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ABSTRACT

Author: Abu Sadath M Asaduzzaman
Title: Memory Latency Evaluation in Cluster-Based Cache-Coherent

Multiprocessor Systems with different Interconnection Topologies

Institution: Florida Atlantic University

Thesis Advisor: Dr. Imad Mahgoub, Associate Professor
Degree: Master of Science in Computer Engineering
Date: 1997

This research investigates memory latency of cluster-based cache-coherent
multiprocessor systems with different interconnection topologies. We focus on a cluster-
based architecture which is a vaniation of Stanford DASH architecture. The architecture,
also, has some similarities with the STING architecture from Sequent Computer System
Inc. In this architecture, a small number of processors and a portion of shared-memory are
connected through a bus inside each cluster.

As the number of processors per cluster is small, snoopy protocol is used inside
each cluster. Each processor has two levels of caches and for each cluster a separate
directory is maintained. Clusters are connected using directory-based scheme through an
interconnection network to make the system scaleable. Trace-driven simulation has been
developed to evaluate the overall memory latency of this architecture using three different
network topologies, namely ring, mesh, and hypercube. For each network topology, the
overall memory latency has been evaluated running a representative set of SPLASH-2
applications. Simulation resuits show that, the cluster-based multiprocessor system with

hypercube topology outperforms those with mesh and ring topologies.

v



Title

TABLE OF CONTENTS

i. LIST OF FIGURES
ii. LIST OF TABLES

Chapter 1:
1.1

1.2
1.3

1.4
1.5
1.6
1.7
1.8
1.9

Chapter 2:
2.1

22
23

24

INTRODUCTION

Uniprocessor versus Multiprocessor

1.1.1 Advantages of Shared-Memory Multiprocessors
1.1.2 Disadvantages of Shared-Memory Multiprocessors
Locality of Memory References

Cache Coherence Problem

1.3.1 Solutions of Cache Coherence Problem

1.3.2 Software-based Schemes

1.3.3 Hardware-based Schemes

Cluster-based Protocols for Shared-Memory Systems
Cache-Coherent Interconnection Networks

Overall Memory Latency

Statement of the Problem

Thesis Contribution

Thesis Organization

CACHE COHERENCE IN SHARED-MEMORY
MULTIPROCESSOR SYSTEMS

Hardware-based Protocols

Cache-Coberence Policies

Snoopy Protocols

2.3.1 Write-Invalidate Snoopy Cache Protocols
2.3.2 Wirite-Update Snoopy Cache Protocols
2.3.3 Implementation and Performance Issues
2.3.4 Limitations of Snoopy Cache Protocols
Directory Schemes

2.4.1 Full-map Directory Schemes

Page

viii

O VWO NNNAAWbH A WWNNNM-

[a—y

11
12
12
14
14
17
19
20
20
21



2.5

2.6

2.7

Chapter 3:

3.1

3.2

33

34

Chapter 4:

4.1
4.2
43

4.4

2.42 Limited Directory Schemes

2.43 Chained Directory Schemes

Stanford DASH Project

2.5.1 The DASH Project Overview

2.5.2 The DASH Architecture

2.5.3 The DASH Cache-Coherence Protocols
2.5.4 Memory Read Actions

2.5.5 Memory Write Actions

2.5.6 Maintaining Memory Consistency

2.5.7 The DASH Implementation

2.5.8 Interconnection Network

2.5.9 The DASH Performance

Cache Coherence in Large Scale: Issues and Comparisons
2.6.1 Coherence Detection Strategy

2.6.2 Coherence Enforcement Strategy

2.6.3 Precision of Block-Sharing Information
2.6.4 Cache Block Size

Summary

SYSTEM ORGANIZATION AND
CACHE COHERENCE PROTOCOL
Overview of Topologies Used

3.1.1 Ring

3.1.2 Mesh

3.1.3 Hypercube

The System Architecture

3.2.1 Ring Network Topology

3.2.2 Mesh Network Topology

3.2.3 Hypercube Network Topology
The Cache-Coherence Protocol

3.3.1 Memory Read Actions

3.3.2 Memory Write Actions
Summary

SIMULATION ANALYSIS
Trace-Driven Simulation Moedel
Applications Used in this Simulation
Data Structures of this Architecture

43.1 Data Structure for Processor
4.3.2 Data Structure for Directory

4.3.3 Data Structure of Network Queue
Assumptions

4.4.1 MESI: States of a Cached Copy

21
23
23
25
27
29
29
30
31
32
33
34
36
36
37
37
37
38

40
41
42
42
43

46
51
51
55
56
56
57

59
60
60
63
63
65
66
66
67



4.4.2 Cluster Ownership of Memory Blocks 71
443 Cached Copies Invalidation and Memory Update Strategy 73

4.4.4 Number of Processor Clocks Needed 73

4.5 Simulation Algorithm 76

4.6  Simulation Results 89

47  Summary 93
Chapter S: SIMULATION RESULTS AND DISCUSSION 94
5.1  Applications: Read and Write Operations 95

5.2 System with 4 Clusters 96

5.3  System with 8 Clusters 100

5.4  Impact of Cache Sizes on Latency 105

5.5  Summary 110
Chapter 6: CONCLUSIONS AND FUTURE EXTENSIONS 114
Future Directions 116

BIBLIOGRAPHY 117

vii



Figure

2.1a:

2.1b:

2.1c:

2.2a:

2.2b:

2.3a:

2.3b:

2.3c:

2.4:

3.1a:

3.1b:

3.1c:

3.2a:

3.2b:

3.3a:

3.3b:

LIST OF FIGURES

Title
Three consistent copies of block X
After Write-Invalidate is performed
After Write-Update is performed
State transition graph of cached copy for write-once protocol
State transition graph of cached copy for firefly protocol
Full-map directory scheme
Limited directory scheme
Chained directory scheme
The DASH Architecture
Simulation architecture with a general interconnection network
Proposed simulation architecture for 16 processors in 4 clusters
Proposed simulation architecture for 16 processors in 8 clusters
Cluster-based multiprocessor (16 P, 4 C) system using ring network
Cluster-based multiprocessor (16 P, 8 C) system using ring network
Cluster-based multiprocessor (16 P, 4 C) system using mesh network

Cluster-based multiprocessor (16 P, 8 C) system using mesh network

viii

Page
13
13
13
16
18
22
22
24
28
45
47
48
49
50
52

53



3.4:

4.1a:

4.1b:

4.2a:

4.2b:

4.3a:

4.3b:

4.4a:

4.4b:

4.5a:

4.5b:

4.5¢c:

4.6:

4.7:

4.8:

5.1:

5.2:

5.3:

5.4:

5.5:

5.6:

Cluster-based muitiprocessor (16 P, 8 C) system using hypercube
Trace-Driven simulation model

Diagram of a processor node (Cluster)

State transition graph for states of cached copies
State transition graph for states of owner directory
Requested resource Vs Processor cycles

Overall simulation flow-diagram

Flow-diagram for read operation (part I)
Flow-diagram for read operation (part II)
Flow-diagram for write operation (part I)
Flow-diagram for write operation (part II)
Flow-diagram for write operation (part IIT)
Flow-diagram for ring network

Flow-diagram for mesh network

Flow-diagram for hypercube network

Applications Vs Delay needed (4-cluster network)
Applications Vs Delay needed (8-cluster network)
Latency and cache sizes (4-cluster ring)

Latency and cache sizes (8-cluster ring)

Latency and cache sizes (8-cluster mesh)

Latency and cache sizes (8-cluster hypercube)

ix

54

61

61

69

70

75

77

80

81

83

84

85

87

88

90

99

104

107

108

111

112



Table Title

2.1: Notations used in Fig. 2.3a, 2.3b, and 2.3¢

4.1: Distribution of processors and memory among 4 clusters
4.2: Distribution of processors and memory among 8 clusters
4.3a: Processor clocks required to find the block at different levels
4.3b: Processor clocks required to perform different events

S.1a: Information about different applications: Total operations
S.1b: Information about different applications: read-hit/write-hit
§.2:  Overall delay/Network delay - Ring Network (4 clusters)
5.3:  Overall delay/Network delay - Mesh Network (4 clusters)
5.4:  Overall delay/Network delay - Radix (4 clusters)

§.5:  Overall delay/Network delay —~ Water_sp (4 clusters)

5.6:  Overall delay/Network delay - Ocean (4 clusters)

5.7:  Overall delay/Network delay - FFT (4 clusters)

5.8:  Overall delay/Network delay - LU (4 clusters)

5.9:  Overall memory latency for a multiprocessor system with 4 clusters

LIST OF TABLES

Page
24
71
72
74
74
95
95
96
96
97
97
97
97
98

98



5.10:

5.11:

5.12:

5.13:

5.14:

5.15:

5.16:

5.17:

5.18:

5.19:

Overall delay/Network delay - Ring Network (8 clusters)

Overall delay/Network delay - Mesh Network (8 clusters)

Overall delay/Network delay - Hypercube Network (8 clusters)
Overall delay/Network delay - Radix (8 clusters)

Overall delay/Network delay — Water_sp (8 clusters)

Overall delay/Network delay - Ocean (8 clusters)

Overall delay/Network delay - FFT (8 clusters)

Overall delay/Network delay - LU (8 clusters)

Overall memory latency for a multiprocessor system with 8 clusters

Memory latency of 4-cluster ring topology with variable cache sizes

5.20a: Memory latency of 8-cluster ring topology with variable cache sizes

5.20b: Memory latency of 8-cluster ring topology with variable cache sizes

5.20c: Memory latency of 8-cluster ring topology with variable cache sizes

100

100

101

101

102

102

102

103

103

106

106

109

109



Chapter 1

INTRODUCTION

In the early days of computer systems, most efforts in computer hardware were
largely focused on the so-called traditional Von Neumann organization, which ran on
stand-alone computers with single processors. It is obvious that the rapidly growing
requirement for computing speed, system reliability, and cost-effectiveness will entail the
development of alternative computers to replace the traditional uni-processors. Due to the
availability of powerful microprocessors at low cost as well as significant advances in
communication technology, multiprocessors computing, one of the latest dreams, is now
possible. The overall performance of such a system heavily depends on the interconnection
network and the application type.

Following general terms and concepts have been discussed - the advantages and
the disadvantages of shared-memory multiprocessor system, different solutions to the
cache coherence problem, and the role of different interconnection network topologies.
Then the statement of this research work has been defined. Finally, the thesis organization

has been presented.



1.1  Uni-processor versus Multiprocessor

Traditional uni-processor computers are unable to achieve the performance level
required by large computing applications such as fusion modeling, weather forecasting,
and aircraft simulation [1]. Shared-Memory multi-processors have emerged as an
especially cost-effective way to provide increased computing power and speed. This kind

is very popular and efficient due to some significant advantages.

1.1.1 Advantages of Shared-Memory Multiprocessors

Main advantages offered by shared-memory multiprocessors are [2]:

1) the simplest and the most general programming model,

2) use low-cost microprocessors economically inter-connected with shared-
memory module,

3) all processors share the memory, various system resources such as I/O channels,

control units, and code & data structures.

1.1.2 Disadvantages of Shared-Memory Multiprocessors

This system organization has three problems [2]:

1) Memory contention - when several request for the same memory address accrue
at the same time,

2) Communication contention - when several processors (clusters) try to send
information to other processors (clusters) using the network at the same time,

3) Long latency time - when multiprocessors with large number of processors tend

to have complex inter-connection network. The memory latency time for such



networks (that is, the time required for a memory request to traverse the network)

is long.

These problems contribute to increased memory access times and hence slow

down the processors' execution speeds.

1.2 Locality of Memory References

Two main properties of the sequence of memory addresses generated by a
program are (i) temporal locality and (ii) spatial locality. Temporal locality (or locality in
time) means that memory addresses presently referenced by a program are likely to be
referenced again in the near future. Spatial locality (locality in space) means that the
addresses referenced by a program in a short period of time are likely to span a relatively
small portion of the entire address space. The locality of memory references allows the
cache to perform a vast majority of all memory requests (typically more than 95 percent),

memory handles only a small fraction [2].

1.3 Cache Coherence Problem

Introduction of processor (or privet) caches helps greatly in reducing average
latencies. Private data caches, which are small, fast memories physically located near a
processor, exploit these memory-referencing properties to reduce the average time
required to access the larger main memory. By temporarily storing a copy of a value from
the main memory into the cache, which is being actively referenced by a program, caches
amortize the time. The temporal locality and spatial locality allows the cache to perform a

vast majority of all memory requests; memory handles only a small fraction.
3



Because of the sharing properties multiple copies of the same memory block can
exist in different caches at the same time. To maintain a coherent view of the memory,
these copies must be consistent. This is known as cache coherence problem (or the cache

consistency problem) [2][3][4][5][6][7].

1.3.1 Solutions of Cache Coherence Problem

All known solutions to this problem can be classified into two main groups: (i)
hardware-based and (ii) software-based. This traditional classification still holds, but
solutions using combination of hardware and software become more frequent and

promising. This thesis focuses the attention on the hardware-based solutions.

