
EE 790 | Fall 2017 | DRZ

Energy Efficient Software Development

By Tyler McDonald

Abstract

There has been a lot of discussion over the past few years on climate change, and what
we can do to lessen our impact on the environment. One of the largest concerns is that people
are simply using too much energy. Many researchers in the industry have been looking for ways
to reduce energy consumption in the technology that we use daily. Much of this research focuses
on making hardware components more efficient. However, systems can also benefit from
making the software efficient as well. In this paper, we will investigate several different methods
that can be used for developing energy efficient software. The methods are not necessarily
limited to programming. There are also ways to consider energy efficiency in the design phase
of software development that will be investigated as well.

1. Introduction

Energy consumption has a large impact on the environment that we live in. Information
and Communications Technology (ICT) systems are a large contributor to that. In fact, ICT
systems are responsible for the same amount of CO2 emissions as global air travel, which
accounts for 2% of global CO2 emissions [4]. Energy consumption also has a large impact on
the wallets of the people that have to pay for it. Therefore, it makes sense to try to do as much as
we can to lessen these environmental and fiscal costs. This is not a new point being brought up
now, as this has been a subject of research for decades. The need for energy efficient technology
is only increasing as time moves forward, as technology continues to rapidly expand. For a good
example of this expansion, consider the fact that over 15 years, the global number of existing
web servers rose from 376 thousand to 395 million [4]. Considering that these numbers are ten
years old, the number of existing web servers now is likely even larger.

Although there has been heavy research on the subject of energy efficiency in the ICT
field, most of this research focuses on making hardware components more efficient. This is
absolutely helpful, but in many systems, the behavior of hardware components is controlled by
software. Because of this, if the software is not efficient, then the hardware it controls is not
being utilized fully, and the gains in efficiency for the hardware are effectively lost. To see the
best results, both software and hardware should be improved as much as possible, so that the
entire system is efficient.

For the purposes of this paper, three major sources on the topic of energy efficiency in
software were investigated. The sources each contain their own unique viewpoints on how the
goal of creating energy efficient software can be accomplished. Each of these sources will be
summarized here.

Page ! of !1 17

EE 790 | Fall 2017

2. Energy Efficient Programming

 The first of the major sources to be summarized is simply titled ‘Energy Efficient
Programming.’ It is a huge paper that covers a lot of ground, but it does not necessarily go in
depth on any topic it brings up. For this reason it is a good starting point, as it introduces the
reader to many different topics for further research. For the purposes of this paper, we will focus
on what is relevant here, and leave the rest out.

2.1. Introduction

 Energy efficiency and computing performance have basically been growing at the same
rate, effectively canceling out improvements on the efficiency side. Since the amount of
computers in the world has been doubling every three years on average since 2008, the need for
efficiency becomes bigger and bigger. As mentioned earlier, the energy consumption of ICT
systems impacts our environment. The heat generated by the systems causes a demand for better
thermal management, which impacts costs as well. The current annual power and cooling costs
of servers represent about 60% of a servers acquisition cost [1].

2.2. Foundations

 One of the main motivations for anything in this world is money. This is, of course, a
factor in this research as well. In 2007, ICT systems were responsible for 2% of the global
power consumption, which is equivalent to the annual power production of eight nuclear plants
[1]. Ten years later, this number has likely grown, and it will continue to grow for the
foreseeable future. Obviously, with that much power consumption, the cost is going to be
enormous. Thirty percent of a data center’s expenses are related to energy [1]. As power
consumption increases, so too does the complexity of the design for power sources, which of
course will also raise costs.

 There are also environmental aspects to be considered as well. The author goes into
detail on many of the different effects that global warming can have on the environment, but as
this is not the subject of our research, this will be excluded here. That is not to say that they
aren’t important, but there are much better sources for the effects of global warming than a paper
on software efficiency.

2.3. Measuring Energy Efficiency

 In order to talk about energy efficiency, it is important to strictly define what that actually
means in concrete terms. As software systems are extremely diverse, there is currently no
standard way to define efficiency for software. Typically, efficiency is defined as the useful
work done divided by the effort required. However, as stated, software’s diversity makes it
difficult to set a standard for what work done even means. For example, how would one measure
the work done by a text editor, and compare that to the work done by a web browser? This

Page ! of !2 17

EE 790 | Fall 2017

makes it clear that we will need different methods for different types of software, as there is no
‘one size fits all’ here.

