment in mind when developing software.  For example, it may be more 
efficient to run a web server on a Linux machine rather than a Windows machine.  The developer 
should investigate the power consumption of their software in all available environments before 
deciding the best alternative. 

2.4.3. General Problems and Solution Proposals 

 One of the most basic problems facing a software developer concerned with energy 
efficiency is the lack of focus on this problem.  Most current software development models do 
not place any emphasis on energy consumption.  It is not enough to focus on energy efficiency 
only in the implementation phase of development.  The entire system should be designed with 
energy in mind.  In other words, energy efficiency should be a must have non-functional 
requirement. 
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 There is currently a model that can be referred to for energy efficient development, 
known as the GREENSOFT model.  The GREENSOFT Model is a conceptual reference model 
for green and sustainable software that includes a product life cycle model for software products, 
sustainability metrics and criteria for software, software engineering extensions for sustainably 
sound software design and development, as well as appropriate guidance [1].  Unfortunately, 
most of the reference material for information on this model is locked behind a paywall. 

2.5. Tools and Technologies 

 The author presents many different existing tools that can be used to help develop energy 
efficient software.  Examples include PowerEscape, which is a tool with many different 
functions for increasing the data efficiency of your software.  Another tool is called the Intel Web 
APIs, which can provide you with information about the platform that is executing your web 
service, allowing you to modify your approach appropriately.  A third example is PowerInformer, 
which provides basic power statistics.  Of course there are many other tools available, and the 
author cannot provide an exhaustive list. 

3. Extending Software Architecture Views with an Energy Consumption Perspective 

 This paper proposes a perspective on software architecture where the architect tries to 
structure the software in the design phase of software development so that it will consume less 
energy.  It is much more in depth than the previous source, and includes a case study. 

3.1. Introduction 

 There has been too much focus on the hardware aspects of energy efficiency in research.  
While this is helpful, software also plays an important role.  While energy is directly consumed 
by hardware, the operations are directed by software and can eliminate any sustainable features 
built into the hardware [2].  The author states that this makes software the ‘true consumer of 
power.’  A decrease in energy consumption of 0.25 watts for a software product that has four 
million installations saves the energy equivalent of the monthly power consumption for an 
American household [2]. 

 As mentioned before, looking at energy consumption only in the implementation phase of 
software development is not enough.  Energy should be considered at all phases of software 
development.  Also, treating software as a single object, or black box, is not enough.  All of the 
components of the software must be investigated.  For these reasons, the architecture of software 
must be considered.  Using an architecture description of software together with energy 
measurements can help direct efforts to reduce energy consumption in software. 

3.2. Related Work 
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 Here the author discusses the problem with energy consumption measurements.  
Although there are existing ways to measure the energy consumption of software, these methods 
require that a specialized environment be set up with extra equipment.  Many are not willing to 
invest in that.  It is also difficult or impossible to expand them to more complex environments 
such as data centers, or software that is distributed across multiple servers.  Other methods 
investigating the code itself are also difficult to implement, as they require expert knowledge on 
the subject under study.  So, if we could design software to be efficient from the start, these 
methods would not be required. 

3.3. Sustainability as a Quality Attribute 

 Here the author sets out to define some concrete properties that can be considered when 
looking at software architecture.  As seen in Figure 4, the main focus here is resource 
consumption.  The author defines three quality properties as children of resource consumption.  
These properties are software utilization, workload energy, and energy usage.  Software 
utilization is defined as the degree to which resources specifically utilized on the account of a 
software product meet requirements.  Energy usage is the degree to which the amount of energy 
used by a software product meets requirements.  Finally, energy usage is the degree to which the 
energy consumption related to performing a specific task using a software product meets 
requirements.  There are many children for each of these properties, as can be seen in Figure 5.  
They each have their own formula associated with them. 

 Of course there will be trade offs between different priorities if energy consumption is 
added as a consideration.  For example, you may want to implement some logging for security 
purposes.  However, the extra task of logging will negatively impact the energy consumption.  
Now, since these attributes and properties are made concrete with measurements, a proper trade 
off analysis can be made, instead of just guessing. 

3.4. Energy Consumption Perspective on Software Architecture 

 An architectural perspective is a collection of activities, tactics, and guidelines that are 
used to ensure that a system exhibits a particular set of related quality properties that require 
consideration across a number of the systems architectural views [2].  Here the author proposes 
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an architectural perspective for energy consumption.  Perspectives are meant to help assist an 
architect with their tasks. 