1.3.2 Software-based Schemes

These schemes mainly rely on the actions of the programmer, compiler, or
operating system, in dealing with the coherence problem. The simplest but the most
restrictive method is to declare non-cacheable blocks of shared data. More advanced
methods allow the caching of shared data and accessing them only in critical sections, in a
mutually exclusive way. Accesses to a shard variable by one processor may differ from
those of other processors. The access may be one of the following types [2],

a) Read-only for any number of processors — cacheable by all processors

b) Read-only for any number of processors and Read-Write for exactly one

processor - Write-through copy back, cacheable by the processor that has the write

permission.

c) Read-Write for exactly one process — cacheable only by the Read-Write

processor

d) Read-Write for any number of processors - non-cacheable
4



If considerable hardware support is provided, the software solutions are usually
less expensive than their hardware counterparts. Some disadvantages are evident, specially
in static schemes, where inevitable inefficiencies are incurred since the compiler analysis is
unable to predict the flow of program execution accurately and conservative assumptions

have to be made. Software-based solutions will not be discussed any further in this thesis.

1.3.3 Hardware-based Schemes

Although these schemes require an increased hardware complexity, their cost is
well justified by significant advantages such as [7]:
(i) deal with coherence problem by dynamic recognition of inconsistency
conditions for shared data entirely at the run-time. They promise better
performance, specially, for higher levels of data sharing.
(ii) free the programmer and compiler from any responsibility about coherence
maintenance, and impose no restrictions on any layer of software as they are totally
transparent to software.
(iii) efficiently support the full range from small to large scale multiprocessors.
(iv) technology advances made their cost quite acceptable, compared to the system
cost.
Some popular hardware-based schemes are:
(a) Directory protocol: Directory is maintained to store information of each block
of main memory. We can directly access the memory block, if possible, no need of
broadcast to all caches.
(b) Snoopy protocol: Consistency commands from one cache are broadcast to all

other caches, and all other caches snoop the consistency commands.



(c) Coherence in Multilevel caches: Single level caches are unable to successfully
fulfill two usual requirements - (a) to be fast and (b) large enough. Multilevel

cache scheme is an unavoidable solution to the problem. Lower level caches are
smaller but faster - their task is to reduce miss latency. Upper level caches are
slower but much larger, in order to attain higher hit ratio and reduce the traffic on
the interconnection network.

(d) Cluster-Based Cache-Coherence Protocol: For large shared-memory multi-
processors, a number of processors and a small portion of memory are grouped
together - called cluster (processing node). Each processor may have muitilevel
caches; inside a cluster processors and the portion of memory are interconnected
by a bus using snoopy scheme and clusters are connected through an
interconnection network such as Ring and Mesh; directory is maintained using

pointers to the clusters currently caching each memory block.

1.4 Cluster-based Protocols for Shared-Memory Systems

So far as we know, snoopy protocol has limited scalability and interference with
the processor-cache write-path occurs. The main advantage of directory protocol is a
broadcast is not required to find shared copies, but for a small-scale multiprocessors it is
not efficient. In cluster-based cache-coherence protocol, we are taking the advantages of
both snoopy protocol and directory protocol --- as a result this protocol has increased
scalability and overall better performance.

Computationally the simulation of high-performance multiprocessors is expensive.
The unit of simulated processor execution time requires many units of simulator time. For
a parallel computer, simulator time increases in proportion to the total amount of work

done in the simulated parallel machine. Moreover, simulators may incur substantial
6



overhead in scheduling and dispatching the large number of concurrent activities within a
parallel machine. The overhead problem becomes specially bad when system components

potentially interact on every memory address operation.

1.§ Cache-Coherent Interconnection Networks

In shared-memory multiprocessor systems, the real success mostly depends on the
design of the network architecture that interconnects a large number of processors in an
economical way. It is shown that a common bus does not suit hundreds of processors.
Multistage networks have problems, because of the hardware complexity for many
processors. So, a new network architecture is proposed, which is a combination of
different networks to reduce network traffic. The Stanford DASH Multiprocessor used a
combination of snoopy-directory scheme, where the processors in a node are connected by

a bus and nodes are connected by mesh network.

1.6 Overall Memory Latency

Overall memory latency is the time required by the multiprocessor systems to finish
a job. In this work, five representative SPLASH-2 applications are used to run the
simulation program. Total time required to run one trace file is considered for each
application. The interconnection network used to connect clusters is one of the important
factors that affect the overall memory latency. The overall memory latency is investigated

by using different interconnection network topologies.



1.7 Statement of the Problem

The performance quality required by large computing applications such as fusion
modeling, and aircraft simulation [1] may not be achieved by any traditional uni-processor
computer. Shared-memory multiprocessors have emerged as an especially cost-effective
manner to provide increased computing power and speed.

To reduce the memory latency in a multiprocessor system, processor caches are
introduced. These private data caches, which are small, fast memories physically located
near a processor, exploit memory-referencing properties to reduce the average time
required to access the larger main memory. By temporarily storing a copy of a block from
the main memory, which is being actively referenced by a program, into a cache, the
system amortizes the time. Because of the sharing properties, multiple copies of the same
memory block can exist in different caches at the same time. To maintain a coherent view
of the memory, these copies must be consistent. This is known as cache coherence
problem [2][3][4][5][6][7]. To overcome cache coherence problem and to make the
multiprocessor system scalable, cluster-based cache-coherent protocol is developed. In a
cluster-based system, a (small) number of processors and a part of main memory are
grouped together in a cluster.

In a cluster-based cache-coherent multiprocessor system, processors inside each
cluster may be connected to each other by means of a bus or a ring. Clusters are
connected using an interconnection network whose topology may influence the overall
performance of the multiprocessor system. If the proper cluster-interconnection network
topology can be selected for a cluster-based cache-coherent muitiprocessor, then it is
possible to decrease the memory latency and increase the overall performance of the
system. Also, the choices of cache sizes influence the memory latency and performance.
Before the data pollution point, memory latency decreases with the increase of the cache

sizes used.



In this thesis, overall memory latency is evaluated in cluster-based cache-coherent

multiprocessor systems with different interconnection topologies and cache sizes.

1.8 Thesis Contribution

In this thesis, we investigate memory latency of cluster-based cache-coherent
multiprocessor systems for ring, mesh, and hypercube network topologies. Trace-driven
simulation has been developed to evaluate the overall memory latency. Five representative
SPLASH-2 applications have been used. The contribution of this thesis can be summarized

as follows:

1. The DASH project and other related papers have been surveyed.

2. Varations of the DASH architecture with ring, mesh, and hypercube topologies
along with a variation of the DASH cache coherence protocol have been proposed.

3. Trace-driven simulation for the proposed system has been developed.

4. Five representative SPLASH-2 applications have been studied and used to
generate traces to drive the simulation program.

5. Memory latencies for the proposed systems have been evaluated using the
selected five SPLASH-2 applications. Also, memory latency for different cache sizes has
been evaluated.

6. Simulation results have been analyzed. The results show that, the proposed
system with hypercube topology performed better than that with mesh and ring
topologies. Also, the results show that, increasing the cache sizes decreases the memory

latency.



1.9 Thesis Organization

This thesis work is organized as follows: in chapter 2, different hardware-based
solutions of cache-coherence are discussed, among which DASH project and Lilja
approach show significant improvements. In chapter 3 a modified approach of the DASH
and STING architecture for cache coherence protocol used in multiprocessor systems is
introduced to investigate the overall memory latency for different interconnection network
topologies. Chapter 4 contains the assumptions and analysis of this simulation algorithm.
Results from this simulation are discussed in chapter 5. Finally, conclusions and future

directions are presented in chapter 6.

10



Chapter 2

CACHE COHERENCE IN
SHARED-MEMORY
MULTIPROCESSOR SYSTEMS

Cache coherence protocol is the appropriate solution of the problem of maintaining
data consistency in shared-memory multiprocessors. This protocol helps in improving
performance and scalability of the systems. It offers good performance since they deal
with the problem fully dynamically. Great variety of schemes has been proposed, not many
of them were implemented. This chapter is a survey of cache coherence schemes
(hardware-based protocols) in shared memory multiprocessors. Section 2.1 is a brief
introduction to hardware-based solutions. Cache-coherence policies are discussed in
section 2.2. Section 2.3 is the introduction about consistency commands, snoopy
protocols, and directory schemes.. Different directory schemes with their advantages and
disadvantages are explained in section 2.4. Section 2.5 is the survey of DASH project.
Section 2.6 is a collection of different important issues and comparisons affecting cache
coherence in large-scale shared-memory multiprocessors from Lilja approach. Finally,

section 2.7 contains the conclusion about this survey work.

11



2.1 Hardware-based Protocols

Hardware-based solutions are highly convenient because of their transparency of
software [4][S]. This protocol includes snoopy protocols, directory schemes, and cache-
coherent network architectures. Different cache coherence policies are needed for these
protocols. Hardware mechanisms detect inconsistency conditions and perform actions
according to a hardware implementation protocol. Software-based solutions attempt to
avoid the need for complex hardware mechanisms. This chapter focuses on hardware-

based solutions.

2.2 Cache-Coherence Policies

Data is divided into a number of equally sized blocks. A block is considered as the
unit of transfer between memory and caches. This protocol allows any arbitrary number of
copies of a block to exist at the same time. To maintain consistency of multiple copies two
policies are used: write-invalidate and write update [2].

Write-Invalidate Policy: Read requests are carried out locally if a copy of the block
exists. When a processor updates a block all other copies are invalidated. This policy
works depending on the architecture used [e.g., Fig. 2.1b]. However, a subsequent update
by the same processor can be performed locally in the cache, since copies no longer exist.
Figure 2.1a shows four copies (one memory copy and three cached copies) of block x are
presented in the system. Figure 2.1b shows processor 1 has updated an item in block x
(the updated block is denoted by x') and other copies are invalidated (denoted by I). Now
if any other processor issues a read request to an item in block x', then the cache attached
to processor 1 supplies it because this is the only valid copy. Processor 1 can perform any
number of update without issuing any invalidate request because there is no other valid

copy in the system.
12
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Fig. 2.1c: After Write-Update is performed

All copies (except the memory copy, which depends on the protocol) are updated

if the write-update policy is used.
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Write-Update Policy: When a processor updates a cached copy, it updates every
other cached copies (if any). Whether the memory copy is updated or not depends on how
this protocol is implemented. Figure 2.1c shows the new states of cached copies after

updated by processor 1.

2.3 Snoopy Protocols

Cache invalidation and update commands are collectively referred to as
consistency commands [2]. Write-Invalidate and Write-Update policies require that
consistency commands be sent to at least those caches having copies of the block. In some
networks (e.g. buses), it is feasible to broadcast consistency commands to all caches.
These protocols are called snoopy cache protocols [2] because each cache snoops on the

network for every incoming consistency command.

2.3.1 Write-Invalidate Snoopy Cache Protocols

The Write-once protocol, proposed by Goodman and reviewed by Archibald and
Baer, is considered as the first Write-Invalidate snoopy cache protocol. The Illinois
protocol, proposed by Papamarcos and Patel, and the Berkeley protocol, specifically
designed for the SPUR Multiprocessor Workstation at the University of California at
Berkeley, are other two Write-Invalidate protocol. In this section write-once protocol is
discussed. Possible states for a cached copy used in write-once are [2]:

* Invalid - an inconsistent copy.

* Valid - any valid copy consistent with the memory copy.

* Reserved - data has been written exactly once and the copy is consistent with the

memory copy, which is the only other valid copy.
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+ Dirty - data has been modified more than once and the copy is the only valid copy

in the system.

Copy-back memory update policy was used in write-once protocol. This protocol
used the following commands [2]:

 Read-Blk - Normal memory read block command, reads from a memory block.

» Write-Blk - Normal memory write block command, writes into a memory block.

* Read-Inv - Consistency command, reads a block and invalidates all other copies.

 Write-Inv - Consistency command, invalidates all other copies of a block.

Figure 2.2a explains different states of a cached copy and different commands used
in write-once protocol.

The operation of write-once protocol can be explained by discussing the actions
taken on processor reads and writes [2].

* Read hit - read hits always can be &one locally in the cache and it does not result

in state transitions.

» Read miss - (i) if a dirty copy exists, then the corresponding cache inhibits

memory and sends a copy to the requesting cache. Both copies will change to valid

and the memory is updated. (ii) if no dirty copy exists, then memory has a

consistent copy and supplies a copy to the cache. This copy will be in the valid

state.

+ Write hit - (i) if the copy is in the dirty or reserved state, then the write can be

performed locally in the cache and the new state will be dirty. (ii) if the state is

valid, then a Write-Inv consistency command is broadcast to all caches, invalidate

their copies. Write is performed when block is available and memory is updated.

The resulting state is reserved.

* Write miss - the block either comes (i) from a cache with a dirty copy, which then

updates memory, or (ii) from main memory. A Read-Inv consistency command is
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Fig. 2.2a: State-transition graph of cached copy for write-once protocol.
Solid lines mark processor-initiated actions, and dashed lines mark consistency
action initiated by other caches.
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sent to get the block, which invalidates all cached copies (if any). The copy is then
updated locally and the new state is dirty.
If the copy is dirty, then it has to be written back to main memory. Otherwise, no

actions are taken.

2.3.2 Write-Update Snoopy Cache Protocols

The Firefly protocol, implemented in the Firefly Multiprocessor Workstation, is a
good example of Write-Update snoopy cache protocol [2]. The Dragon protocol,
proposed for the Dragon Multiprocessor Workstation from Xerox PARC, is another
write-update protocol. Firefly protocol is discussed in this section. Possible states for the
cached copy used in the firefly protocol:

» Valid-exclusive - this is the only cached copy that is consistent with the

memory copy.

» Shared - this copy is consistent, and there are other consistent copies.

» Dirty - this is the only consistent copy, the memory copy is inconsistent.