 As seen in Figure 1, the author has provided a breakdown of some of the important
methods for measuring energy efficiency in software. We will discuss each of them here.

2.3.1. Black Box Measurement

 Black box measurement effectively treats the entire software system as one thing,
ignoring all of the components that actually make up the system. With this measurement
method, we are only interested in the software as a whole, which means that should any
problems be found, we will need a more sophisticated method to find where they are occurring
within the system.

 One of the methods falling under this category is known as benchmarking. This involves
simply running the software against a standard set of tests. While the tests are running, energy
consumption is measured. There are several different benchmarks that can be used for
measuring energy efficiency, such as EnergyBench.

 The other method falling under this category is individual measurement. This process
involves coming up with several specific use cases, and measuring the performance of different
configurations or types of software by running through the scenarios. These performance
measurements can then be compared.

2.3.2. White Box Measurement

 Unlike black box measurement, the white box methods look at software for what it really
is: a complex system of different modules interacting together. These methods allow you to
pinpoint where deficiencies in energy efficiency lie. However, they require a greater
understanding of the system being measured, as the tester must interact with the code itself.

Page ! of !3 17

Figure 1: Methods for measuring energy efficiency

EE 790 | Fall 2017

 The white box method mentioned by the author is called source code instrumentation.
This involves inserting instructions into the code itself meant to monitor different aspects of the
system. It is much more difficult to implement than the black box methods, and because of this,
there are not many examples that can be given.

2.4. Energy Efficient Programming Methodologies and Common Problems

 This section is basically the meat of the paper, and discusses a lot of different methods to
assist in developing energy efficient software. The methods are broken up into three categories:
application software, system software, and general.

2.4.1. Application Software Efficiency

 In this section the author lays out many different methods for improving the efficiency of
application software. Application software is the software that is designed for end users.
Examples include web browsers, text editors, etc. These methods should be kept in mind when
developing such software.

2.4.1.1. Computational Efficiency

 These methods are pretty general, and can be applied to most software development.
Basically the goal here is to get the task at hand done as quickly as possible in order to get the
computer back to an idle state. The computer consumes the most energy when it is actually
working, so the quicker we can get back to idle, the better.

 The first method brought up is using the best, most efficient algorithms for the task at
hand. There are always multiple ways to go about solving a problem, and obviously some ways
are faster than others. We want to pick the fastest method available. For example, there are
many different sorting algorithms available for use in different situations. In an experiment
conducted, 200,000 double values were sorted using two popular sorting algorithms known as
bubble sort and heap sort. In order to complete the same task, bubble sort consumed 10,800
Joules, while heap sort only consumed 7,325 Joules [1]. This demonstrates that you should
always analyze the running times of the available algorithms and determine which one fits your
needs best. This idea also applies to the data structures you choose. For example, if the most
frequent operations you are doing with stored data are insertion and deletion, you would want to
stay away from a tree, as those operations increase in running time depending on the size of the
tree.

 Another way to increase the energy efficiency of a program is to be careful with loops.
Loops can cause a lot of overhead, since on each iteration of a loop a comparison must be made
to determine if it is time to halt the loop and move on. There are also often counters involved
with this process, which means we have the added operation of adding or subtracting from this

Page ! of !4 17

EE 790 | Fall 2017

counter. In some situations it can be beneficial to get rid of the loop entirely, and simply repeat
the instructions that would have been executed individually to get rid of this overhead. Although
this may look ugly, it can help.

 A third method for reducing energy consumption is to utilize multi-threaded approaches
where you can. For a task that does not require all of its steps to be done in sequence, many
times parts of the task can be split and done simultaneously. Although this can be difficult to
manage, it obviously has the benefit of getting the work done faster, which meets the goal of
increasing idle time. Figure 2 shows the benefits of this approach. As you can see, increasing
the number of threads causes an increase in the power consumption at the start, but since the task
is completed much quicker, the power drops off to idle much faster.

 Another consideration to make is whether or not there is already an existing library that
can handle your task. Many software developers prefer to write their own code for everything,
but often enough, there is already an excellent solution that has been proven to be energy
efficient, saving you the effort.

