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Cache memory is used, in most single-core and multi-core processors, to improve 

performance by bridging the speed gap between the main memory and CPU. Even though 

cache increases performance, it poses some serious challenges for embedded systems 

running real-time applications. Cache introduces execution time unpredictability due to 

its adaptive and dynamic nature and cache consumes vast amount of power to be 

operated. Energy requirement and execution time predictability are crucial for the success 

of real-time embedded systems. Various cache optimization schemes have been proposed 

to address the performance, power consumption, and predictability issues. However, 

currently available solutions are not adequate for real-time embedded systems as they do 

not address the performance, power consumption, and execution time predictability 

issues at the same time. Moreover, existing solutions are not suitable for dealing with 

multi-core architecture issues.  
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In this dissertation, we develop a methodology through cache optimization for 

real-time embedded systems that can be used to analyze and improve execution time 

predictability and performance/power ratio at the same time. This methodology is 

effective for both single-core and multi-core systems. First, we develop a cache modeling 

and optimization technique for single-core systems to improve performance. Then, we 

develop a cache modeling and optimization technique for multi-core systems to improve 

performance/power ratio. We develop a cache locking scheme to improve execution time 

predictability for real-time systems. We introduce Miss Table (MT) based cache locking 

scheme with victim cache (VC) to improve predictability and performance/power ratio. 

MT holds information about memory blocks, which may cause more misses if not locked, 

to improve cache locking performance. VC temporarily stores the victim blocks from 

level-1 cache to improve cache hits. In addition, MT is used to improve cache 

replacement performance and VC is used to improve cache hits by supporting stream 

buffering. We also develop strategies to generate realistic workload by characterizing 

applications to simulate cache optimization and cache locking schemes. Popular MPEG4, 

H.264/AVC, FFT, MI, and DFT applications are used to run the simulation programs. 

Simulation results show that newly introduced Miss Table based cache locking scheme 

with victim cache significantly improves the predictability and performance/power ratio. 

In this work, a reduction of 33% in mean delay per task and a reduction of 41% in total 

power consumption are achieved by using MT and VCs while locking 25% of level-2 

cache size in an 4-core system. It is also observed that execution time predictability can 

be improved by avoiding more than 50% cache misses while locking one-fourth of the 

cache size.  
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CHAPTER 1 

INTRODUCTION 

 

Cache memory is first introduced by IBM in 1960s to improve performance by 

reducing the speed gap between the main memory and CPU. Almost immediately after 

that all gigantic chip-vendors introduced cache to their processors [59], [113], [158]. 

Today, processors are having multiple processing cores and most processors have on-chip 

level-1 cache (CL1) and off-chip level-2 cache (CL2) [35], [43], [102], [109], [110], 

[134], [166]. Some processors have even higher levels of caches – AMD Opteron has 

level-3 cache (CL3). Even though cache improves overall system performance, it makes 

the system more unpredictable and the system consumes more power [65], [74], [128], 

[131], [139], [144], [145], [163]. Excessive power consumption and execution time 

unpredictability may defeat the performance gain of embedded systems, especially when 

the system is battery-operated and runs real-time applications where predictability is 

crucial [17], [47], [50], [57], [70], [93], [127], [142], [147]. Special design considerations 

are required for successful implementation of cache memory subsystem for real-time 

embedded systems [56]. In this dissertation, we study currently available solutions and 

introduce new solutions to improve the predictability and performance/power ratio by 

optimizing the cache memory subsystem of real-time embedded systems. 
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1.1 Cache Memory in Computing Systems 

IBM introduces the first cache memory (on-chip CL1) in the System/360 Model 

85 in 1960s. In early 1990s, off-chip CL2 appears in Intel 486DX4 and Pentium chips. 

Digital Equipment Corporation presents Alpha 21164 with CL3 in 1995. Recently, 

various cache memory organizations are being used in both single-core and multi-core 

processors. Considering the cache organizations we summarize the computing systems as 

shown in Figures 1.1(a) for single-core and 1.1(c) for multi-core architectures. Usually 

each processor has on-chip CL1. Single-core processors may have higher levels of caches 

like CL2, CL3, etc. Multi-level caches in multi-core processors may be organized in a 

number of ways like shared CL2, dedicated CL2, etc. Cache architecture may be 

inclusive or exclusive and/or may have victim caches [see Figure 1.1(b)].  