A write-update consistency command updates all copies. This protocol uses copy-
back update policy for private blocks and write-through for shared blocks. Figure 2.2b
explains different states of a cached copy and different commands used in firefly protocol.

The operation of write-once protocol can be explained by discussing the actions
taken on processor reads and writes.

* Read hit - read hits always can be done locally in the cache and it does not result

in state transitions.

* Read miss - (i) if no cached copy exists, then the memory supplies the copy and

the new state is valid-exclusive. (ii) if a dirty copy exists, then this cache supplies

the copy because this is the only consistent copy, update the main memory. The

new state is shared. (iii) if there is(are) shared copy(copies), then these caches
17
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Supply the block by synchronizing the transmission on the bus. Resulting state, of
course, remain unchanged.

« Write hit - (i) if the block is dirty or valid-exclusive, then the write is performed
locally in the cache and resulting state is dirty. (ii) if the block is shared, all other
copies (including the memory copy) are updated. If sharing is ceased, then the next
state is valid-exclusive.

« Write miss - the required block is supplied either (i) from other caches or (i)
from main memory. If it comes from memory, then its loaded-in state is dirty.
Otherwise, all other copies (including the memory copy) are updated and the new
state is shared.

If the state is dirty, then the copy is written back to main memory. Otherwise, no

actions are taken.

2.3.3 Implementation and Performance Issues

Because of simplicity and ease of implementation many commercial and bus-based
multiprocessors have used snoopy cache protocols. The main differences between a
snoopy cache and a uni-processor cache are (i) the cache controller, (ii)the information
stored in the cache directory, and (iii) the bus controller. The miss ratio decreases until the
block size reaches a certain point, the data population point, then it starts increase. Bus
traffic per reference (in number of bus cycles, B) is proportional both to the miss ratio
(M), and the number of words that must be transferred to serve a cache miss (L).
Mathematically, B = K.M.L, where K is a constant [2]. If M decreases when L increases,
then B will not necessary decrease. Simulation suggests using a small block size in bus-
based snoopy protocol. For write-invalidate protocols, a cache miss can result from an
invalidation initiated by another processor prior to the cache access - an invalidation miss.

From Eggers and Katz's work it is clear that bus traffic in multiprocessors may increase
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dramatically when the block size increases. For write-update protocols, the block size is
not an issue because misses are not caused by consistency-related actions. The potential
problem in this case is that write-update protocols tend to update copies even if they are
not actively used. An important performance issue for write-invalidate policies concerns
reducing the number of invalidation misses, and for write-update policies, an important

issue concerns reducing the sharing of data to lessen bus traffic.

2.3.4 Limitations of Snoopy Cache Protocols

From Eggers and Katz's work it is proved that using large caches cannot entirely
eliminate bus because of the consistency actions introduced as a result of data sharing.
This sets an upper limit on the number of processors that a bus can accommodate. Snoopy
cache protocols do not suit general interconnection networks, mainly because

broadcasting reduces their performance to that of a bus.

2.4 Directory Schemes

To overcome the limitations of snoopy protocol and to improve the scalability of
multiprocessor system, directory schemes are proposed. These systems multicast
consistency commands exactly to the caches having a copy of the block. There is no need
to broadcast consistency commands to those caches which do not contain a cached block.
So a directory is required to track all copies of blocks and that is why these protocols are
called directory schemes [2]. The main characteristic to distinguish directory schemes is
that the global system-wide status information relevant for coherence maintenance is
stored in some kind of directory. Upon the individual requests of the local cache

controllers, centralized controller checks the directory, and issues necessary commands for
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data transfer between memory and caches, or between caches themselves. Directory will
keep status information up-to-date, so every local action affects the global state of the
block must be reported to the central controller. The global directory can be organized in

several ways: full-map directory, limited directory, and chained directory schemes [7].

2.4.1 Full-map Directory Schemes

The directory is stored in the main memory, and contains entries (presence bit) for
each memory block. An entry points to exact locations of every cached copies of memory
block, and keeps its status [7]. In this protocol, using the information from directory,
coherence of data in private caches is maintained by sending directed messages to known
locations, avoiding usually expensive broadcasts to every cache. Figure 2.3a shows a full-
map directory organization, which indicates that both cache 1 and cache 2 hold a valid
copy of memory block X, and other caches do not have this copy. The main advantage of
full-map schemes are (i) that locating necessary cached copies is easy, and (ii) caches with
valid copies are involved in coherence actions for a particular block. The main drawbacks
of these schemes are (i) centralized controller is inflexible for system expansion by adding
new processors, (ii) these schemes are not scaleable, and (iii) significant memory overhead

when number of processors is large.

2.4.2 Limited Directory Schemes

In limited directory schemes the presence bit vector is replaced with a small
number of identifiers pointing to cached copies [7]. Condition for saving memory space is
i*log2N < N, where i is the number of pointer allowed and N is the total number of
processors. For small i and large N, the size difference is significant. As shown in Figure

2.3b, at most two pointers are allowed (whereas in full-map at most N pointers are
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allowed) , and only cache 0 and cache N hold valid copies. These schemes are also called
partial-map schemes. Entries in limited directories contain a fixed number of pointers.
When number of cached copies exceeds the number of pointers, special actions are
required. Some schemes allow broadcasting to take care of this situation. If the scheme
disallow broadcasts, one copy has to be invalidated, to free the pointer for a new cached

copy. Memory overhead of this protocol is smaller when compared with full-map scheme,
scalability is good; however, their performance heavily depends on sharing characteristics

of parallel applications.

2.4.3 Chained Directory Schemes

Entries of chained directory schemes are organized in a form of (singly or doubly)
linked lists, where all caches sharing the same block are chained through pointers into one
list [7]. There is no limitation of number of cached copies. As shown in Figure 2.3c, chain
directories are spread across the individual caches. Entry in main memory is used only to
point to the head of the list and to keep the block status. Requests for the block are issued
to the memory, and subsequent commands from the memory controller are usually
forwarded through the list, using the pointer. The main advantage is, chained directory
schemes are scaleable, while performance is almost as good as in full-map directory

schemes.

2.5 Stanford DASH Project

The Computer Systems Laboratory at Stanford University has developed a cluster-

based cache-coherence protocol for shared-memory multiprocessors called DASH
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M - shared memory V - valid bit
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X - data block CT - chain terminator
P - pointer N - # of processors
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(Directory Architecture for SHared memory) [4][5]. The fundamental premise behind this
architecture is that it is feasible to build large-scale shared-memory multiprocessors with
hardware cache coherence. The DASH prototype system is the first operational machine
to include a scaleable cache-coherence mechanism. This performance results from
distributing the memory among processing nodes and using a network with scaleable
bandwidth to connect the nodes. This architecture allows shared data to be cached,
thereby significantly reducing the latency of memory access and yielding higher processor
utilization and higher overall performance. A distributed directory-based protocol provides
cache coherence without compromising scalability. The DASH prototype incorporates up
to 64 high-performance RISC microprocessors to yield performance up to 1.6 billion
instructions per second and 600 million scalar floating point operations per second.

David J. Lilja from Department of Electrical Engineering, University of Minnesots
surveyed cache coherence mechanisms and identified several issues critical for design [6].
These design issues includes: (i) the coherence detection strategy, (ii) the coherence
enforcement strategy, (iii) how the precision of block-sharing information can be changed
to trade-off the implementation cost and performance of the memory system, and (iv) how
the cache block size affects the performance of the memory system. Dr. Lilja used trace-
driven simulations to compare the performance and implementation impact of these

different issues.

2.5.1 The DASH Project Overview

The difference between the computing power of microprocessors and that of the
largest supercomputers is decreasing and the price per performance advantage of
microprocessors is increasing. This points to using microprocessors as the compute

engines in a multiprocessor. But the problem is to build a machine that can scale up its
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performance while maintaining the initial price per performance advantage of the
individual processors. Scalability allows a parallel architecture to leverage commodity
microprocessors and small-scale multiprocessors to build large scale machines. These
large machines offer substantially higher performance.

High-performance processors are important to achieve both high total system
performance and general applicability. DASH project used a parallel architecture to
provide scalability to support hundreds to thousands of processors, high-performance
individual processors, and a single shared address space [4][5]. A single address space
enhances the programmability of a parallel machine by reducing the problems of data
partitioning and dynamic load distribution. Caching of the memory, including shared write
able data, allows multiprocessors with a single address space to achieve high performance
through reduced memory latency.

Caching shared data introduces the cache-coherence problem. Although hardware
support for cache-coherence has its costs, it also offers many benefits. Without hardware
support, the responsibility for coherence falls to the user or the compiler. User may not
like a complex programming model to handle caching. Handling the coherence problem in
the compiler may be attractive, but currently cannot be done in a way that is competitive
with hardware. The main problem with existing cache-coherent shared-address machines is
the inability to scale effectively beyond a few high-performance processors.

The DASH project used cluster-based highly parallel architectures and directory-
based coherence mechanism. They run a variety of applications efficiently and proved that
DASH architecture permits single-address-space machines to scale and at the same time

provides a flexible and general programming model.
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2.5.2 The DASH Architecture

Directory-Based Cache-Coherence Scheme was first proposed in the late 1970s
[4][5]. The original directory structures were not scaleable because in this scheme a
centralized directory was used. This centralized directory quickly becomes a bottleneck.
To overcome this drawback, DASH architecture partitioned and distributed the directory
and main memory and used a new coherence protocol that can suitably exploit distributed
directories. Moreover, DASH provides several other mechanisms to reduce and hide the
memory operations.

The DASH architecture has a two-level structure as shown in Figure 2.4. At the
high-level, the architecture consists of a set of processing nodes (clusters) connected
through a mesh interconnection network; at the low-level, each cluster consists of a small
number of high-performance processors and a portion of the shared memory
interconnected by a bus. Intra-cluster cache coherence is implemented using a snoopy bus-
based protocol, while inter-cluster coherence is maintained through a distributed
directory-based protocol.

The cluster functions as a high-performance processing node. A bus-based cache
protocol is chosen for implementing small-scale shared-memory multiprocessors because
the bus bandwidth is sufficient to support a small number of processors. The grouping of
multiple processors on a bus within each cluster amortizes the cost of the directory logic
and network interface among a number of processors. At the same time, this grouping
reduces the directory memory requirements by keeping track of cached blocks at a cluster
as opposed to processor level. The directory-based protocol implements as invalidation-
based coherence scheme. The directory keeps the summary information for each memory
block, specifying its state and the clusters that are caching it. Except for the directory

memory, DASH architecture is similar to many scaleable message-passing machines.
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Figure 2.4: The DASH Architecture
A set of clusters are connected by a general interconnection network, directory
memory contains pointers to the clusters currently caching each memory block.
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2.5.3 The DASH Cache-Coherence Protocols

Normal Read and Write operations are considered in this protocol. When
processor generates a request, current information is not enough to say whether it is a hit
or miss operation.

Memory Hierarchy: A memory location may be in one of these three states [4]---

a) Un-cached - not cached by any cluster,

b) Shared - in an unmodified state in the caches of one or more clusters, or

c) Dirty - modified in a single cache of some cluster.

Logically DASH memory system is broken into four levels of hierarchy, (i)
Processor Cache Level - Processor caches are designed to match the processor speed and
support snooping from/to the bus. (ii) Local Cluster Level - This level includes some other
processor’s caches within the requesting processor's cluster. (iii) Home Cluster Level - The
third level consists of the cluster that contains the directory and physical memory for a
given memory address. For many accesses (e.g., private data references), the local and
home cluster are the same. (iv) Remote Cluster Level - The fourth and final level for a
memory block consists of the clusters marked by the directory as holding a copy of the
block.

2.54 Memory Read Actions

If the requested block-address is present in the processor's cache, the cache simply
supplies the data and the Read operation is done. If the Read request is not satisfied by the
processor's cache, it is sent to the local cluster level. No state change occurs at the
directory level.

If local cluster has at least one cached copy of that memory block, the request is

satisfied within the cluster and no state change is required at the directory level. If the
29



request must be sent beyond the local cluster level, at first it goes to the home cluster
corresponding to that address.

The home cluster examines the directory states of the memory location while
simultaneously fetching the block from main memory. If the block is clean, the data is sent
to the requester and the directory is updated to show sharing by the requester. If the
location is dirty, the request is forwarded to the remote cluster indicated by the owner
directory.

The dirty cluster replies with a shared copy of the data, which is sent directly to the
request. Moreover a sharing Write-back message is sent to the home level to update main
memory and change the directory state to indicate that the requesting and remote cluster

now have shared copies of the data.

2.5.5 Memory Write Actions

If the block is in the writing processor's cache and the state of the block is dirty,
the write can be performed immediately. Otherwise, a Read-exclusive request is issued on
the local cluster's bus to obtain exclusive ownership of the line and retrieve the remaining
portion of the cache line.

If one of the caches within the cluster already owns the cache line, then the Read-
exclusive request is serviced at the local level by a cache-to-cache transfer. Processors
within a cluster are allowed to alternately modify the same memory block without any
inter-cluster interaction. If no local cache owns the block, then a Read-exclusive request is
sent to the home cluster.

If the requested location is un-cached or shared the home cluster can immediately
satisfy an ownership request. Also, if the requested location is in shared state, then all

other cached copies must be invalidated. Invalidation requests are sent to those clusters
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that have a copy of that block, at the same time, the home sends an exclusive data reply to
the requesting cluster. If the directory indicates that the block is dirty, then the Read-
exclusive request must be sent to dirty cluster.