Page ! of !5 17

Figure 2: Impact of multithreading on energy consumption

Figure 3: Energy consumption for different languages

EE 790 | Fall 2017

 Finally, choosing the right programming language for your task can make a huge
difference as well. All languages handle things differently, meaning that energy consumption
can vary drastically depending on which language a system is implemented in. This may require
expert knowledge of the ins and outs of different languages, but it has been shown to have a
dramatic effect on energy consumption. Figure 3 shows the results of an experiment running the
same recursive algorithm in different languages. It is clear that in this case, the best language is
C++, but this could simply be owed to how C++ handles function calls. In other cases, there will
obviously be different results.

2.4.1.2. Data Efficiency

 This section deals with methods to improve the efficiency of data movement. The basic
idea here is to complete a task with as few memory accesses as possible, and moving data over
as short a distance as possible.

 The closer data is stored to the processor, the less energy is consumed when accessing
that data. This basically means that you should try to store data as close to the processor as
possible. This can be accomplished by utilizing caching methods. With the same energy to
access external RAM once, the computer can execute 7 instructions or access cache 40 times or
access Tightly Coupled Memory (TCM) around 170 times [1]. There is plenty of very detailed
research on caching available if the reader wishes to go further into this topic.

2.4.2. Operating Systems

 This section focuses on methods to keep in mind when designing system level software,
or operating systems. For the purposes of this paper we will not go into depth on this section, as
most developers will never touch an operating system themselves. However, it is important to
keep your target environment in mind when developing software. For example, it may be more
efficient to run a web server on a Linux machine rather than a Windows machine. The developer
should investigate the power consumption of their software in all available environments before
deciding the best alternative.

2.4.3. General Problems and Solution Proposals

 One of the most basic problems facing a software developer concerned with energy
efficiency is the lack of focus on this problem. Most current software development models do
not place any emphasis on energy consumption. It is not enough to focus on energy efficiency
only in the implementation phase of development. The entire system should be designed with
energy in mind. In other words, energy efficiency should be a must have non-functional
requirement.

Page ! of !6 17

EE 790 | Fall 2017

 There is currently a model that can be referred to for energy efficient development,
known as the GREENSOFT model. The GREENSOFT Model is a conceptual reference model
for green and sustainable software that includes a product life cycle model for software products,
sustainability metrics and criteria for software, software engineering extensions for sustainably
sound software design and development, as well as appropriate guidance [1]. Unfortunately,
most of the reference material for information on this model is locked behind a paywall.

2.5. Tools and Technologies

 The author presents many different existing tools that can be used to help develop energy
efficient software. Examples include PowerEscape, which is a tool with many different
functions for increasing the data efficiency of your software. Another tool is called the Intel Web
APIs, which can provide you with information about the platform that is executing your web
service, allowing you to modify your approach appropriately. A third example is PowerInformer,
which provides basic power statistics. Of course there are many other tools available, and the
author cannot provide an exhaustive list.

3. Extending Software Architecture Views with an Energy Consumption Perspective

 This paper proposes a perspective on software architecture where the architect tries to
structure the software in the design phase of software development so that it will consume less
energy. It is much more in depth than the previous source, and includes a case study.

3.1. Introduction

 There has been too much focus on the hardware aspects of energy efficiency in research.
While this is helpful, software also plays an important role. While energy is directly consumed
by hardware, the operations are directed by software and can eliminate any sustainable features
built into the hardware [2]. The author states that this makes software the ‘true consumer of
power.’ A decrease in energy consumption of 0.25 watts for a software product that has four
million installations saves the energy equivalent of the monthly power consumption for an
American household [2].

 As mentioned before, looking at energy consumption only in the implementation phase of
software development is not enough. Energy should be considered at all phases of software
development. Also, treating software as a single object, or black box, is not enough. All of the
components of the software must be investigated. For these reasons, the architecture of software
must be considered. Using an architecture description of software together with energy
measurements can help direct efforts to reduce energy consumption in software.

3.2. Related Work

Page ! of !7 17

EE 790 | Fall 2017

 Here the author discusses the problem with energy consumption measurements.
Although there are existing ways to measure the energy consumption of software, these methods
require that a specialized environment be set up with extra equipment. Many are not willing to
invest in that. It is also difficult or impossible to expand them to more complex environments
such as data centers, or software that is distributed across multiple servers. Other methods
investigating the code itself are also difficult to implement, as they require expert knowledge on
the subject under study. So, if we could design software to be efficient from the start, these
methods would not be required.