 

Figure 1.1: Contemporary processors and cache organizations. 
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1.1.1 Cache in Single-Core Architectures 

A single-core processor with only on-chip CL1 has a simple architecture and may 

be good for small computing systems. However, most single-core processors have 

additional level(s) of cache(s) along with CL1. Multi-level cache architectures may be 

inclusive or exclusive and may have victim cache [134]. Intel Pentium 4, one of the most 

popular single-core processors of its time, uses inclusive cache architecture. The 

schematic diagram of typical inclusive cache architecture is shown in Figure 1.2. Here, 

CL2 contains each and every blocks that CL1 (i.e., I1 and D1) may contain. In case of a 

CL1 miss followed by a CL2 miss, the block is first brought into CL2 from main 

memory, then into CL1 from CL2. Intel Pentium 4 Willamette has on-die 256 KB 

inclusive level-2 cache; with 8 KB level-1 trace/instruction cache (I1) and 8 KB level-1 

data cache (D1). The effective cache size of this architecture is CL2 size.  

 
 

Figure 1.2: Inclusive cache architecture. 

 

Figure 1.3 is the schematic diagram of a typical exclusive cache architecture 

where CL2 does not contain blocks that are in CL1 (i.e., I1 and D1) [155]. A victim 

buffer with CL1 may improve performance. In this architecture, in case of a CL1 miss 

followed by a CL2 miss, the block is directly brought into CL1 from main memory. As a 

result, the effective cache size is CL1 size + CL2 size for this architecture. AMD Athlon 
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uses exclusive cache architecture. AMD Athlon Thunderbird has on-die 256 KB 

exclusive level-2 cache with 64 KB I1 cache and 64 KB D1 cache. 

 
 

Figure 1.3: Exclusive cache architecture with victim buffer. 

 

Figure 1.4 presents the schematic diagram of a cache memory system with a 

victim cache between CL1 (I1, D1) and CL2 [58]. Victim cache reduces average memory 

latency by temporarily holding the victim blocks from CL1. Usually the effective cache 

size of this architecture is more than CL2 and it provides performance gain. The 

exclusive and victim cache hierarchy is suitable for systems with limited cache-memory 

area (like embedded systems) and applications that perform a large amount of memory 

accesses (like multimedia) [155]. 

 
 

Figure 1.4: Cache architecture with victim cache. 
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multiprocessor (CMP), two or more independent cores are combined into a die [43], 

[100], [103], [104], [109], [132], [150], [166]. 

Figures 1.5(a) and 1.5(b) show the schematic diagram of Intel dual-core with 

shared CL2 (Dual-Core Xeon: 64 KB I1, 64 KB D1, 4 MB CL2) and AMD dual-core 

with dedicated CL2 (Athlon Classic: 64 KB I1, 64 KB D1, 512 KB CL2), respectively 

[166]. The processing cores share the same interconnect with the rest of the system.  

 

 
 

(a) Shared CL2 (Intel - Xeon)   (b) Dedicated CL2 (AMD - Athlon) 

 

Figure 1.5: Dual-core architecture. 
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Figure 1.6: Quad-core architectures (Intel – Kentsfield XE). 

 

 
 

Figure 1.7: Quad-core architectures (AMD - Opteron). 
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units called Synergistic Processing Element (SPE). The PPE contains a 32 KB I1 and a 

32 KB D1 caches. A 512 KB CL2 is shared by the PPE and SPEs. Primarily the PowerPC 

PPE keeps the processor compatible with lots of applications.  

 

Figure 1.8: STI Cell-like architecture. 
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Cell processor which connects various on-chip system elements like PPE processor, 

memory controller (MIC), eight SPE coprocessors, and two off-chip I/O interfaces. 

Based on the above discussion, cache memory subsystem is an important 

component in both single-core and multi-core computing systems. A lot of research has 

been done to address the performance, power consumption, and predictability issues 

through cache optimization. We briefly summarize them in the following sections by 

mentioning how further improvement may be possible.  

 

1.2 Cache Modeling to Enhance Performance 

Cache modeling is helpful to analyze cache performance and suggest how to 

achieve significant execution speedup, particularly when the system is designed to run 

computation intensive applications. The computing speed of microprocessors has 

exponentially increased in the past few decades and so is the support to computation 

intensive embedded systems. With such improved computing power, memory subsystem 

deficiency (memory is slower than the CPU) becomes the major barrier to support real-

time multimedia applications on embedded systems [5], [6]. Studies show that for most 

applications there are sufficient reuses of values for caching [7], [82], [119], [121]. 

Hence, there is an opportunity for customizing the cache memory subsystem through 

cache modeling for improved performance.  

 

1.3 Cache Optimization to Improve Performance/Power Ratio 

Traditionally there are tradeoffs between the performance and power consumption 

[69]. Cache memory optimization techniques are becoming popular due to their guiding 
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ability to increase the system performance and decrease total power consumption [148].  