If the required memory block is being shared, then the remote clusters receive an
invalidation request to eliminate their shared copies; after receiving the invalidation,
remote clusters send an acknowledgment to the requesting cluster. If the required block is
dirty, the dirty cluster receives a Read-exclusive request. The remote cluster responds
directly to the requesting cluster and sends a dirty-transfer message to the home indicating
that the requesting cluster now holds the block exclusively.

When a writing cluster receives all the acknowledgments from the home or dirty
cluster, it is obvious that all copies of the old data have been purged from the system. If
the processor performs the write operation after receiving the acknowledgments, then the
new value becomes available to all other processors at the same time. Note: invalidation is
a round-trip method to multiple clusters which results potentially large delay. If we try to
obtain higher processor utilization by allowing the processor to write immediately after
ownership reply is received from the home, this may lead to inconsistencies with the

memory model.

2.5.6 Maintaining Memory Consistency

Sequential consistency, which requires execution of the parallel program to appear
as an interleaving of the execution of the parallel processes on a sequential machine. For
many applications, such a model is too strict. The DASH prototype supports the release
consistency model in hardware, which only requires the operations to have completed
before a critical section is released. The main advantage of this scheme is it provides the

user with a reasonable programming model; when the critical section is exited, all other
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processors will have a consistent view of the modified data structure. Another important
thing is it permits reads to bypass writes and the invalidation of different write operations

to overlap, resulting in lower latencies for accesses and higher overall performance.

2.5.7 The DASH Implementation

A detailed software simulator of the system has been developed, but a hardware
implementation is needed to understand this scheme.

DASH prototype cluster: a Silicon Graphics Power Station 4D/340 is used as the
base cluster and the system consists of four Mips R3000 processors and R3010 floating-
point coprocessors running at 33-MH [4]. Each R3000/R3010 combination can reach
execution rates up to 25 VAX MIPS and 10 Mflops. Each CPU contains a 64-KB
instruction cache and a 64-KB write-through data cache, which interfaces to a 256-KB
second-level write-back cache. Both the first and the second-level caches are direct-
mapped and support 16-B lines. The first level caches run synchronously to their
associated 33-MH processors while the second level caches run synchronous to the 16-
MH memory bus.

The second-level processor caches are responsible for bus snooping and
maintaining coherence among the caches in the cluster. Coherence is maintained using am
Illinois, or MESI protocol. 2X2 DASH system could scale to support hundreds of
processors, but the prototype will be limited to a maximum configuration of 16 clusters.

DASH directory logic: The directory logic is used to implement the directory-
based coherence protocol and to connect the clusters within the system. The directory
logic is split between the two logic boards for outbound and inbound portions of inter-

cluster transactions.

32



The directory controlier (DC) board contains three major sections: (i) directory
controller, which includes the directory memory associated with the cacheable main
memory contained within the cluster, (ii) performance monitor, which can count and trace
a variety of intra- and inter-cluster events, and (iii) the request and reply outbound
network logic together with the X-dimension of the network itself. The directory
information is combined with the type of bus operation, the address, and the result of
snooping on the caches to determine what network messages and bus controls the DC will
generate. The directory memory itself is implemented as a bit vector with one bit for each
of the 16 clusters.

The reply controller (RC) board also contains three major sections: (i) reply
controller, which tracks outstanding requests made by the local processors and receives
and buffers replies from remote clusters using the remote access cache (RAC), (ii) pseudo-
CPU, which buffers incoming requests and issues them to the bus, and (iii) inbound
network logic and the Y-dimension of the mesh routing networks. RAC's primary role is

the coordination of replies to inter-cluster transactions.

2.5.8 Interconnection Network

DASH coherence protocol does not rely on a particular interconnection network
topology. For a scaleable architecture, the network itself must provide scaleable
bandwidth and low latency communication. In DASH a pair of wormhole llouted meshes is
used as network, one handles request messages while the other is dedicated to replies.
Wormhole routing allows a cluster to forward a message after receiving only the first flit
(flow unit) of the packet, greatly reducing the latency through each node. An important
constraint on the network is that it must deliver request and reply messages without

deadlocking. DASH prototype cannot guarantee a deadlock-free mesh network because of
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the limited buffering on the directory boards and the fact that a cluster may need to
generate an outgoing message before it can consume an incoming message. DASH avoids
these deadlocks through three mechanisms: (i) reply messages can always be consumed,
(ii) the independent request and reply meshes eliminate request-reply deadlocks, and (iii) a
back-off mechanism breaks potential deadlocks due to request-request dependencies.
Software support: For effective use of a large-scale multiprocessors a
comprehensive software development is essential. DASH focused on: operating systems,
compilers, programming languages, and performance debugging tools. DASH supports a
full-function UNIX operating system. Developed in cooperation with Silicon Graphics, the
DASH OS is a modified version of the existing operating system on the 4D/340 (Irix, a
variation of UNIX System V.3) to accommodate the hierarchical nature of DASH, where
processors, maim memory, and I/O devices are all partitioned across the cluster. They
worked on several tools at the user level to aid the development of paralle! programs for
DASH. They also developed a parallel language called jade to find parallelism beyond the
loop level, which allows a programmer to easily express dynamic coarse-grain parallelism.
Using Jade can significantly reduce the time and effort required to develop a parallel
version of a serial application. They also developed a suite of performance monitoring and
analysis tools. The high-level tools can identify portions of code where the concurrency is
smallest or where the most execution time is spent, also they provide information about
synchronization bottlenecks and load balancing problems. The low-level tools will couple

with the buiit-in hardware monitors in DASH.

2.5.9 The DASH Performance

The three applications simulated by DASH are Water, Mincut, and MP3D. Water

is a molecular-dynamics code that computes the energy of a system of water molecules.
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Mincut uses parallel simulated annealing to solve a graph-partitioning problem. MP3D
models a wind tunnel in the upper atmosphere using a discrete particle-based simulation.
Three steps of DASH performance: (i) the latency for memory accesses serviced by the
three lower levels of memory hierarchy, (i) speedup for three parallel applications running
on a simulation of the prototype using one to 64 processors, and (iii) we present the actual
speedups for these applications measured on the initial 16-processor DASH system.

While caches reduce the effective access time of memory, the latency of main
memory determines the sensitivity of processor utilization to cache and cluster locality and
indicates the costs of inter-processor communication. Applications for large-scale
multiprocessors must utilize locality to realize good cache hit rates, minimize remote
accesses, and achieve high processor utilization.

Water and Mincut achieved reasonable speedup through 64 processors. For Water,
the reason is that the application exhibits good locality. For Mincut, good speedup resuits
from very good cache hit rates. MP3D did not exhibit good speedup because, the
encoding of the MP3D application requires frequent inter-processor communication, thus
resulting in frequent cache misses. On average, about 4% of the instructions executed in
MP3D generate s read miss for a shared data item.

DASH achieved reasonable speedup when going from 16 to 32 and 64 processors.
Even on MP3D, caching is beneficial. They also used several other applications on their
16-processor prototype like two hierarchical n-body applications, a radiosity application
from computer graphics, a standard-cell routing application from very large scale
integration computer-aided design, and several matrix-oriented applications, including one
performing sparse Cholesky factorization.

DASH group commented, "Our experience with the 16-processor machine has
been very promising and indicates that many applications should be able to achieve over

40 times speedup on the 64-processor system."
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2.6 Cache Coherence in Large Scale: Issues and Comparisons

The most important consideration, choosing a cache coherence scheme for a
multiprocessor system, are performance (how effective it allows the caches to be in
reducing the average delay), implementation cost (how much memory is required to store
the cache block sharing information, and the complexity of the control logic [6]. Of course
different schemes have significantly different trade-offs in cost and performance. Basic
major factors, which have great impacts on the system performance:

(1) The coherence detection strategy: detects a possibly incoherent memory access

either dynamically at run time or statically at compilation time.

(i) The coherence enforcement strategy: updating or invalidating, which are used

to ensure that stale cache entries are never referenced by a processor.

(iii) Precision of block-sharing information can be changed to trade-off the

implementation cost and the performance.

(iv) Affects of cache block size on performance of the memory system.

2.6.1 Coherence Detection Strategy

The dynamic coherence detection strategies solve the coherence problem by
examining the actual memory addresses generated by a program at run-time and
dynamically keeping track of which processors have a copy of which blocks. The static
coherence schemes try to predict which memory addresses may become stale by analyzing

the program's referencing behavior when it is compiled [6].
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2.6.2 Coherence Enforcement Strategy

The actual method used by the coherence scheme to ensure that no processor
accesses a state-memory location. The simplest solution is to make all shared-writable
memory locations non-cacheable so there will be no duplicate copy; this approach may
significantly reduce performance [6]. Other strategies such as update and invalidate always
allow shared write able memory locations to be cached, but either update or invalidate
stale-cache entries before they are referenced again. In update schemes, the new value of
the shared location is distributed to all processors. So, it reduces additional miss but
increases network traffic. According to the invalidate scheme, all other cached copies are
marked invalid when copy is updated. It reduces network traffic, but it introduces the

extra delay of another miss if the block is reused.

2.6.3 Precision of Block-Sharing Information

Coherence mechanism that dynamically determines which memory references need
coherence actions track the state and sharing characteristics of every memory block
referenced by the program [6]. When a block needs to be invalidated, these exact
mechanisms send invalidation messages only to those processors that actually have a
cached copy of the block. Some recent tagged directories further reduce the directory
memory requirements by maintaining sharing information only for blocks that are actually

cached.

2.6.4 Cache Block Size

The cache block size or line size is the number of consecutive memory words

updated or invalidated as a single unit. The fetch size is the number of words moved from
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the main memory to the cache on a miss. When block size is less than the fetch size,
increasing the size of block can reduce the miss ratio because of spatial locality. When the
block size becomes too large (exceeds the data pollution point), the miss ratio increases
since the probability of using the additional fetched data becomes smaller than the
probability of reusing the data replaced [6]. The block size that minimizes the average
memory delay generally is smaller than the block size that minimizes the miss ratio because
the additional time required to transfer the large blocks can overwhelm the latency to

receive the first word.

2.7 Summary

Following papers have been studied, "A Survey of Hardware Solutions for
Maintenance of Cache coherence in Shared Memory Multiprocessors"[7], "A Survey of
Cache Coherence Schemes for Multiprocessors" [2], and "Cache Coherence In Large-
Scale Shared-Memory Multiprocessors: Issues and Comparisons" [6]. This is just a
comprehensive overview of hardware-based solutions to the cache coherence problem in
shared memory multiprocessors. For more powerful and more efficient shared memory
multiprocessors, the architects and designers should be very careful about the problems

and the impact of the applied solution on system performance.

Overall time required to access the memory can be reduced significantly by adding
private or processor caches. These private caches introduce cache coherence problem.
Hardware-based solutions are discussed in this chapter. Different important architectural
issues that affect the performance and implementation cost of a cache coherence schemes
are surveyed. Trace-driven simulations have been used to quantify the performance impact

of these different factors. The DASH project has demonstrated a coherence mechanism
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that incorporates both a bus-based snooping protocol and directory-based coherence
scheme, it gives the programmer a choice of both updating and invalidating coherence

enforcement strategies.

Despite of the considerable advancement of the field, it still represents a very
interesting research field. The RISC (Reduced Instruction Set Computer) microprocessors
with an increased memory bandwidth requirement will put an increased burden on the
memory system for future multiprocessors. So, multiprocessor caches are and will remain
an important topic in the coming years. No doubt DASH project is a new direction in
multiprocessor system. In the research paper a new approach is implemented which gives

better performance.
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Chapter 3

SYSTEM ORGANIZATION AND

CACHE COHERENCE PROTOCOL

A great variety of schemes have been proposed to solve the well-known cache-
coherence problem in shared memory multiprocessors. The main objective is to improve
both the system performance and scalability. Hardware methods are highly convenient
because of their transparency to software.

In this chapter, we investigate a clustered architecture that consists of a set of
nodes connected by a general inter-connection network [10][11][12]. Inside each cluster,
processors can submit their requests and/or receive requests from other processors
through the bus that connects them. Clusters can exchange messages/data among
themselves using the inter-connection network. A bus-based architecture is chosen in a
cluster for performance and simplicity. Section 3.1 discusses different interconnection

networks. A description of the proposed architecture is presented in Section 3.2. In
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Section 3.3, we discussed the cache coherence protocol for this multiprocessor system,
where actions required for memory read or memory write operation are explained. Finally,

Section 3.4 presents the summary of this chapter.

3.1 Overview of Topologies Used

Processors in any multiprocessor system are connected by effective, efficient, and
reliable communication network. Each processor can exchange messages and/or data with
others through this network. There are many communication networks being proposed.
Here, in this work, three of them are considered:

() Ring,

(ii) Mesh, and

(ii1) Hypercube.

These three networks have been chosen because of their simplicity in design and
reliability in operation. DASH project from Stanford University used mesh and STING
from Sequent Computer Systems Inc. used ring network. Double connected networks
have been used to increase the system reliability and to decrease routing deadlock.

The main focus of this work is to measure and compare the overall memory
latency among three different network topologies. Each network is considered with its
own characteristics, but other parameters such as channel speed, dedicated path between

any two nodes, and so on are same for all three networks.
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3.1.1 Ring

A collection of homogenous nodes interconnected via a set of high-speed point-to-
point links. Each node or cluster contains processors, caches, memories, directories, and
I/O busses. Every processor in every node has a common view of the system-wide
memory and I/O address space. Within a node, cache coherence is maintained using MESI
snooping protocol. Although there are dedicated paths between any two nodes,
intermediate node(s) may be required to establish the path. So information from node 0 to
node 3 in a 8-cluster system goes through link 0-1, node 1, link 1-2, node 2, and link 2-3.
Link speed is considered as 1Gbyte per second and delay due to each intermediate node is
considered as 30 neno seconds.