3.3. Sustainability as a Quality Attribute

 Here the author sets out to define some concrete properties that can be considered when
looking at software architecture. As seen in Figure 4, the main focus here is resource
consumption. The author defines three quality properties as children of resource consumption.
These properties are software utilization, workload energy, and energy usage. Software
utilization is defined as the degree to which resources specifically utilized on the account of a
software product meet requirements. Energy usage is the degree to which the amount of energy
used by a software product meets requirements. Finally, energy usage is the degree to which the
energy consumption related to performing a specific task using a software product meets
requirements. There are many children for each of these properties, as can be seen in Figure 5.
They each have their own formula associated with them.

 Of course there will be trade offs between different priorities if energy consumption is
added as a consideration. For example, you may want to implement some logging for security
purposes. However, the extra task of logging will negatively impact the energy consumption.
Now, since these attributes and properties are made concrete with measurements, a proper trade
off analysis can be made, instead of just guessing.

3.4. Energy Consumption Perspective on Software Architecture

 An architectural perspective is a collection of activities, tactics, and guidelines that are
used to ensure that a system exhibits a particular set of related quality properties that require
consideration across a number of the systems architectural views [2]. Here the author proposes

Page ! of !8 17

Figure 4: Breakdown of the sustainability characteristic

EE 790 | Fall 2017

an architectural perspective for energy consumption. Perspectives are meant to help assist an
architect with their tasks.

 This perspective includes this set of key questions that should be asked when considering
the architecture of the software:
• How can the software product architecture assist in achieving an organization’s sustainability

strategy?
• How can run-time aspects be fine-tuned to reduce EC?
• How can we measure the EC of the different nodes the software is executed on?
• Which processes run on what hardware?
• How do the functional elements map onto processes?
• What processes can be executed concurrently without increasing the resource consumption

related to their coordination and control?
• How much energy does each function consume?
• How can the information flow be optimized to increase EE?
• What green algorithms can be applied to the software and where should they be applied?

Page ! of !9 17

Figure 5: Quality properties and measurements for resource consumption

EE 790 | Fall 2017

 Also included is a set of activities that should be done in order to apply the perspective in
practice. These activities can be seen in Figure 6. The first step is to form the energy
requirements for your product. Then you must create an energy profile for the product, which
involves measuring the energy consumption. The next step is to assess the current energy profile
against the requirements you made. If there are adjustments to be made, they should be found
and applied. Once the adjustments are complete, you should determine whether or not the
adjustments were successful. This process can include a loop if the changes were not successful.

 The author also supplies a set of tactics that can be used to address any energy concerns
for the product. These tactics are increasing modularity, optimizing network load, increasing
hardware utilization, and concurrency architecture variation. They are fairly self explanatory, but
a few can be explained with an example. For increasing modularity, think of a database. Having
more modules can mean more calls to this database, which means that we are getting less data
per call, and the calls are more fitted to the process at hand. This means that less CPU capacity
has to be used for processing the calls, as they are smaller. In the case of network load
optimization, however, you would want to do the opposite. By creating more database calls, you
have increased the network load, as you are using the network more. This demonstrates the
concept of trade offs.

3.5. Case Study: Applying the Perspective in Practice

 For the case study that was performed, the author looked at Document Generator, a tool
that is used to generate about 30 million documents per year. The author went through the

Page ! of !10 17

Figure 6: Flow of activities for perspective

Figure 7: CPU Utilization before and after multithreading

EE 790 | Fall 2017

process described in Figure 6 with the goal of reducing energy consumption. When an energy
hotspot was found, they used the tactic of increasing hardware utilization. It was discovered that
this hotspot was not multithreaded, and it was possible to do so. Figure 7 shows the results of
this adjustment. As can be seen, CPU activity was reduced drastically. Applying this adjustment
reduced the task energy consumption of generating the documents by 67.1%.

4. ESUML-EAF

 This paper proposes a framework developed by the authors that can be used to create
energy efficient design models for software. The framework is called Embedded Software
modeling with UML 2.x - Energy Analysis Framework. The reason for this name will become
clear at a later point. Again, this method is intended to be used in the design phase of software.
It is also currently only intended for use in embedded software. The advantage of using a
framework such as this is that it allows developers to fulfill the energy consumption
requirements in the early phases of software design rather than later. This reduces the feedback
that would have been caused had the requirements not been met later. Feedback is essentially the
need to redo insufficient work from a previous phase.