To satisfy the needs for increased processing power, embedded systems are using multi-

core (instead of single-core) processors. The reason behind this trend is twofold – first, 

the popularity and demands of embedded systems are increasing every day; second, 

billions of transistors are possible in a single chip. This trend is expected to increase for 

the next decade. In multi-core architecture, performance is improved because the 

application is divided into smaller tasks and tasks are assigned among multiple cores. 

Total power consumption is reduced because the system runs at a lower frequency [20], 

[60], [96], [126]. However, multi-level caches in multi-core systems consume huge 

amount of power [7]. Therefore, there are opportunities to increase performance and 

decrease total power consumption by cache optimization in multi-core systems.  

 

1.4 Cache Locking to Enhance Predictability 

Even though cache improves performance (by reducing the speed gap between the 

main memory and CPU), the execution time becomes unpredictable due to cache‘s 

adaptive and dynamic behavior [11]. Real-time embedded systems work under real-time 

constraint – the hardware and software are subject to operational deadlines from event to 

system response. Execution time predictability is a crucial factor for the success of these 

complex systems [12], [21]-[29], [38], [99], [130]. Studies show that cache locking helps 

reduce the worst case execution time (WCET) and cache-related preemption delay [52], 

[97], [105], [128]. Therefore, cache locking mechanism (along with other techniques like 

selective pre-loading) can be used to improve execution time predictability in real-time 

embedded systems. 
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1.5 Problem Statement  

An embedded system is a special-purpose computing system embedded in an 

electrical or mechanical device to perform one or a few dedicated tasks repeatedly. 

Traditionally, embedded systems suffer from limited resources like power supply and 

memory bandwidth [15], [62], [80], [81], [141], [160], [167]. However, embedded 

systems are becoming more popular and more useful in various vicinity of life including 

medical treatments, entertainment, and other scientific activities. Modern embedded 

systems are made to support various complicated real-time applications where the 

completion of an operation after its deadline is considered useless and that may lead to a 

critical failure of the complete system [76], [101], [116], [170]. Therefore, performance, 

power consumption, and predictability – all are important factors for designing future 

real-time embedded systems.  

Cache memory is introduced to improve performance by reducing the speed gap 

between the main memory and CPU. Even though embedded systems take advantage of 

using caches in their architectures (single-core or multi-core), cache poses some serious 

challenges for embedded systems running real-time applications. Due to cache‘s adaptive 

and dynamic behavior, cache increases execution time unpredictability. Also, cache is 

power-hungry and consumes substantial amount of power to be functional. If not 

properly designed, excessive power consumption and execution time unpredictability 

may defeat the performance gain by cache in real-time embedded systems.  

Cache parameters have influence on the performance, power consumption, and 

predictability of any computing system. It has been established that system performance 

can be increased and power consumption can be decreased by customizing the cache 
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parameters, using victim cache, and applying stream buffering [5], [6], [10], [32], [33], 

[35], [44], [49], [51], [56], [58], [74], [82], [113], [122], [155], [158], [163]. Studies also 

indicate that cache-locking along with selective pre-loading improves predictability when 

the right cache blocks are selected [9], [11], [12], [21], [24], [26], [28], [97], [128], [139]. 

However, there are tradeoffs between the predictability and performance/power ratio. The 

influence due to the presence of cache is very significant for real-time embedded systems 

where performance, power consumption, and predictability – all are important. Currently 

available solutions are not capable of analyzing the performance, power consumption, 

and predictability at the same time. Moreover, existing solutions do not address multi-

core architecture issues very well. 

Therefore, even though cache improves performance, there are serious problems 

for real-time embedded systems due to the presence of cache as cache makes execution 

time unpredictability worse and consumes large amount of power. There is no efficient 

solution to determine the optimal cache parameters to achieve the best predictability and 

performance/power ratio at the same time for both single-core and multi-core embedded 

systems running real-time applications. 

 

1.6 Major Contributions of this Dissertation 

In this dissertation, we develop a cache modeling and optimization methodology 

using Miss Table based cache locking and other techniques like stream buffering to 

improve the predictability and performance/power ratio for real-time embedded systems. 

Major contributions of this research work are listed below:   
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1) We develop cache modeling and optimization technique to enhance overall 

system performance of single-core systems. With improved CPU speed, memory sub-

system deficiency is the major barrier to improving the system performance. Studies 

show that there is sufficient reuse of values for caching that may significantly reduce the 

memory bandwidth. This cache modeling technique helps enhance performance by 

efficiently selecting the cache parameters for the target applications. 

2) We develop a methodology using cache modeling and optimization technique 

that improves performance/power ratio of multi-core embedded systems. To satisfy the 

need for increased processing power, embedded systems are adopting multi-core (instead 

of single-core) processors. Like single-core systems, the presence of cache in multi-core 

embedded systems poses a number of challenges including power consumption. This 

cache optimization technique effectively improves performance/power ratio for multi-

core embedded systems.  