Some of the advantages, simple and reliable network, high data transmission rate,
and low transmission error rate. Some disadvantages are, waste of bandwidth, and if not

heavily utilized, many empty paths are unused.

3.1.2 Mesh

In this network, the clusters are arranged in a two dimensional (X-Y) fashion. Two
adjacent clusters are connected through two communication channels. So, the number of
unidirectional links, bandwidth, and cost is approximately 4*N for large N, where N is the

total number of clusters. A linear growth in the cost as a function of size is usually
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acceptable, since the processor cost is also linear with N. To send information from source
to destination, at first the information is routed in X-direction, then in Y-direction.

Some advantages, for computation-intensive problems that map well onto a two-
dimensional mesh, this network is attractive, and simple and reliable network. Some
disadvantages are, in a NxN mesh if data have to go from one corner to the diagonally
opposite comer, 2N hops are required, where the average will be about half of the worst

case.

3.1.3 Hypercube

In an n-degree hypercube (also called an n-cube), 2" nodes are arranged in an n-
dimensional cube, where each node is connected to n other nodes. In this type of
architecture, the clusters are the nodes of a hypercube and a hypercube edge corresponds
to a bidirectional communication link between two clusters. Each of the 2n nodes of an n-
cube are assigned a unique n-bit address ranging from O to 2n - 1 such that the address
assigned to two adjacent nodes differ only in 1 bit position. The maximum distance
between any two nodes in an n-cubes is n hops.

Some advantages of this network, fairly easy to build, and reduced worst-case
communication delay. Some disadvantages, each time the dimension of the multiprocessor
system increases by 1, number of processors becomes double; total number of processors

is always a power of 2 (two).
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3.2 The System Architecture

In snoopy scheme, as mentioned above, the information about which processor
caches have cached copies are available within the clusters. So, snoopy schemes require
that all caches see every memory request from every processor. This inherently limits the
scaleability of these systems because the common bus structures due to its limited
Bandwidth. With high-performance RISC processors this saturation can occur with just a
few processors.

In directory scheme the need to broadcast every memory request to all processor
caches has been removed. The directory maintains pointers to the processor caches
holding a copy of each memory block. Only the caches with copies can be affected by an
access to the memory block. Thus, the processor caches and interconnect will not saturate
due to coherence requests. Moreover directory schemes are not dependent on any specific
interconnection network.

Figure 3.1a shows the general overview of the higher level organization. This
architecture consists of a number of processor nodes or clusters connected through
directory controllers to a low-latency interconnection network. Each cluster consists of a
small number of high-performance processors and a portion of the shared memory
interconnected by a bus. It is essential to distribute the memory among the clusters to
allow the system to exploit locality. Multiprocessing within the cluster can be viewed
either as increasing the power of each cluster or as reducing the cost of the directory and

network interface by amortizing it over a larger number of processors.
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Figure 3.1a: Simulation architecture with a general interconnection network
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In this simulation 16 processors are considered to form a multiprocessor system.
Two cases are implemented:
case 1 - four processors are arranged to be in a cluster as shown in Figure 3.1b, resulting
in a system with 4 clusters, and 4 processors in a cluster.
case 2 - two processors are arranged to be in a cluster as shown in Figure 3.1c, resuiting

in a system with 8 clusters, and 2 processors in a cluster.

3.2.1 Ring Network Topology

Figures 3.2a and 3.2b show cluster-based multiprocessor systems using a double
connected ring network for 4 clusters and 8 clusters, respectively, within each cluster, a
portion of memory and a directory is assigned. Each cluster is connected to both rings
with two network interfaces, one for request and other one for acknowledgment. There
are dedicated paths between any two nodes, as mentioned earlier. When one cluster needs
to send any message/data to another cluster, it checks the link or path; when it gets the
link free, it starts transmitting information regardless of the distance between source and
destination. If the path is busy, it waits for the link to be free. When information passes
through the link, every node checks the destination indicator, all intermediate nodes let the
message go through to the next node. So, there is a delay associated with each

intermediate node. The destination node makes a copy of the message, sends the
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RING NETWORK:
Garb the first free token, irrespective of the traveled distance.
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Figure 3.2a: Cluster-based multiprocessor (16 P, 4 C) system using ring network
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RING NETWORK:
Grab the first free token, irrespective
of the traveled distance.
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Figure 3.2b: Cluster-based multiprocessor (16 P, 8C) system using ring network
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acknowledgment signal back to the source node, and cleans the link for future use. Delay

due to each intermediate node is considered as 30 neno seconds.

3.2.2 Mesh Network Topology

Figures 3.3a and 3.3b show cluster-based multiprocessor systems using double
connected mesh network for 4 clusters and 8 clusters, respectively. Each cluster is
connected to other clusters with two communication channels, one for request and other
one for acknowledgment. For simplicity, only one path is dedicated between any two
clusters. Unfortunately it is not trouble free, there may be a common part of the channels
being used by more than one pair of clusters. If every pair of clusters tries to communicate
at the same time, one of them will be selected randomly and the other will wait in a queue.
After first pair is done, second pair is selected randomly and the whole process repeats
until every pair is done. X-Y routing strategy is followed for this network. Delay due to
each intermediate node is considered as 30 neno seconds. This method decreases
efficiency with increasing number of clusters, but for 4 to 16 clusters this effect is not

tangible.

3.2.3 Hypercube Network Topology

Figure 3.4 shows cluster-based multiprocessor systems using double connected
hypercube network for 8 clusters. A hypercube network for 4 clusters is the same as a

mesh network for 4 clusters. Each cluster is connected to other clusters with two
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MESH NETWORK:
To go from one cluster to another, may be needed to pass through intermediate
cluster(s).
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Figure 3.3a: Cluster-based multiprocessor (16 P, 4C) system using mesh network
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MESH NETWORK:

To go from one cluster to another, may
be needed to pass through intermediate
cluster(s).
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Figure 3.3b: Cluster-based multiprocessor (16 P, 8 C) system using mesh network
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HYPERCUBE NETWORK:
To go from one cluster to another, may

be needed to pass through intermediate
cluster(s).
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communication channels, one for request and other one for acknowledgment. Here a 3-
cube is considered and the clusters are arranged in a 3-dimensional (X-Y-Z) fashion. Each
cluster in this system is connected to 3 other clusters. For simplicity, only one path is
dedicated between any two clusters. This type of networks is not trouble free too, and

there may be the same kind of link/channel sharing problem like mesh networks.

3.3 The cache-Coherence Protocol

Normal Read and Write operations are considered in this simulation work. MESI
protocol is used to identify a cached copy and the states of directories. A memory location
may be in one of these four states ---

a) Modified - the only valid copy in the whole system,

b) Exclusive - the only valid cached copy consistent with the memory copy,

c) Shared - the valid cached copies consistent with the memory copy, or

d) Invalid - the inconsistent (invalid) cached copy.

The memory system is broken into four stages of hierarchy, Two Levels of
Processor Cache — Each processor has two caches, (i) first level cache and (ii) second
level cache. Second level caches are larger than the first level caches. Processor caches are
designed to match the processor speed and support snooping from/to the bus. (iii) Local
or Home Cluster - This level includes some other processor's second level caches within
the requesting processor's cluster and physical memory for some given memory addresses.
The directory associated with a cluster is the owner directory for that cluster’s memory
addresses. Each directory has the information about all of its blocks if they are modified,
exclusive, shared, or invalid. (iv) Remote Cluster Level - The fourth and final level for a
memory block consists of the clusters marked by the owner directory as holding a copy of

the block.
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3.3.1 Memory Read Actions

When the requested block-address presents in the same processor's first level
cache, the cache simply supplies the data and the read operation is done. If the read
request is not satisfied from the first level cache, it is sent to the second level cache. No
state change occurs at the directory level.

If the second level cache has a copy, then first level cache is filled from the second
level, and the processor’s request is satisfied. If the read request is not satisfied from the
second level cache, it is sent to the local cluster level. No state change occurs at the
directory level.

If local cluster has at least one cached copy of that memory block, the request is
satisfied within the cluster and no state change is required at the directory level. If the
request must be sent beyond the local cluster level, the owner directory for the memory
location. If that block is un-cached, exclusive, or shared, main memory supplies that block.
If that block is modified, the request is forwarded to the remote cluster indicated by the

owner directory. Directory and maim memory states are updated accordingly.

3.3.2 Memory Write Actions

If the block is in the writing processor's cache and the state of the block is dirty,
the write can be performed immediately. Otherwise, a Read-exclusive request is issued on
the local cluster's bus to obtain exclusive ownership of the line and retrieve the remaining
portion of the cache line.

If one of the caches within the cluster already owns the cache line, then the Read-
exclusive request is serviced at the local level by a cache-to-cache transfer. Processors

within a cluster are allowed to alternately modify the same memory block without any
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inter-cluster interaction. If no local cache owns the block, then a Read-exclusive request is
sent to the local cluster.

If the requested location is un-cached, exclusive, or shared the local cluster can
immediately satisfy an ownership request. Also, if the requested location is in shared state,
then all other cached copies must be invalidated. Invalidation requests are sent to those
clusters that have a copy of that block, at the same time, the local cluster sends an
exclusive data reply to the requesting cluster. If the directory indicates that the block is
dirty, then the Read-exclusive request must be sent to dirty cluster.

If the required memory block is being shared, then the remote clusters receive an
invalidation request to eliminate their shared copies; after receiving the invalidation,
remote clusters send an acknowledgment to the requesting cluster. If the required block is
dirty, the dirty cluster receives a Read-exclusive request. The remote cluster responds
directly to the requesting cluster and sends a dirty-transfer message to the home indicating
that the requesting cluster now holds the block exclusively.

When a writing cluster receives all the acknowledgments from the local or dirty
cluster, it is obvious that all copies of the old data have been purged from the system. If
the processor performs the write operation after receiving the acknowledgments, then the

new value becomes available to all other processors at the same time.

3.4 Summary

A combination of snoopy and directory schemes is selected in this architecture to
take advantages from both schemes. This architecture is a modification of DASH project

to evaluate memory latency for different network topologies. Double ring, double
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hypercube, and double mesh networks are used in this simulation program. Five SPLASH-
2 applications, Water_sp, Ocean, FFT, and LU, are used and results are collected
accordingly. Required data structures, described in next chapter, are maintained to store
all necessary information during the simulation. To make comparison among
interconnection networks, we have to follow some common assumptions, because each of
these networks has its own characteristics. These assumptions, e.g., how this program

works, how results are collected, and so on, are discussed in the following chapters.
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Chapter 4

SIMULATION ANALYSIS

As already mentioned, the objective of this research work is to investigate overall
memory latency of cluster-based cache-coherent multiprocessor system for different
interconnection topologies namely double slotted ring, double connected hypercube, and
double connected mesh network. Each network topology has its own characteristics, so in
order to compare them it is obvious to follow some assumptions for every network. In
Section 4.1 trace-driven simulation model is explained. Section 4.2 describes the
SPLASH-2 applications used in this simulation. Section 4.3 shows different data
structures required for this architecture. Section 4.4 is a collection of assumptions (MESI,
cluster ownership, invalidation and update strategies, and so on) used. In Section 4.5, we
explained how this simulation algorithm works. Simulation results are shown in Section

4.6. Finally, Section 4.7 is the summary of this chapter.
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4.1 Trace-Driven Simulation Model

Trace-driven model, as shown in Figure 4.1a, has been used in this simulation. The
simulator gets trace records from an application file. Each trace record has three fields: (i)
requesting processor number, (ii) type of the operation (read or write), and (iii) memory
address where read/write should be performed. Figure 4.1b is the flow-diagram of a
cluster to show how do the processors work with trace file and network. Popular C
programming language is chosen to write the simulator and it is executed on a SUN

SPARC workstation.

4.2 Applications Used in this Simulation

Trace files used in this simulation are generated using MINT package designed by
the Computer Science Department, University of Rochester, Rochester, NY[8]. They
developed the techniques that improve locality of reference in parallel programs, so as to
admit efficient execution on large-scale multiprocessors. Application trace files used in this
simulation are Water-sp, Ocean, FFT, and LU [9].

Water_sp: Water_sp is molecular-dynamics code that computes the energy of a
system of water molecules. This application computes the interactions between a set of
water molecules over a series of time steps. For the problem size considered was 1728

molecules, each molecule interacts with all other molecules in the system. In this
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simulation Water application achieves good speedup. The reason is that cache-locality is
very high and the time between processor stalls indicates that Water is not highly sensitive
to memory latency. The application computes the forces on molecules one at a time, and
incurs misses only between force computations. The base problem size for an upto-64
processor machine is 512 molecules [13].

Ocean: The ocean application simulates large-scale ocean movements base on
eddy and boundary currents. Contiguous partition allocation implements the grids to be
operated on with three-dimensional arrays. The first dimension specifies the processor
which owns the partition, and the second and third dimensions specify the x and y offset
within a partition. The base problem size for an upto-64 processor machine is a 258x258
grid [13].

FFT: The First Fourier Transform (FFT) kernel implements a complex one-
dimensional version of the six-step FFT algorithm described by Woo[13]. It is optimized
to minimize inter-processor communication. The base problem size for an upto-64
processor machine is 65,536 complex data points (M=16) [13].