 This perspective includes this set of key questions that should be asked when considering 
the architecture of the software: 
• How can the software product architecture assist in achieving an organization’s sustainability 

strategy? 
• How can run-time aspects be fine-tuned to reduce EC? 
• How can we measure the EC of the different nodes the software is executed on? 
• Which processes run on what hardware? 
• How do the functional elements map onto processes? 
• What processes can be executed concurrently without increasing the resource consumption 

related to their coordination and control? 
• How much energy does each function consume? 
• How can the information flow be optimized to increase EE? 
• What green algorithms can be applied to the software and where should they be applied? 
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 Also included is a set of activities that should be done in order to apply the perspective in 
practice.  These activities can be seen in Figure 6.  The first step is to form the energy 
requirements for your product.  Then you must create an energy profile for the product, which 
involves measuring the energy consumption.  The next step is to assess the current energy profile 
against the requirements you made.  If there are adjustments to be made, they should be found 
and applied.  Once the adjustments are complete, you should determine whether or not the 
adjustments were successful.  This process can include a loop if the changes were not successful. 

 The author also supplies a set of tactics that can be used to address any energy concerns 
for the product.  These tactics are increasing modularity, optimizing network load, increasing 
hardware utilization, and concurrency architecture variation.  They are fairly self explanatory, but 
a few can be explained with an example.  For increasing modularity, think of a database.  Having 
more modules can mean more calls to this database, which means that we are getting less data 
per call, and the calls are more fitted to the process at hand.  This means that less CPU capacity 
has to be used for processing the calls, as they are smaller.  In the case of network load 
optimization, however, you would want to do the opposite.  By creating more database calls, you 
have increased the network load, as you are using the network more.  This demonstrates the 
concept of trade offs. 

3.5. Case Study: Applying the Perspective in Practice 

 For the case study that was performed, the author looked at Document Generator, a tool 
that is used to generate about 30 million documents per year.  The author went through the 
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process described in Figure 6 with the goal of reducing energy consumption.  When an energy 
hotspot was found, they used the tactic of increasing hardware utilization.  It was discovered that 
this hotspot was not multithreaded, and it was possible to do so.  Figure 7 shows the results of 
this adjustment.  As can be seen, CPU activity was reduced drastically.  Applying this adjustment 
reduced the task energy consumption of generating the documents by 67.1%. 

4. ESUML-EAF 

 This paper proposes a framework developed by the authors that can be used to create 
energy efficient design models for software.  The framework is called Embedded Software 
modeling with UML 2.x - Energy Analysis Framework.  The reason for this name will become 
clear at a later point.  Again, this method is intended to be used in the design phase of software.  
It is also currently only intended for use in embedded software.  The advantage of using a 
framework such as this is that it allows developers to fulfill the energy consumption 
requirements in the early phases of software design rather than later.  This reduces the feedback 
that would have been caused had the requirements not been met later.  Feedback is essentially the 
need to redo insufficient work from a previous phase.  

4.1. Introduction 

 The field of embedded software is growing, and as such, the requirement for low energy 
is growing as well.  Most existing studies in this area have focused on the hardware, but software 
has an impact too.  The complexity and size of embedded software affects the energy 
consumption of the system that the software is embedded in.  Fortunately, there has been some 
research on the software side as well. 

 The first energy consumption analysis technique was proposed in 1994.  The basic idea is 
to break down the source code into low level instructions, measure the consumption of each of 
these instructions individually, and sum them.  This led to new techniques being studied, and not 
all of them are instruction level.  There are also source code based techniques, and even model 
based techniques.  The issue with instruction and source code based techniques, however, is that 
although they are accurate, they require a lot of time to analyze.  They also require even more 
time to go back and redo unsatisfactory results, because at this point the code is already written.  
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In contrast, model based techniques trade a small amount of accuracy for small analysis time.  
This is because the model is much more abstract than the source code itself.  Another advantage 
is that the feedback for unsatisfactory results is cut down significantly, as there is no code to 
rewrite yet, just a model to adjust.  Figure 8 shows the analysis and feedback time for the 
software analysis methods discussed, and Figure 9 shows there the analysis occurs in the 
software development cycle. 

 One of the drawbacks for model based methods is that they typically require an extra 
model for analysis.  This requires extra work, and can deter people from trying the technique.  
The authors of this paper propose a framework that does not require any extra modeling to be 
done.  This is because the framework is build to use models from UML, which should already 
exist if the developers followed a typical model-driven design process.  The framework simply 
inspects the elements from the existing UML models, retrieves the energy consumption from the 
energy library also developed by the authors, and calculates energy consumption.  This technique 
is intended to allow the developers to choose the model with the best energy efficiency from 
several alternatives. 

4.2. Related Work 

 As mentioned before, there has been research on energy analysis techniques for software.  
These studies can be seen in Figure 10, grouped by the level of abstraction that they are based 
on.  Instruction level techniques utilize an energy model that is constructed from actual 
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measurement of energy consumption.  This is acquired by actually executing or simulating each 
instruction, and can take days.  Source code level techniques utilize higher level languages, such 
as C, to profile the code.  This makes it faster than instruction level techniques, but it still takes a 
lot of time.  This led researchers to search for a faster way to analyze energy consumption, and 
they came up with the model based techniques. 