3) We develop a novel cache locking scheme that can be used to improve 

execution time predictability of a real-time embedded system. Even though cache 

memory improves performance by reducing the speed gap between the main memory and 

CPU, the execution time becomes unpredictable due to the cache‘s adaptive and dynamic 

behavior. Execution time predictability is a crucial factor for the success of real-time 

systems. This cache locking scheme helps improve predictability. 

4) We propose a methodology that is effective to improve the predictability and 

performance/power ratio for both single-core and multi-core systems by introducing Miss 

Table at cache level to help cache locking and by using victim cache(s) to temporarily 

store the victim blocks. In addition, Miss Table helps improve cache replacement 
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performance and victim caches help improve performance/power ratio by supporting 

stream buffering. This Miss Table based cache locking scheme with victim cache(s) has 

potential to improve the predictability and performance/power ratio for both single-core 

and multi-core real-time embedded systems.  

5) We introduce various techniques to characterize applications and generate 

realistic workload to evaluate proposed cache optimization solutions. For cache locking, 

we develop a 3-phase workload characterization strategy. In phase-I, we divide big 

applications into smaller end-to-end functions. In phase-II, we estimate major operations 

(like integer, floating-point, load/store, branch, etc) in the code segment. Finally in phase-

III, we select the blocks (to be locked) that may create more misses if not locked. 

 

1.7 Organization of this Dissertation 

This dissertation presents a cache modeling and optimization methodology using 

Miss Table based cache locking with victim caches to improve the predictability and 

performance/power ratio for real-time embedded systems. The following is an outline of 

the dissertation:   

 Chapter 1 is the introduction. It introduces the topic and motivates the need 

for cache optimization in real-time embedded systems including the problem 

statement. It states the goal and presents the contributions of this work. 

 Chapter 2 presents a comprehensive survey of related articles. 

 Chapter 3 presents a cache modeling and optimization technique that enhances 

performance of a single-core system. Basic cache memory subsystem, 

simulation details, and simulation results are discussed to show how this 
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single-core cache modeling and optimization technique can be useful to 

determine the optimal cache parameters for target applications. 

 Chapter 4 discusses a cache modeling and optimization technique to improve 

the performance/power ratio of a multi-core system. Basic multi-core cache 

memory organization, modeling multi-core architecture, and experimental 

results are discussed. Experimental results show that this cache modeling and 

optimization strategy is useful to analyze the performance and power 

consumption of multi-core systems running real-time applications.  

 Chapter 5 implements a cache locking technique that increases the 

predictability by locking important blocks. Basic cache locking information, 

simulation details, and experimental results are discussed to show how this 

cache locking scheme can be used to improve execution time predictability of 

a single-core real-time embedded system.  

 Chapter 6 introduces a Miss Table based cache locking with victim cache, 

suitable for both single-core and multi-core systems, to improve the 

predictability and performance/power ratio. For a multi-core architecture, 

cache locking using MT, stream buffering using VCs, workload 

characterization for cache locking, simulation details, and experimental results 

are discussed. Simulation results show that MT and VCs help improve the 

predictability and performance/power ratio of embedded systems running real-

time applications. 

 Chapter 7 concludes this dissertation and discusses possible future extensions. 
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CHAPTER 2 

LITERATURE SURVEY 

 

In this work, our goal is to optimize cache memory organization of real-time 

embedded systems to improve execution time predictability and performance/power ratio. 

As cache is proven to be an important component to improve the overall system 

performance, it has been attracting researchers since it was first introduced by IBM in 

1960s. We perform an extensive literature survey to see the progress and outstanding 

issues regarding cache organization and real-time embedded systems. A lot of research 

has been done and significant progress has been made to address the performance, power 

consumption, and predictability issues in embedded systems. However, most of the work 

that has been done focuses on single-core architectures and not suitable for multi-core 

architectures. Some work focus on only performance issues, some other work focuses on 

only power issues or only predictability issues. Also, various cache memory hierarchies 

have been proposed for various purposes. Different evaluation techniques, simulation 

tools, and workload have been developed [39], [51]. To summarize our literature survey, 

we classify them in 6 major categories – cache memory, embedded system, performance-

power-predictability, workload, simulation, and other related issues. In Figure 2.1, we 

present these categories and their sub-categories (if any).  
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Figure 2.1: Summary of articles surveyed. 