LU: The LU kernel factors a dense matrix into the product of a lower triangular
and an upper triangular matrix. The factorization uses blocking to exploit temporal locality
on individual sub-matrix elements. Non-contiguous block allocation prevents blocks from
being allocated contiguously, but leads to a conceptually simple programming
implementation. The base problem size for an upto-64 processor machine is a 512x512

matrix with a block size of B=16 [13].
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4.3 Data Structures of this Architecture

The proposed architecture needs data structures for first level cache, second level
cache, processor, processor-queue, memory, network-queue, and directory to perform the

simulation.

For first level cache and second level cache, we need the information about

memory block address and status.

4.3.1 Data Structure for Processor

Each processor is considered to have two levels of caches: cache level 1 (size may

be 8 KB or 16 KB) and cache level 2 (size may be 256 KB or 2048 KB). Data structure

for a processor is:

Yypedef struct proc Processor;
struct proc{
cachel cache_I[NO BLK CHI];

cache2 cache_2{NO_BLK CH2];

Processor processor[NO_PR];
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Here, NO_BLK_CHI and NO_BLK_CH2 are the total number of blocks in first
and second level caches respectively, NO_PR is total number of processors, and cachel
and cache2 are two other structures with cache-block-address and cache-block-state.

After reading each trace from the trace file, we store it in the processor-queue

under which it does belong. The structure of a processor queue is:

typedef struct proce_queue *Queue;
struct proce_queue{

unsigned long addr;

int  type_of oper;

Queue next_ptr;

Queue queueHeader[NO_PR];

Each processor has its own queue. After reading each trace from trace file the
information is stored in the processor queue that is indicated by the processor number field
of that trace record in order to maintain parallelism. When any of the queue is not empty,
i.e., all processors have something to do, or any processor queue exceeds the maximum
limit, the all the processors are allowed to perform their jobs (READ or WRITE

operations).
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4.3.2 Data Structure for Directory

Each owner directory keeps track of each memory block under its control.
Checking the directory one can determine the state of a block, all sharing clusters if it is

shared, the modified cluster if it is modified, and so on. The structure of a directory is:

tepedef struct dir Dir;
struct dir{
struct block{
unsigned long dir_blk_addr;
int  dir_blk_state;
int  shared clusfNO PR];
int  mod_cluster;

Jblk[NO_MEM BLK];

Dir directory[NO _CLUST];

Here, NO_MEM_BLK is the total number of memory blocks in one memory
module and NO_CLUST is the total number of clusters in the system. For each cluster one
directory is maintained and directory has the information of all blocks of that cluster.

Before running the simulation program, the directory is initialized properly.
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4.3.3 Data Structure of Network Queue

Operations that use the network to be performed are stored in a network queue to
some time. The structure of the network queue is:
typedef struct net_queue *NetQue;
struct net_queue{
short loc_cluster;
short own_cluster,
short mod_cluster;

NetQue next_ptr;

Initially the network queue is empty. The operations, that need the network, are
stored in the queue to satisfy the characteristic of multiprocessor system, These operations
are performed simultaneously when the network queue is full to measure the network
delay. Finally, the queue will be empty indicating that all of the operations that need

remote resources are completed.

4.4 Assumptions

Assumptions are made to keep the simulation algorithm simple and specific.

Sometimes there are more than one possible solutions for the same problem (e.g., when a
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shared copy is written, the main memory copy may be updated or invalidated). For any of
these cases if the same assumptions are not followed the ultimate result may vary and it

may be very difficult to compare among different interconnection networks.

4.4.1 MESI: States of a Cached Copy

To identify any cached copy, the MESI cache coherence protocol is used.
According to this protocol, any cached copy must be in one of the following states -

Modified: After more than one write on a cached block the main memory block is
not updated, so main memory does not have a valid copy. The cached copy is the only
valid copy of the block in the whole system. The block requires write back upon
replacement. Any request for that block must be satisfied by the processor-cache that
owns the modified block.

Exclusive: When a memory block is written for the first time, the main memory is
also updated at the same time. So this cached copy is the only valid copy that exists along
with the main memory copy. Any request for this block may be satisfied from the
processor-cache that performed the write operation on that block or from main memory.

Shared: When a block is read from main memory, modified cluster, or from any
other processor-cache who has a valid copy, the new state of that block is shared. So
shared copy is a valid copy which exists with other copies including main memory copy.
First time when a block is read is considered as a shared copy. The block does not require

to be written back upon replacement.
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Invalid: This block exists in a processor-cache but is not valid. When a write
operation is performed on a block, that block becomes Exclusive or Modified, all other
shared copies, if any, are invalidated to make sure that data from those blocks are not
valid.

According to the assumptions, an exclusive copy is the only valid copy consistent
with the main memory copy; also a shared copy may be the only valid copy with main
memory copy. Read operation makes a block shared, but on the other hand write
operation makes a block exclusive. Figure 4.2a is the state-transition graph for states
(cached copies) of the adopted coherence protocol. P-Read and P-Write are the read and
write operations, respectively, initiated by the same processor who has the block. Read-
Blk and Write-Blk are Read and Write operations initiated by a processor who does not
have a valid copy of the block. So after P-Read no state change occurs, after a Write-Blk
the block must become invalid regardless of its original state, and so on.

Figure 4.2b shows the state-transition graph for states of transactions among the
clusters. If the state of any block is changed by any operation, the owner directory must be
updated. When a write operation is done into a modified copy within the same cluster,
then no state change is needed. But after reading a modified block the directory must be
updated. In this case main memory is also updated because the new state is shared. Also
when a write operation is performed on a block owned by a remote cluster, necessary
updates into caches, directories, and main memory are required. Initially all the blocks are

considered to be un-cached.
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4.4.2 Cluster Ownership of Memory Blocks

As shown in Fig. 3.1b for the architecture with 16 processors in 4 clusters, cluster

0 is the home cluster for processor 0, 1, 2, and 3. Directory 0 is the owner directory for

cluster 0.

Table 4.1: Distribution of processors and memory among 4 clusters

Number of Processors | Local Cluster  Owner Directory = Memory Module
0,1, 2, and 3 0 0 0
4,5 6,and 7 1 1 1
8,9,10,and 11 2 2 2
12, 13, 14, and 15 3 3 3

But for Fig. 3.1c, cluster O is the home cluster for only processor 0, and 1. Home
cluster for processor 14, and 15 is cluster 7, and only directory 7 has the ownership for
memory module 7, and so on.

Table 4.1 shows the distribution of the processors and memory modules among the
clusters of a 4-cluster system. In this simulation, directory O contains information about
memory blocks of memory module 0. Home cluster for processor 0, 1, 2, and 3 is cluster
0, and only directory 0 has the ownership for memory module 0, and home cluster for
processor 12, 13, 14, and 15 is cluster 3, and only directory 3 has the ownership for

memory module 3.
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Table 4.2: Distribution of processors and memory among 8 clusters.

Number of Processors |  Local Cluster Owner Directory Memory Module
Oand 1 0 0 0
2and3 1 1 I
4 and 5 2 2 2
6 and 7 3 3 3
8 and 9 4 4 4

10 and 11 5 5 S
12 and 13 6 6 6
14 and 15 7 7 7

Table 4.2 shows the distribution of the processors and memory modules among the
clusters of a 8-cluster system. In this simulation local or home cluster for processor 14 and
15 is cluster 7, and only directory 7 has the ownership for memory module 7, and so on. If
processor 1 wants to read a location owned by directory 3 and processor 12 has the
modified copy of that block, then the interconnection network must be used to satisfy this
request. When processor 1 fails to get the block from its local cluster, cluster 0 will
communicated with cluster 3 to get the information about that block, and then with cluster
7 to access the data.

All clusters are equally spread and distance between any two consecutive clusters
is 6 feet. Propagation delay is considered to be 1 nanosecond per foot. Transmission rate
of each cluster is 1 GBps and processor speed is 166 MHz, i.e., 1 processor cycle takes 6

nanoseconds.
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4.4.3 Cached Copies Invalidation and Main Memory Update Strategy

Two types of update policies already have been mentioned. To write in a shared
memory block write-invalidate protocol is used. Before a write operation is performed on
a shared block, an invalidate request is issued from the owner cluster to all sharing
clusters, and all other copies are invalidated. Main memory copies are updated using
write-update policy.

To insert a main memory block into first level or second level cache, a block is
selected randomly if cache is already filled up, then the selected block is replaced by the
new block. If the caches are not completely full, then just insert the new block to the first

available free cache block.

4.4.4 Number of Processor Clocks Needed

Depending on from where the request is satisfied the number of processor clocks
will be different. Table 4.3 shows different processor clocks required to find a block at
different level (first level cache, second level cache, etc.). Whereas Table 4.4 shows
different number of processor clocks needed to perform different events (snooping,
broadcasting, etc.). Chart 1 shows Request Satisfied Vs the total number of processor
cycles needed to satisfy the request. If the request is satisfied from the processor’s first
level cache, then the delay is considered to be 1 processor cycle, for second level cache it

is 3 processor cycles, and so on.
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Table 4.3a: Processor clocks required to find the block at different levels

No Memory Block is found Number of Proc Clocks needed
1 First Level Cache 1
2 Second Level Cache 3
3 Local Cluster 9
4 Local Memory 12
5 Remote Cluster Vary

Processor speed is considered as 166 MHz, so time required for one processor
clock is 1/166x10° = 6 nanoseconds.

Table 4.3b: Processor clocks required to perform different events

No To Perform The Event Number of Proc Clocks needed
1 Snooping through Bus 1
2 Bus Delay (Wait) 3
3 Fill cache Level 1 Buffer 1
4 Fill Cache Level 2 Buffer 1
5 Broadcast Request 1
4 Network Delay Vary

All of the above assumptions are followed to simulate ring, mesh, and hypercube
network. So the varation of overall memory latency will occur due to different

characteristics of ring and mesh interconnection network.
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4.5 Simulation Algorithm

The simulator is driven by suitable SPLASH-2 trace file. Each trace file has
approximately 3.5 M of traces. Each trace record has three fields: requesting processor
number, type of operation, and memory address. The requesting processor is interested to
perform the operation on/from the memory location specified. Figure 4.3b is the flow-

chart to explain the higher level algorithm:

START: (Higher-Level Algorithm)
1. Initialize the system (caches, memory modules, directories, etc.)
2. Read P traces from trace file (P = Number of processors)
if Every processor has something to do, then
a) Perform operations (Read or Write)
b) Repeat from step 2;
else if Any processor-queue exceeds the maximum allowed size, then
a) Perform operations (Read or Write)
b) Repeat from step 2;
else (if end of trace file, then)
Perform all remaining operations, if any;
3. Calculate overall memory latency;
END;
All the processors are allowed to perform their jobs at the same time. When all the

operations are performed, the simulation program stops.
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FLOW-CHART:
MEMORY LATENCY EVALUATION IN CLUSTER-BASED
MULTIPROCESSOR SYSTEMS WITH DIFFERENT
INTERCONNECTION TOPOLOGIES

Initialize The System

= —3

Read P Traces From File
(P = Number of processors)

Calculate Network and
Overall Memory Latency

A
C
Perform READ Perform WRITE After performing
operation and operation and READ/WRITE,
gotoC gotoC come back to C

Figure 4.3b: Overall simulation flow-diagram
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In the simulation, the main loop represents the parallelism. When every processor
has something to do, they are allowed to perform their jobs simultaneously. Just to keep
the processor queue size smaller than a certain number, processors are allowed to perform
their jobs when one or more processor(s) exceeds that limit; at that situation it is also
reasonable to assume that most of the processors have something to do. At this situation,
one can expect almost accurate results.

Initialize The System: Before performing any trace operation, the whole system
must be initialized properly. Initially no block is cached and main memory is the only
source of data. Processor queue and network queue are empty. All caches, and directories
must be initialized perfectly.

Read P Traces from trace file: If P is the number of processors in the system, then
read P number of trace at a time. If the trace file is fully equally distributed, which means
in any P number of consecutive traces no processor number is repeated, every processor
will have something to do at this point. Otherwise, some processors will have nothing to
do.

Need Perform Operation: If every processor has something to do, then let the
processors perform their jobs simultaneously, otherwise read next P number of traces.

Check if All done: If all traces from trace file are performed and overall memory
latency is calculated, then exit from this simulation. Otherwise perform operations.

Read or Write: Determine the type of the operation and perform the operation.

Calculate Network and Overall Delay: Must be some mechanism to calculate the

network delay and the overall delay [15][16][17][18].
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Figures 4.4a and 4.4b show how a read operation is performed. Only if the
required block is not in First Level Cache (CL1), then Second Level Cache (CL2) is
searched. If CL2 does not contain this specific block, then the requesting processor
broadcasts a Read-Blk request within the cluster using the bus. All other processors (CL2
of each processor is connected to the bus directly as shown in Fig. 3.1a) of this cluster
snoop on the bus. If any CL2 has this block will response and request will be satisfied
locally. If more than one valid copy exists in this cluster, then request will be satisfied from
the processor who will response first. If home cluster (or local cluster) fails to satisfy this
request, then Read-Blk request is forwarded to the owner directory of required block as
shown in Figure 4.3b. Directory state of this block may be one of the following,

1. Modified,

2. Exclusive or Shared,

3. Invalid (or Un-cached)

Modified Block: This is the only valid copy in the entire system, main memory
copy is already invalidated. So, any request for this block must be satisfied from the
modified cluster or processor.