4.1. Introduction

 The field of embedded software is growing, and as such, the requirement for low energy
is growing as well. Most existing studies in this area have focused on the hardware, but software
has an impact too. The complexity and size of embedded software affects the energy
consumption of the system that the software is embedded in. Fortunately, there has been some
research on the software side as well.

 The first energy consumption analysis technique was proposed in 1994. The basic idea is
to break down the source code into low level instructions, measure the consumption of each of
these instructions individually, and sum them. This led to new techniques being studied, and not
all of them are instruction level. There are also source code based techniques, and even model
based techniques. The issue with instruction and source code based techniques, however, is that
although they are accurate, they require a lot of time to analyze. They also require even more
time to go back and redo unsatisfactory results, because at this point the code is already written.

Page ! of !11 17

Figure 8: Energy analysis efficiency at different abstraction levels

EE 790 | Fall 2017

In contrast, model based techniques trade a small amount of accuracy for small analysis time.
This is because the model is much more abstract than the source code itself. Another advantage
is that the feedback for unsatisfactory results is cut down significantly, as there is no code to
rewrite yet, just a model to adjust. Figure 8 shows the analysis and feedback time for the
software analysis methods discussed, and Figure 9 shows there the analysis occurs in the
software development cycle.

 One of the drawbacks for model based methods is that they typically require an extra
model for analysis. This requires extra work, and can deter people from trying the technique.
The authors of this paper propose a framework that does not require any extra modeling to be
done. This is because the framework is build to use models from UML, which should already
exist if the developers followed a typical model-driven design process. The framework simply
inspects the elements from the existing UML models, retrieves the energy consumption from the
energy library also developed by the authors, and calculates energy consumption. This technique
is intended to allow the developers to choose the model with the best energy efficiency from
several alternatives.

4.2. Related Work

 As mentioned before, there has been research on energy analysis techniques for software.
These studies can be seen in Figure 10, grouped by the level of abstraction that they are based
on. Instruction level techniques utilize an energy model that is constructed from actual

Page ! of !12 17

Figure 9: Energy analysis scope in software development

EE 790 | Fall 2017

measurement of energy consumption. This is acquired by actually executing or simulating each
instruction, and can take days. Source code level techniques utilize higher level languages, such
as C, to profile the code. This makes it faster than instruction level techniques, but it still takes a
lot of time. This led researchers to search for a faster way to analyze energy consumption, and
they came up with the model based techniques.

4.3. Framework Architecture

 This section discusses the architecture of the framework that was developed. The
overview can be seen in Figure 11. The major components are the ESUML modeler, CFG
generator, ESUML energy library, energy realizer, and result viewer.

 The ESUML modeler supports modeling using UML 2.0. The models it uses are the use
case diagram, the class diagram, the interaction overview diagram, and the sequence diagram.
The modeler also uses action language to describe the detailed behavior of execution

Page ! of !13 17

Figure 10: Studies grouped by abstraction level

Figure 11: Overview of framework architecture

EE 790 | Fall 2017

occurrences. The goal of the modeler is to represent the functional behavior of embedded
software.

 The Control Flow Graph (CFG) generator takes the UML models from the modeler as
input. It basically transforms the models into a connected graph that represents the behavior of
the software. It integrates all the models into one graph, and reveals synchronous action,
asynchronous action, parallel action, branch action, and fork and join action.

 The ESUML energy library is basically the core component of the framework. It
contains all of the data required to analyze energy consumption. This data is organized by
Energy Behavioral Units (EBUs). These will be explained in more detail later.

 The energy realizer is essentially the component that does the actual calculations, taking
the energy model and the control flow graph as input. It traverses the graph given, and calculates
energy consumption values using the energy model.

 The result viewer is simply a tool that can be used to view the results of this analysis.
These results can be displayed as a total, by diagram, by EBU, or by class. The intent is to allow
the user to determine where remodeling is needed.

4.4. The Energy Library

 The energy library created for this framework is an improvement on some of the earlier
work from the authors. One of the advantages for this energy library is that it is indexed by a
more abstract element than most other energy libraries. Most use the instruction unit, whereas
here EBUs are used. Each EBU is decomposed into a set of virtual instructions. Another
advantage is that this library does not need to be changed if the software model is changed. The
overall structure for the energy library can be seen in Figure 12.