 

We study over 172 articles published in various journals and conference 

proceedings including IEEE and ACM publications, online postings, and whitepapers 

from big corporations including Intel, AMD, IBM, and Motorola. Over 45% articles are 

very recent (published in year 2006 or later) and over 85% articles are publishes in year 

2000 or later. We select a few of these articles, very related to our work, to discuss in this 

chapter. We include 172 references in the Bibliography at the end of this manuscript.  
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2.1 Cache Optimization  

Cache memory has a very rich history in the evolution of modern computing. In 

this subsection, we focus on cache parameters, cache organizations, victim cache, pre-

fetch, cache locking, and cache optimization techniques. Cache memory is first seen in 

the IBM System/360 Model 85 in 1960s. In 1989, Intel 468DX microprocessor 

introduced on-chip 8 KB CL1 cache for the first time. In early 1990s, off-chip CL2 cache 

appeared with 486DX4 and Pentium microprocessor chips. Today's microprocessors 

usually have 128 KB or more of CL1, and 512 KB or more of CL2, and optional 2 MB or 

more CL3 [30], [33], [158]. Some CL1 cache is split into I1 and D1 in order to improve 

performance [110]. Important cache parameters include cache size, line size (aka, cache 

block size), and associativity level. Figure 2.2 illustrates various cache parameters. For a 

cache with S sets and W levels (or degrees) of associativity, total number of blocks (aka, 

lines), B = S x W and total cache size, C = B x Sb. Here, Sb is the size of a block (i.e., 

line size). For direct mapping, W = 1 and S = B; for set-associative, 1 < W < B; and for 

fully-associative, W = B and S = 1. Studies indicate that the predictability and 

performance/power ratio can be enhanced by optimizing the cache parameters.    

 
 

Figure 2.2: Cache parameters – cache size, line size, and associative level. 
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A multi-level cache memory organization can be inclusive or exclusive. In an 

inclusive cache architecture with CL1 and CL2, CL2 contains each and every block that 

CL1 (i.e., I1 and D1) may contain. In [134], Intel Pentium 4 (IP4) processor is discussed. 

IP4 is a popular single-core processor that uses inclusive cache architecture. In case of a 

CL1 miss followed by a CL2 miss, the block is first brought into CL2 from main 

memory, then into CL1 from CL2. IP4 Willamette has on-die 256 KB inclusive level-2 

cache; with 8 KB level-1 trace/instruction cache (I1) and 8 KB level-1 data cache (D1). 

The effective cache size of this architecture is CL2 size. Unlike inclusive cache 

architecture, CL2 does not contain blocks that are in CL1 (i.e., I1 and D1) in exclusive 

architecture. In [155], performance evaluation of exclusive cache hierarchies is 

conducted. Here, in case of a CL1 miss followed by a CL2 miss, the block is directly 

brought into CL1 from main memory. As a result, the effective cache size is increased to 

CL1 size + CL2 size. AMD Athlon Thunderbird architecture has on-die 256 KB 

exclusive level-2 cache (with 64 KB I1 + 64 KB D1). In [4], victim buffer with exclusive 

cache offers reduction in power consumption with comparable performance gain. In 

[153], experimental results show that on PowerStone and MediaBench benchmarks, 

victim buffer can reduce energy consumption by 43%. However, the increased 

complexity of the exclusive cache hierarchy needs to be justified against the system and 

applications. Sometimes scratchpad (memory) is used to improve performance [1]. 

However, scratchpad memory may degrade performance when loading large information 

due to fragmentation. 

In case of a CL1 miss, a new block should be brought into CL1. If CL1 is full, a 

block from CL1 is selected (depending on the cache replacement policy like random, 
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LRU – Least Recently Used, or FIFO – First In First Out) to be replaced by the new 

block (from CL2). The selected block is called victim block. A victim cache is introduced 

between CL1 (I1, D1) and CL2 in [58] to store the victim blocks for future usages. 

Victim cache reduces average memory latency. Usually the effective cache size of this 

architecture is more than CL2 size and it provides performance gain. Cache size cannot 

be increased without limitation. A larger cache usually costs more and becomes slower. 

The victim cache hierarchy is suitable for systems with limited cache-memory area (like 

embedded systems) and applications that perform a large amount of memory accesses 

(like multimedia) [155]. Performance improvement due to victim cache with smaller 

cache sizes and/or running applications with good caching behavior is most significant. 

Victim cache hierarchy significantly reduces execution time and improves predictability. 

In [4], victim cache showed the best performance among other cache systems like Half-

and-Half and Cooperative for applications that require high memory bandwidth and low 

memory latency to obtain good performance.  

Pre-fetching is a technique that allows memory subsystem to import data into the 

cache before the processor needs it [36], [72]. The selective pre-fetching proposed by 

[94] uses a history of references to decide on what block to be pre-fetched on a miss. 

Results show that pre-fetching may improve predictability for hard real-time systems. 