Exclusive or Shared Block: Exclusive copy (the only valid copy) and shared copies
are consistent with the main memory copy. In this case request is satisfied from the main
memory with the permission of the owner directory.

Invalid or Un-cached Block: Block that never has been cached or has been

invalidated by any processor. This block can not be accessed.
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If block is modified, then modified cluster will satisfy the request simply because,
this is the only valid copy in the whole system. Main memory needs to be updated as new
state of this block is shared. If the block is exclusive, shared, invalid, or un-cached, then
request will be satisfied form main memory to make the algorithm easy to implement,
moreover this may reduce overall communication delay. Directory is updated accordingly,
so owner knows most recent information about each block under its control.

Figures 4.5a, 4.5b, and 4.5c are the flow diagrams to explain how a write
operation is performed. Basic idea is similar as read operation, but write operation is more
complex when compared with read operation. Main two reasons behind this phenomena
are:

1. When a block is found in CL1 and/or CL2, immediately read operations can be
performed. For write operations situation is different, simply because the state of that
block changes. If that block is in shared state, then situation is more complex. All other
copies must have to make invalid before writing, and to invalidate a copy traveling
through the whole network may be needed. Also main memory and directory may have to
update.

2. When a shared block is read, the new state is also shared and no invalidation is
required. But in case of write on a shared copy, new state is exclusive and all other shared
copies must be invalidate before writing using write-invalidate consistency command.
Moreover main memory is updated using write-update policy.

It is easy to realize that, write operations need more work, and it is obvious that
delay for a write operation is more than a read operation even though the block is found in

same distance.
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Figure 4.6 shows the execution procedure in proposed (double) ring network. One
ring, say the inner ring (RING1), rotates in clockwise; the other ring, the outer ring
(RINGO), rotates in counter-clockwise. The shortest-path strategy (RINGO or RING1) is
used by the cluster to transfer information or acknowledgment to other clusters. Each
cluster is connected to both. 1 processor clock = 6 neno seconds = 6/1,000,000,000 Sec
Transmission rate = 1 GBps = 8,000,000,000 bps. Propagation delay between two
consecutive clusters is = 6 feet * 1 neno second = 1 processor clock. Delay due to READ
block transfer = 32*8bits/1GBps = 5 processor clocks. Delay due to WRITE block
transfer = (32+4)*8bits/1GBps = 6 processor clocks. Delay due to each intermediate node
= 30 neno seconds = 5 processor clocks. Network delay = prop delay + message delay +
intermediate node delay

Figure 4.7 explains how the proposed mesh network works. Each cluster is
connected to other clusters by two communication channels, one for request and other for
acknowledgment. To find out the destination message first travels in x-direction then y-
direction. To reach at the destination from the source, message may pass through
intermediate cluster(s). More than one pair of clusters may require the same portion of
communication channel. In this case FCFS policy is used. If more than pair needs the same
path at the same time, then randomly one pair will be selected to access the path, and
other pairs will wait in a queue for next time. The delay from one cluster to the next (in
any direction) is 10 micro seconds, i.e., 1667 processor cycles.

Here overhead delay is considered and the delay for actual memory block and/or

acknowledgment is not measured, because they are almost the same for each network.
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Figure 4.8 is the flow diagram to show how a hypercube network works. To find
out the destination message first travels in x-direction, then in y-direction, and finally in z-
direction. To reach at the destination from the source, message may pass through
intermediate cluster(s). The delay from one cluster to the next (in any direction) is 10
micro seconds, i.e., 1667 processor cycles.

This simulation is concerned about overall memory latency. For a shared memory
multiprocessor system the interconnection network has a great effect on the memory
latency [19]. This algorithm helps to compare total delay time needed for a particular

application but different interconnection network.

4.6 Simulation Results

In any multiprocessor system, the overall latency is dependent on the
interconnection network. Here double connected ring, double connected mesh, and double
connected hypercube networks have been considered.

To collect the results, the following procedure is used,

The executable file (say, simu) is ready to be used to collect results

1. Select one trace file (the application to be tested, may be water_sp)

2. Run the executable file using the selected trace file. e.g.,

[sunrise]simu water <enter>
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3. During the runtime the program will ask for some information such as name of
the network to be used, name of the machine being used, today's date, and so on. e.g.,
[sunrise]Enter network name to be used (ring/mesh/hypercube) >
To select ring network type: ring <enter>
4. Program will collect all necessary information, calculate the results, save the
result in a file (say, simu.out), and display a message for the user. e.g.,
[sunrise]Enter network name to be used (ring/mesh) >ring

MESAGE:
Simulation is done successfully. Results are in simu.out file.

5. Open simu.out to see the results. A sample result file:

*** SIMULATION IS DONE SUCCESSFULLY ***

Network used:  ring SunStation: sunrise
Today's date: 10/17/96 Trace file:  radix

Total number of proc. clocks are: 8968 K
Network delay (proc. clocks) are: 242 K

Total Processors: 16 Total Clusters: 8
CL 1 Size: 8 Kbytes CL 2 Size: 256 KB

Read + Write = 2216296 + 1283579 = 3499875

Total number of CL1 read hitis........ = 2216083
Total number of CL1 write hit is....... = 1278498

Percentage of Read-Hit: 99.99
Percentage of Write-Hit: 99.60

.000000..000000..000000..000000..000000.
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Here, CL1 _hit means the request (read or write) is satisfied from the first level
cache of the requesting processor. So, CL1 _miss means the request is not satisfied from
the first level cache of the requesting processor. Of course, CL1 _hit operation takes the
east amount of time to be satisfied.

The term Total number of processor clocks (or, total delay) indicates the total
amount of time required to execute the whole trace file, that simply means,
Total delay = Cluster delay + Network delay, where cluster delay is the time required to
check CL1, CL2 (if needed), local cluster (if needed broadcast request), owner cluster (if
needed where local cluster is the owner) without using network, and Network Delay is the
is the delay time required to reach owner cluster( if needed when local cluster is not the
owner) using network, modified cluster (if needed) using network, and invalidate shared
copy (if needed) using network, update main memory copy (if needed) using network, and
SO on.

Also it is clear that,
Cluster delay = f(trace file), and
Network delay = f(trace file, network)

If we keep the trace file fixed and change the interconnection network, then cluster
delay is a constant. Now if this program is run for two different networks (ring and mesh)
using the same trace file, then the difference between two results (Total-delay for ring ~

Total-delay for mesh) is the measure of this two networks.
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4.7 Summary

In some situations, for the interconnection networks, there may be more than one
solution. For every case if the same assumptions are not followed the ultimate result may
vary and it may be very difficult and not reasonable to compare among different networks.
MESI (Modified/Exclusive/Shared/Invalid) protocol is used to identify any cached copy.
To write in a shared memory block write-invalidate policy is used. Only main memory is
updated using write-update policy. The simulator is driven by a trace file. A higher level
algorithm has been developed where the main loop represents the parallelism. Simulation
results are collected to compare among slotted double ring network, double connected
mesh network, and double connected hypercube network. The simulator gives the
network delay and the overall delay for each network. Next chapter discusses the

simulation results.
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Chapter 5

SIMULATION RESULTS AND DISCUSSIONS

In this research work, overall memory latency for a multiprocessor system with 16
processors has been measured for three different interconnection networks: ring, mesh,
and hypercube. Two types of system configurations are implemented: 4-cluster (4
processors in a cluster) and 8-cluster (2 processors in a cluster) multiprocessor. Any two
consecutive clusters are considered to be 6 feet apart and propagation delay is 1
nanosecond per foot. The processor speed is 166 MHz, the transmission rate of a cluster
is 1 GBps. Each processor has two levels of caches: cache level 1 with a size of 8 KB (or
16 KB) and cache level 2 with a size of 256 KB (or 2048 KB). Five different applications
are used in this simulation. Section 5.1 contains the information about trace files. Results
for 4 cluster systems and 8 cluster systems are represented in Section 5.2 and 5.3,
respectively. Section 5.4 is the performance analysis of ring, mesh, and hypercube network
topologies with variable cache sizes. All three networks has been considered with variable
cache sizes, because ring gave better performance for all applications. Finally, Section 5.5

is the summary of this chapter.
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5.1 Applications: Read and Write Operations

Five different applications are used: Radix, Water_sp, Ocean, FFT, and LU. Total
number of operations of LU application is 3499999, whereas each of the other

applications has 3499875 operations, as shown in Table 5.1a.

Table 5.1a: Information about different applications: Total operations

DIFFERENT TOTAL TOTAL I0TAL

APPLICATIONS OPERATIONS READ OPERATIONS WRITE
OPERATIONS

Radix 3499875 2216296 1283579

Water_sp 3499875 2449022 1050853

Ocean 3499875 2305809 1194066

FFT 3499875 2369799 1130076

LU 3499999 2360376 1139623

The total number of traces for any application is almost the same, but Read-hit
and/or Write-hit are different. According to Table 5.1b, Radix application gives more
cache level 1 Read-hit (99.99%) and Write-hit (99.60%), which means more processors
request for a block that is in its own cache level 1. On the other hand, LU application
gives the lest cache level 1 Read-hit (81.30%), and FFT gives the lest cache level 1 Write-
hit (33.34%).

Table 5.1b: Information about different applications: Read-hit/Write-hit

Different Applications % CL1 Read-hit % CL1 Write-hit
(8 clusters) (8 clusters)
Radix 99.99 99.60
Water_sp 99.19 98.81
Ocean 89.25 89.26
FFT 81.98 33.34
LU 81.30 34.78
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5.2 System with 4 Clusters

In a 16-processor and 4-cluster multiprocessor system, (4 processors in a cluster),

Radix application needs the smallest overall and network latency, and LU needs the largest

overall and network latency as shown in Table 5.2 when clusters are connected through a

ring network. These results are collected for a system with cache level 1 8 Kbytes and

cache level2 256 Kbytes.

Table 5.2: Overall delay/Network delay - Ring Network (4 clusters)

Applications Overall delay Network delay
No (trace files) (proc clks — in Kilo) (proc clks - in Kilo)
1 Radix 8849 86
2 Water_sp 8962 95
3 Ocean 9934 106
4 FFT 11392 122
5 LU 11673 134

If ring is replaced by a mesh network (or a hypercube network), the multiprocessor

system performance remains the same as shown in Table 5.3. This is obvious because of

the architecture of 4-cluster system.

Table 5.3: Overall delay/Network delay - Mesh Network (4 clusters)

Applications Overall delay Network delay
No (trace files) (proc clks — in Kilo) (proc clks - in Kilo)
1 Radix 8849 86
2 Water_sp 8962 95
3 Ocean 9934 106
4 FFT 11392 122
5 LU 11673 134

Ring, Mesh, and hypercube network give the same results when 4 clusters are used

to design a multiprocessor system.
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Overall delay and Network delay for Radix application are shown in Table 5 4.

Table 5.4: Overall delay/Network delay - Radix (4 clusters)

No Network used Overall delay Network delay
(proc clks — in Kilo) (proc clks - in Kilo)
1 Ring 8849 86
2 Mesh 8849 86
3 Hypercube 8849 86

Overall delay and Network delay for Water_sp application are shown in Table 5.5.

Table 5.5: Overall delay/Network delay — Water_sp (4 clusters)

Network used Overall delay Network delay
No (proc clks — in Kilo) (proc clks - in Kilo)
1 Ring 8962 95
2 Mesh 8962 95
3 Hypercube 8962 95

Overall delay and Network delay for Ocean application are shown in Table 5.6.

Table 5.6: Overall delay/Network delay - Ocean (4 clusters)

Network used Overall delay Network delay
No (proc clks — in Kilo) (proc clks - in Kilo)
1 Ring 9934 106
2 Mesh 9934 106
3 Hypercube 9934 106

Overall delay and Network delay for FFT application are shown in Table 5.7.

Table 5.7: Overall delay/Network delay - FFT (4 clusters)

No Network used Overall delay Network delay
(proc clks — in Kilo) (proc clks - in Kilo)
1 Ring 11392 122
2 Mesh 11392 122
3 Hypercube 11392 122

97



Overall delay and Network delay for LU application are shown in Table 5.8.

Table 5.8: Overall delay/Network delay - LU (4 clusters)

Network used Overall delay Network delay
No (proc clks — in Kilo) (proc clks - in Kilo)
1 Ring 11673 134
2 Mesh 11673 134
3 Hypercube 11673 134

Observing Tables 5.4 to 5.8, it is clear that for any application, ring, mesh, and
hypercube topology always performs in the same way for a 4-cluster multiprocessor
system. Overall memory latency needed for any application using any of these three
networks are same as shown in Table 5.9 and Figure 5.1. Considering Figure 3.2a (page
49) and Figure 3.3a (page S2), it is clear that proposed ring, mesh, and hypercube
networks are the same in architecture and they all needs the same memory delay. In Figure
3.2a node 2 can communicate with node O either via node 3 using inner ring, or via node |
using outer ring, but in both cases masses passes through one intermediate node and two
links. On the other hand, in Figure 3.3a node 2 can communicate with node 0 only via

node 3, and the massage passes through one intermediate node and two links.

Table 5.9: Overall memory latency for a multiprocessor system with 4 clusters

Applications Ring delay Mesh delay Hypercube delay
PCinK PC inK PCinK
Radix 8849 8849 8849
Water_sp 8962 8962 8962
Ocean 9934 9934 9934
FFT 11392 11392 11392
LU 11673 11673 11673
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5.3 System with 8 Clusters

A 16-processor and 8-cluster multiprocessor system, (2 processors in a cluster),
Radix application needs the smallest overall network latency, and LU needs the largest
overall and network latency as shown in Table 5.10 when clusters are connected through a

ring network. These results are collected for a system with cache level 1 8 Kbytes and

cache level2 256 Kbytes.