4.3. Framework Architecture 

 This section discusses the architecture of the framework that was developed.  The 
overview can be seen in Figure 11.  The major components are the ESUML modeler, CFG 
generator, ESUML energy library, energy realizer, and result viewer. 

 The ESUML modeler supports modeling using UML 2.0. The models it uses are the use 
case diagram, the class diagram, the interaction overview diagram, and the sequence diagram.  
The modeler also uses action language to describe the detailed behavior of execution 
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occurrences.  The goal of the modeler is to represent the functional behavior of embedded 
software. 

 The Control Flow Graph (CFG) generator takes the UML models from the modeler as 
input.  It basically transforms the models into a connected graph that represents the behavior of 
the software.  It integrates all the models into one graph, and reveals synchronous action, 
asynchronous action, parallel action, branch action, and fork and join action. 

 The ESUML energy library is basically the core component of the framework.  It 
contains all of the data required to analyze energy consumption.  This data is organized by 
Energy Behavioral Units (EBUs).  These will be explained in more detail later. 

 The energy realizer is essentially the component that does the actual calculations, taking 
the energy model and the control flow graph as input.  It traverses the graph given, and calculates 
energy consumption values using the energy model. 

 The result viewer is simply a tool that can be used to view the results of this analysis.  
These results can be displayed as a total, by diagram, by EBU, or by class.  The intent is to allow 
the user to determine where remodeling is needed. 

4.4. The Energy Library 

 The energy library created for this framework is an improvement on some of the earlier 
work from the authors.  One of the advantages for this energy library is that it is indexed by a 
more abstract element than most other energy libraries.  Most use the instruction unit, whereas 
here EBUs are used.  Each EBU is decomposed into a set of virtual instructions.  Another 
advantage is that this library does not need to be changed if the software model is changed.  The 
overall structure for the energy library can be seen in Figure 12. 
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 The first step used in building the energy library is EBU identification.  This involves 
identifying the energy consuming elements that can be produced by the modeler.  The elements 
come from the sequence diagrams, interaction overview diagrams, and action language.  These 
elements are classified by type.  The possible classifications are abstract, control structure, 
behavior execution, non-behavior, and action language.  Of these types, abstract and non-
behavior elements are discarded, as they have no influence on program execution. 

 The next step is to define the virtual instructions that can be used for each EBU.  There 
are two different types of virtual instructions: virtual primitive instructions and virtual system 
functions.  These virtual instructions are kept general in order to reduce dependency on 
hardware.  The virtual instructions must then be measured to obtain energy values.  This is done 

using a simulator.  For each virtual instruction, the implementation code is simulated over 200 
iterations for each operand type and parameter size.  The energy consumption values for these 
simulations are then stored in the energy library.  This process can be seen in Figure 13. 

 The final step is to map each EBU to the set of virtual instructions that it is represented 
by.  This completes the mapping of EBUs to energy values, and the energy information for each 
EBU can be retrieved.  The authors developed a simple tool with a GUI that can be used to 
manage this data. 

4.5 Experiment 

 To test this framework, the authors looked at five algorithms that are regularly used in 
embedded systems.  The algorithms are the shortest path selection algorithm for road navigation, 
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an encryption algorithm using AES, and image encoding algorithm utilizing Huffman codes, the 
algorithm for data retrieval found in cell phones, and the image conversion algorithm found in 
digital cameras.  These algorithms were each modeled using this framework.  They were also 
each implemented by the authors as well, so that source code analysis time could be compared to 
model based.  The results of this experiment are shown in Figures 14 and 15.  As shown, the 
model based technique performs faster for every algorithm.  Since we are only analyzing small 
algorithms rather than entire projects, the analysis time for source code is still relatively small, 
but the numbers for source code analysis would increase a lot faster than the numbers for model 
analysis.  It is also shown that the elapsed time for model based analysis remains relatively 
stable.  Figure 14 also shows that the deviation in energy consumption estimation between 
source code and model based techniques never exceeds ten percent.  This means that the impact 
to accuracy is present, but negligible.  Clearly this framework is an efficient way to choose the 
best possible design model for your product. 
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Figure 15: a) Comparison of analysis times 
b) Elapsed time by data size for M3



EE 790 | Fall 2017

5. Conclusion 

 From these studies, we can safely conclude that software optimization is an excellent way 
to save energy.  That is not to say that hardware should be ignored.  Both software and hardware 
should be optimized for the best results.  It is also apparent that although there are plenty of ways 
to reduce energy consumption by modifying the code, there also ways to improve your software 
before any code has even been written.  All of the techniques presented in this paper can be used 
in conjunction with each other for excellent efficiency boosts overall.  Although there has been 
some research on software optimization, it is still not a large focus in the industry.  Work must be 
done to make industry leaders more aware of the possible environmental and fiscal benefits that 
can be received when technology is optimized correctly.  Ideally this will lead to standard 
practices in the industry that are used by all developers. 
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