Aggressive pre-fetching can lead to cache pollution and also increase memory traffic. In 

distributed shared memory (DSM) systems, remote memory accesses take much longer 

than local ones, and hence data pre-fetching should be effective for such systems [46].  In 

[64], data pre-fetching issues on DSM systems are studied. They develop a new memory 

consistency semantic (MCS) model under which the pre-fetchable shared data objects, as 
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well as the best moment to launch a pre-fetching operation, can be easily identified. 

Simulation results show that this pre-fetching approach, combined with aggressive 

consistency, can substantially improve the performance of DSM systems. The pre-

fetching scheme in [45] maintains a weighted directed flow graph whose vertices 

represent the objects accessed by the users and whose edges represent the reference flow 

relationships between these objects. Each edge is weighted in proportion to the frequency 

of reference. In [87], a global history buffer (GHB) is used to organize data cache pre-

fetch information. GHB helps real-time system design by predicting cache misses 

accurately. Adaptive pre-fetching technique is investigated in [95]. They use pre-fetch 

counter and pre-fetch coefficient counter to make the cache controller adaptive. Results 

show significant improvement for instruction caches. 

It is extremely important for (hard) real-time systems to make the memory access 

time predictable. In order to improve execution time predictability in multitasking hard 

real-time systems, [99] proposes that their content can be statically locked such that 

memory access time and cache-related preemption times are predictable. Cache locking is 

a technique to hold some or all cache blocks for the entire execution time. In [128], a 

memory hierarchy is proposed to build such that it provides high performance combined 

with high predictability that can be used complex system analysis. As mentioned in 

[129], the system performance depends on the instructions loaded and locked in cache for 

locking caches. In [130], an invalidation lock mechanism is implemented that utilizes the 

exclusive state of the snooping cache. Lock operations are frequent on the Parallel 

Inference Machine (PIM). Experimental results demonstrate the benefits of the lock 

mechanism for a few lock contentions and confirm that, in most cases, the lock 
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mechanism works well on the PIM. However, the mechanism may cause performance 

degradation in a tightly-coupled multi-processor (TCMP) in case of heavy contention. 

Interests in cache locking in multi-core systems are growing among the researchers. A 

brief introduction is given in [34] to the different methods of locking in Windows and the 

associated performance costs applicable to future multi-core architectures. An alternative 

approach is presented in [97] to cope with the predictability problem due to caches in 

real-time systems to statically lock their contents so as to make memory access times and 

cache-related preemption times entirely predictable. More study is needed to see the 

impact of this approach on performance for larger real benchmarks and the applicability 

of static cache locking techniques to data/unified/multi-level caches. An algorithm is 

proposed in [98] for off-line selection of the contents of two on-chip memories - locked 

caches and scratchpad memories. Experimental results show that the algorithm yields to 

good ratio of on-chip memory accesses on the worst-case execution path, with a tolerable 

reload overhead, for both types of on-chip memories. Furthermore, worst-case 

performance with scratchpad memories may degrade when loading large information due 

to fragmentation. Also, worst-case performance with locked caches may degrade with 

large cache lines due to cache pollution. Static cache analysis with data cache locking is 

combined in [139] to estimate the worst- case memory performance (WCMP) in a safe, 

tight, and fast way. Experimental results show that this scheme is more predictable, 

without compromising the performance of the transformed program. Various cache 

locking algorithms are studied in [21] through [29]. Their contributions include a 

methodology to select a set of instructions to be preloaded in the cache using a genetic 

algorithm. This algorithm is to select a set of instructions to be locked in cache for better 
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performance and simultaneously estimate a tight upper bound of the response time of 

tasks. Experimental results show that in a variety of scenarios, this method obtains better 

performance than non-locking caches. An algorithm is proposed in [12] that partitions the 

task into a set of regions. Each region owns statically a locked cache contents determined 

offline. Performance improvement is observed, as compared with a system without any 

cache. Contrary to cache analysis techniques, this algorithm depends neither on the 

scheduling policy, nor on the cache line replacement policy. A new locking protocol is 

proposed in [52], called waiting processor variable (WPV) lock mechanism, which has 

only one lock-read bus traffic command. The WPV mechanism also uses the cache state 

lock mechanism to reduce the locking overhead and guarantees the FIFO lock operations 

in the multiple lock contentions. The simulation results on the WPV lock mechanism 

show that about 50% of access time is reduced comparing with the conventional queuing 

lock mechanism. 

According to [89], in order to justify a cache memory architecture two 

assessments are needed: an evaluation of the performance gain for a specific application 

and an indication of the modifications required in the software. For example, IBM Cell 

architecture is expected to improve the performance of some applications but current 

application software is required to be rewritten to take advantage of multi-core 

architecture. Various contemporary techniques for optimizing data and memory used in 

embedded systems, including platform-independent and platform-specific, are discussed 

in [90]. Using trace-based techniques and WCET analysis performance can be measured. 