Table 5.10: Overall delay/Network delay - Ring Network (8 clusters)

- Applications Overall delay Network delay
No (trace files) (proc clks — in Kilo) (proc clks - in Kilo)
1 Radix 8968 242
2 Water_sp 9056 257
3 Ocean 10244 338
4 FFT 12028 457
) LU 12386 473

If ring is replaced by a mesh network, total amount of delay decreases. For this
mesh network Radix application needs the lowest overall and network delay, and LU
needs the highest overall and network delay as shown in Table 5.11. From Figure 3.3b
(page 53), message from node O to node 4 passes through only one link. On the other
hand, message from node O to node 4 passes through 3 intermediate nodes (node 1, 2, and

3 or node 7, 6, and 5) and 4 links as shown in Figure 3.2b (page 50).

Table 5.11: Overall delay/Network delay - Mesh Network (8 clusters)

Application Overall delay Network delay
No (trace files) (proc clks - in Kilo) (proc clks - in Kilo)
1 Radix 8888 162
2 Water_sp 8969 170
3 Ocean 10158 251
4 FFT 11943 372
5 LU 12298 385
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If ring/mesh is replaced by a hypercube network, again Radix application needs the
lowest overall and network delay, and LU needs the highest overall and network delay.
Total amount of delay is the least when compared with that of a ring or mesh network. as
shown in Table 5.12. From Figure 3.3b and 3.4, it is clear that most of the operations
needs less intermediate nodes and/or links to be performed because of the architecture of

the hypercube.

Table 5.12: Overall delay/Network delay - Hypercube Network (8 clusters)

Application Overall delay Network delay
No (trace files) (proc clks - in Kilo) (proc clks - in Kilo)
1 Radix 8874 148
2 Water_sp 8953 154
3 Ocean 10125 217
4 FFT 11884 313
5 LU 12250 337

Overall delay and Network delay for Radix application are shown in Table 5.13 for
a system with 8 clusters. Radix has the highest cache level 1 read-hit and write-hit, as a

result, it takes the lowest amount of overall latency.

Table 5.13: Overall delay/Network delay - Radix (8 clusters)

Network QOverall delay Network delay
No used (proc clks — in Kilo) (proc clks - in Kilo)
1 Ring 8968 242
2 Mesh 8888 162
3 Hypercube 8874 148

Overall delay and Network delay for Water_sp application are shown in Table 5.14
for a system with 8 clusters.
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Table 5.14: Overall delay/Network delay - Water_sp (8 clusters)

Network Overall delay Network delay
No used (proc clks — in Kilo) (proc clks - in Kilo)
1 Ring 9056 257
2 Mesh 8969 170
3 Hypercube 8953 154

Overall delay and Network delay for Ocean application are shown in Table 5.15

for a system with 8 clusters.

Table 5.15: Overall delay/Network delay - Ocean (8 clusters)

Network Overall delay Network delay
No used (proc clks - in Kilo) (proc clks - in Kilo)
1 Ring 10244 338
2 Mesh 10158 251
3 Hypercube 10125 217

Overall delay and Network delay for FFT application are shown in Table 5.16 for a

system with 8 clusters.

Table 5.16: Overall delay/Network delay - FFT (8 clusters)

Network Overall delay Network delay
No used (proc clks — in Kilo) (proc clks - in Kilo)
1 Ring 12028 457
2 Mesh 11943 372
3 Hypercube 11884 313

Overall delay and Network delay for LU application are shown in Table 5.17 for a

system with 8 clusters.
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Table 5.17: Overall delay/Network delay - LU (8 clusters)

Network Overall delay Network delay
No used (proc clks — in Kilo) (proc clks - in Kilo)
1 Ring 12386 473
2 Mesh 12298 385
3 Hypercube 12250 337

Observing Tables 5.13 to 5.17, it is clear that for any application hypercube
topology is always faster, then mesh, and then ring, i.e., hypercube needs less delay than

mesh and/or ring.

Finally, when overall memory latency needed for each specific network and
application are compared, it gives very interesting results. As shown in Table 5.18 and
Figure 5.2, for any application ring needs the highest amount of overall memory latency,

followed by mesh and hypercube.

Table 5.18: Overall memory latency for a multiprocessor system with 8 clusters

Applications Ring delay Mesh delay Hypercube delay
PCinK PC inK PCinK
Radix 8968 8888 8874
Water_sp 9056 8969 8953
Ocean 10244 10158 10125
FFT 12028 11943 11884
LU 12386 12298 12250

Application Radix takes the lowest overall delay, followed by Water_sp, Ocean,

FFT, and LU for any interconnection network.
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In Fig 5.1 all three bars for each application have the same height, indicating that
ring, mesh, and hypercube networks needs same memory latency for a 4-cluster system. In
Figure 5.2 three bars have different heights, for hypercube it is the smallest, for ring it the
highest, and for mesh it is in between. Application Radix has the maximum cache level 1
read-hit and write-hit. So, for application Radix most of the operations are satisfied from
cache level 1 without using snooping inside the cluster and the network to access the
remote resource. As a result, Radix application needs minimum overall memory latency.
Among the SPLASH-2 applications used in this simulation, LU has the minimum cache
level 1 read-hit and write-hit. So, LU application needs the maximum overall memory

latency as shown in Figure 5.2.

5.4 Impact of Cache Sizes on Latency

In this section a discussion has been made to see the impact of cache sizes on
overall memory latency using a ring network. Cache Level 1 size has been varied from 8
KB to 16 KB, and Cache Level 2 size has been varied from 256 KB to 2048 KB. Table
5.19a, 5.19b, 5.20a, and 5.20b show total delay decreases with the increase of Cache
Level 1 and/or Cache Level 2 size. At first results were collected for Cache Level 1 size
fixed to 8 KB but Cache Level 2 size varied, then Cache Level 1 size fixed to 16 KB but
Cache Level 2 size varied.

Memory latency for different applications is shown in Table 5.19 and Figure 5.3
for a 4-cluster ring network. Cache Level 1 size is 8 KB and Cache Level 2 size is 256
KB, CL1 is 8 KB and CL2 is 2048 KB, CL1 is 16 KB and CL2 is 256 KB, and CL1 is
16KB and CL2 is 2048 KB is used.
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Table 5.19: Memory latency of 4 Cluster Ring Topology with variable cache sizes

Applications CL1 8KB CL18KB CLI I6 KB CL!1 16 KB
CL2 256 KB CL2 2048 KB CL2 256 KB CL2 2048 KB
PCinK PC inK PCinK PCinK
Radix 8849 8732 8764 8658
Water_sp 8962 8836 8870 8773
Ocean 9934 9811 9848 9726
FFT 11392 11273 11317 11147
LU 11673 11483 11528 11275

Mesh, hypercube, and ring networks give the same performance when used with a

4-cluster multiprocessor system. But for 8-cluster system the performance depends on the

cache sizes as shown in Table 5.20a and Figure 5.4.

Table 5.20a: Memory latency of 8 Cluster Ring Topology with variable cache sizes

Applications CLI1 8KB CL18KB CL! I6KB CL1 16 KB
CL2256 KB  CL2 2048 KB CL2 256 KB CL2 2048 KB

PCinK PC inK PCinK PCinK
Radix 8968 8926 8943 8917
Water_sp 9056 9017 9008 8995
Ocean 10244 10177 9843 9843

FFT 12028 11917 11097 11096

LU 12386 12328 12351 12314
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Table 5.20b: Memory latency of 8 Cluster Mesh Topology with variable cache sizes

Applications CL1 8KB CL18 KB CLIl 16 KB CL1 16 KB
CL2 256 KB CL2 2048 KB CL2 256 KB CL2 2048 KB
PCinkK PC inK PCinK PCinK

Radix 8888 8857 8870 8849
Water_sp 8969 8942 8935 8922
Ocean 10158 10111 9779 9779
FFT 11943 11866 11045 11045

LU 12298 12256 12296 12235

When cache sizes increase the memory latency decreases for ring, mesh, and

hypercube network as shown in Figure 5.20b and Figure 5.20c.

Table 5.20c: Memory latency of 8 Cluster Hypercube Topology with variable cache sizes

Applications CL! 8KB CLI8 KB CLI1 I6 KB CL!l 16 KB
CL2 256 KB CL2 2048 KB CL2 256 KB CL2 2048 KB

PCinK PC inK PCinK PCinK
Radix 8874 8853 8862 8849
Water_sp 8953 8938 8943 8925
Ocean 10125 10087 10057 10055
FFT 11884 11811 10992 10992

LU 12250 12219 12243 12185
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Figure 5.5 and 5.6 show the impact of cache sizes on overall memory latency for
mesh and hypercube networks, respectively. The results say for almost all applications
memory latency decreases with the increase of cache sizes. For some specific cases, this
changes may not be significant. For example, delay when Ocean application is run using
mesh (or ring) network remains the same even though cache level 2 is increased from 256
KB to 2048 KB (cache level 1 is fixed at 16 KB). For FFT application similar thing
happens with hypercube network. This reminds the term data pollution point after which

point delay may increase when cache sizes increases.

5. Summary

From Figure 5.1 and 5.2 it is obvious that hypercube network performs better than
mesh and/or ring. For 4 cluster systems the hypercube behaves as a mesh, because the
networks have a 2-dimensional shape. As a result the network architecture for hypercube
and mesh are similar and they perform exactly the same way. Also for 4-cluster
multiprocessors there is no difference between ring and mesh. So ring, mesh, and
hypercube - all three networks need the same delay. But for 8-cluster systems hypercube
networks get 3-dimensional shape, whereas mesh networks are 2-dimensional. And there
are different routing paths between different nodes. In hypercube nodes can communicate
with each other relatively faster when compared with mesh. Figure 5.2 shows the
performance of hypercube is always better than mesh and ring. Routing in hypercube
network becomes very faster when compared with mesh and/or ring,

Five different applications are used: Radix, Water_sp, Ocean, FFT, and LU.
Overall memory latency depends on the interconnection networks as well as applications.

According to the simulation results hypercube is the most efficient network followed by
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Figure 5.5: Latency and cache sizes (8-cluster mesh)
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mesh and ring network, because routing in hypercube is faster when compared to the other
networks. Application Radix has the maximum (and LU has the minimum) cache level 1
read-hit and write-hit. For any network Radix application takes smallest amount of time,
then Water_sp, Ocean, FFT, and LU respectively. Cache sizes also influence the
performance

In this simulation memory block size has been kept constant and sizes for first level
and second level caches were changed to observe the performance. For almost all
applications delay decreased when cache sizes increases. For some specific cases delay
does not decreases significantly. It is also remarkable that for any application total delay

increases with the increase of number of clusters of the system.

113



Chapter 6

CONCLUSIONS AND FUTURE DIRECTIONS

In this research work, we evaluated a cluster-based cache coherence protocol for
shared-memory multiprocessor system with two levels of processor caches to investigate
the overall memory latency for different network topologies. Due to the availability of
powerful microprocessors at low cost as well as significant advances in communication
technology, a multiprocessor system is, probably, the best choice to satisfy the growing
requirement for computing speed, system reliability, and cost-effectiveness. The overall
performance of such a system heavily depends on the interconnection network and the
type of application used.

It is almost essential for a shared-memory multiprocessor system to use processor
caches to improve system performance by reducing average memory access time. Local
modification inside any cache in such a system leads to cache coherence (or data
inconsistency) problem, which has been the subject of extensive study for over a decade

now. Both hardware-based and software-assisted solutions have been developed; these
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read-operations always access the most recent version of required data item, and write-
operations either update only the required memory block and invalidate all other copies, if
any (called write-invalidate), or updates all existing copies (called write-update). So, the
architecture for such a system should be such that message/data can be transferred among
processor caches very easily.

In this research work, we simulated different network topologies in our proposed
system architecture with 16 processors. We investigated the overall memory latency, using
five different SPLASH-2 applications, namely, Radix, Water_sp, Ocean, FFT, and LU, for
ring, mesh, and hypercube network topologies. We considered a double ring network,
where nodes are connected to both rings. To communicate with each other shortest path
strategy is used. A double connected mesh network is used in our simulation, where any
two consecutive clusters were connected through two links. X-Y routing strategy was
followed. Finally, we simulated a double connected hypercube network, where X-Y-Z
routing was used. For mesh and hypercube network the same link was used to transmit a
request and its acknowledgment [20][21].

We evaluated two multiprocessor systems. One with 16 processors, 4 clusters, and
4 processors in each cluster, and the other with 16 processors, 8 clusters, and 2 processors
in each cluster. Inside each cluster, processors are connected by bus-based network and
clusters are connected by either ring, mesh, or hypercube network. Memory latency was
evaluated using proposed ring, mesh, and hypercube topologies for different sizes of cache
level 1 and cache level 2.

It was observed that the cluster-based multiprocessor system with hypercube
network topology outperformed those with ring and mesh topologies for all applications
used. It was also observed that the overall memory latency decreased when the cache sizes
were increased from 8KB to 16 KB for cache level 1 and from 256 KB to 2048 KB for

cache level 2.
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Future Directions

The future directions of this work include:

¢ Memory latency evaluation of larger multiprocessor systems with more than 16
processors.

» Simulate the cluster-based multiprocessor system with Scaleable Coherent

Interface (SCI) specification the one used in the STING project.
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