Page ! of !14 17

Figure 12: Structure of energy library

EE 790 | Fall 2017

 The first step used in building the energy library is EBU identification. This involves
identifying the energy consuming elements that can be produced by the modeler. The elements
come from the sequence diagrams, interaction overview diagrams, and action language. These
elements are classified by type. The possible classifications are abstract, control structure,
behavior execution, non-behavior, and action language. Of these types, abstract and non-
behavior elements are discarded, as they have no influence on program execution.

 The next step is to define the virtual instructions that can be used for each EBU. There
are two different types of virtual instructions: virtual primitive instructions and virtual system
functions. These virtual instructions are kept general in order to reduce dependency on
hardware. The virtual instructions must then be measured to obtain energy values. This is done

using a simulator. For each virtual instruction, the implementation code is simulated over 200
iterations for each operand type and parameter size. The energy consumption values for these
simulations are then stored in the energy library. This process can be seen in Figure 13.

 The final step is to map each EBU to the set of virtual instructions that it is represented
by. This completes the mapping of EBUs to energy values, and the energy information for each
EBU can be retrieved. The authors developed a simple tool with a GUI that can be used to
manage this data.

4.5 Experiment

 To test this framework, the authors looked at five algorithms that are regularly used in
embedded systems. The algorithms are the shortest path selection algorithm for road navigation,

Page ! of !15 17

Figure 13: Virtual instruction profiling process

EE 790 | Fall 2017

an encryption algorithm using AES, and image encoding algorithm utilizing Huffman codes, the
algorithm for data retrieval found in cell phones, and the image conversion algorithm found in
digital cameras. These algorithms were each modeled using this framework. They were also
each implemented by the authors as well, so that source code analysis time could be compared to
model based. The results of this experiment are shown in Figures 14 and 15. As shown, the
model based technique performs faster for every algorithm. Since we are only analyzing small
algorithms rather than entire projects, the analysis time for source code is still relatively small,
but the numbers for source code analysis would increase a lot faster than the numbers for model
analysis. It is also shown that the elapsed time for model based analysis remains relatively
stable. Figure 14 also shows that the deviation in energy consumption estimation between
source code and model based techniques never exceeds ten percent. This means that the impact
to accuracy is present, but negligible. Clearly this framework is an efficient way to choose the
best possible design model for your product.

Page ! of !16 17

Figure 14: Comparison of analysis times

Figure 15: a) Comparison of analysis times
b) Elapsed time by data size for M3

EE 790 | Fall 2017

5. Conclusion

 From these studies, we can safely conclude that software optimization is an excellent way
to save energy. That is not to say that hardware should be ignored. Both software and hardware
should be optimized for the best results. It is also apparent that although there are plenty of ways
to reduce energy consumption by modifying the code, there also ways to improve your software
before any code has even been written. All of the techniques presented in this paper can be used
in conjunction with each other for excellent efficiency boosts overall. Although there has been
some research on software optimization, it is still not a large focus in the industry. Work must be
done to make industry leaders more aware of the possible environmental and fiscal benefits that
can be received when technology is optimized correctly. Ideally this will lead to standard
practices in the industry that are used by all developers.

References

1. Goekkus and Konya. “Energy Efficient Programming.” 2013, files.ifi.uzh.ch/hilty/t/
examples/bachelor/Energy_Efficient_Programming_Gökkus.pdf.

2. Jagroep, Erik, et al. "Extending Software Architecture Views with an Energy
Consumption Perspective." Computing, no. 6, 2017, p. 553. EBSCOhost, doi:
10.1007/s00607-016-0502-0.

3. Kim, Doo-Hwan and Jang-Eui Hong. "ESUML-EAF: A Framework to Develop an
Energy-Efficient Design Model for Embedded Software." Software and Systems
Modeling, no. 2, 2015, p. 795. EBSCOhost, doi:10.1007/s10270-013-0337-5.

4. Fettweis, Gerhard, and Ernesto Zimmermann. "ICT energy consumption-trends and
challenges." Proceedings of the 11th international symposium on wireless personal
multimedia communications. Vol. 2. No. 4. (Lapland, 2008.

Page ! of !17 17