Experimental results show that cache not only improves performance, but reduces energy 

consumption. A general-purpose computing platform running MPEG2 application is 
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studied in [121]. The system includes a single-core CPU with unified CL1 and CL2. 

Experimental results show that there is sufficient reuse of values for caching to 

significantly reduce the raw required memory bandwidth for video data. The addition of a 

larger second level cache to a small first level cache can reduce the memory bandwidth 

significantly. Cache memories for embedded applications can be designed to increase 

performance while reduce area and energy consumed. They suggest that techniques like 

cache locking, selective caching, pre-fetching, cache partitioning, and data reordering 

may improve cache performance for application specific systems. In [119], cache 

behavior of multimedia applications is examined. This study indicates larger data cache 

line sizes than are currently used would be beneficial in case of multimedia applications. 

Cache memories for embedded applications can be designed to increase performance 

while reducing area and energy consumed [85]. It is shown that separating data cache 

into an array cache and a scalar cache can lead to significant performance improvements 

for scientific benchmarks. Such a split data cache can also benefit embedded applications. 

Other techniques to improve performance include ‗cache partitioning technique‘, ‗column 

caching mechanism‘, ‗array cache‘, and so on.  In [82], A.M. Molnos et al use cache 

partitioning techniques to find a static task execution order for inter-task data cache 

misses. Due to the lack of freedom in reordering task execution, this method optimizes 

the caches more. Proposed ‗column caching mechanism‘, in [32], enables cache 

partitioning so that data with different locality can be isolated for improved performance. 

Also, columns can emulate scratchpad memory which is used extensively to improve 

predictability in embedded systems. During the execution of a program, the data stored in 
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columns can be explicitly managed as in a scratchpad or can be implicitly managed as in 

a cache and the management can be dynamic at small intervals. 

Memory pressure for chip-multiprocessors can be reduced by using cache 

injection [168]. This is a complicated procedure and the performance benefit is not 

significant. The performance improvement depends on the right combination of pre-fetch 

and injection mechanism. 

In summary, cache is an essential element in all modern computing systems and it 

has significant impact on the performance, power consumption, and predictability. After 

knowing the pros and cons of various existing cache optimization techniques, we 

introduce an efficient cache optimization and cache locking technique that can be used in 

multi-core systems, as well as single-core systems, to improve the predictability and 

performance/power ratio of embedded systems running real-time systems. 

 

2.2 Embedded System  

Embedded system is a special-purpose computing system embedded in an 

electrical or mechanical device to perform one or a few dedicated tasks, sometimes with 

real-time computing constraints. As mentioned in [160], computers in their earliest years 

in the 1940s, were sometimes dedicated to specific tasks, but were too large to be 

considered "embedded". The first embedded system is, probably, the Autonetics D-17 

guidance computer released in early 1960s. Today embedded systems are everywhere 

including consumer electronics, home appliances, automobiles, and medical equipments. 

Various embedded system design issues are discussed in [62]. Unlike desktop 

computing, building the fastest CPU and supporting it for the maximum computing speed 
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are not the primary concerns for designing embedded systems. In embedded systems, the 

combination of the external interfaces and the control algorithms is very important. The 

CPU is needed to implement various functions. Power management is extremely 

important in embedded systems to conserve battery power and to minimize heat 

production. In order to design profitable embedded systems, designers often review the 

past deployment to take various lifecycle issues into account. 

System-on-a-chip (SOC) integrates all components of a computing system into a 

single integrated circuit [73], [84], [169]. SOC may contain one or more processing 

core(s) along with other required functions on the same chip. SOC architecture is the 

underlying architecture for many embedded systems and scalable supercomputers. Due to 

the success of the semiconductor industry, SOC is expected to grow into general purpose 

computing as well. Xpipes is a network-on-chip (NOC) architecture for gigascale 

systems-on-chip (SOC) [16]. Various design methodologies of NOC architecture are 

presented in [63], [133], [138], [151], [154]. 

Even though single-chip implementation may be beneficial for some portable 

systems to meet low-cost and low-power requirements, multi-core is the future of 

computing systems in all environments. Most researches are focusing on concurrent 

hardware and software design early in the development process. A global solution is 

suggested in [57] – multi-processor SOC (MPSOC) with up to eight computing nodes 

and a flexible interconnection network. 

The move toward chip-level multiprocessing architectures with a large number of 

cores continues to offer dramatically increased performance and power characteristics. 

Some significant challenges presented by this move are discussed in [47]. 
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A comparative energy and performance analysis of cache-coherence support 

schemes in MPSOCs is provided in [70], [125]. They implement hardware-based, 

software-based, and operating system (OS) based approaches. The OS-based solution is 

very expensive. Hardware-based solution needs more power when traffic grows. 

Software-based solution is feasible even when the architecture becomes complex. 

Interconnection speeds are not scaling well with the increase of the number of 

cores on chip multi-processors (CMP). As a result, coherence is becoming a central issue 

for multi-core performance. A proximity-aware directory-based coherence scheme is 

evaluated in [20] to improve the performance of parallel programs on such processors. 

The proposed schemes result in speedups up to 74.9% for the workload used. 

A hardware/software methodology is proposed in [126] to make caches coherent 

in heterogeneous multiprocessor platforms with shared memory. Up to 58% performance 

improvement is achieved with low miss penalty at the expense of adding simple 

hardware, compared to a pure software solution. Speedup can be improved even further 

as the miss penalty increases. This approach provides embedded system programmers a 

transparent view of shared data, removing the burden of software synchronization. 

Future Dense-CMP (D-CMP) systems with 16 or more processor cores impose 

new design restrictions. Performance evaluation of two proposed D-CMP architectures is 

presented in [141] - the Shared Bus Fabric (SBF) architecture features a snoop cache-

coherence protocol and is based on a high-performance bus fabric interconnection 

network. The second architecture follows a directory-based approach and integrates a bi-

dimensional mesh as the interconnection network. Results show that the directory-based 

architecture outperforms the SBF one. 
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A design flow is presented to achieve a very short design cycle for application-

specific multiprocessor architecture [71]. The design flow extracts the architectural 

parameters and instantiate architectural components including processors, memory 

hierarchy, and network topology. The flow generates communication coprocessor that 

adapts the processors in an application-specific way. 

A Two-Level Memory Management hierarchy is proposed in [115] to deal with 

global on-chip memory allocation/de-allocation in a dynamic yet deterministic way in the 

billion transistors MPSOC designs. In this way, heterogeneous processors in a SOC can 

request and be granted portions of the global memory in twenty clock cycles in the worst 

case for a four-processor SOC, which is at least an order of magnitude faster than 

software-based memory management. 

According to [123], it is possible to control the cache activities, and thereby 

improve the predictability of the real-time system by using a real-time kernel in the 

hardware system.  

Modern embedded systems are adopting multi-core architectures to satisfy the 

need for improved performance/power ratio. However, (multi-level) caches (in multi-core 

architecture) make the unpredictability even worse. Proposed cache optimization and 

cache locking techniques should improve the predictability and performance/power ratio 

of both single-core and multi-core real-time embedded systems. 

 

2.3 Performance-Power-Predictability 

Performance evaluation is one of the primitive research areas in computing 

history. Power consumption is crucial for embedded systems as they suffer from limited 
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resources. Execution time predictability is drawing a lot of attention because of its 

importance in systems supporting real-time applications. 

The design of cache memory hierarchy is a critical issue in embedded systems 

[122]. In [127], trace-based statistics and flexible visualization techniques are suggested 

to analyze multi-core systems running multimedia applications on the same chip. Due to 

the increase in complexity, the latest embedded system design requires a higher-level of 

abstraction. If the design starts at a higher level of abstraction, the process towards the 

selection of the optimal target architecture, as well as the partitioning of the 

functionalities, can be considerably accelerated [14]. By knowing the cache miss-ratio, 

performance can be estimated in advance and can be used as input for compilers and 

system developers. A static method that bounds the worst-case instruction cache miss-

ratio of a program is presented in [114]. This method first constructs a control flow graph 

(CFG) of the program at machine code level. Finally it constructs a binary tree of 

possible execution paths that might lead to a worst case cache miss-ratio. 

In general, there is a tradeoff between the cache performance and the power 

saving in the cache system. An analytical model for power estimation and average 

memory access time is presented in [2]. The method in [48] uses a two-step approach – 

first collects immediate data about the application using simulation, and then uses 

equations to predict the performance and power consumption of each of the possible 

configurations of the system parameters. An energy-aware mapping for tile-based NoC 

architectures under performance constraints is discussed in [53]. A system-level power 

aware design flow is proposed in [86] that shifts in design effort towards system-level in 

order to avoid failures after months of design time spent at Register Transfer Level (RTL) 
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and Gate Level. In [88], a technique to reduce the power consumption and latency in 2-D 

Mesh NoCs using globally pseudo-chronous locally synchronous clocking is proposed. 

The power management optimization is formulated using closed loop control concepts 

[118]. Each node has its local power manager that determines the power state. The 

estimator tracks changes in the system parameters and recalculates the new power 

management policy. Local power manager‘s interaction with other cores enables 

network-centric power management. Results show that large power saving is possible 

with good QoS. The Embedded Microprocessor Benchmark Consortium (EEMBC) 

develops a standardized method for simultaneously measuring power and performance on 

processor based systems [66]. Power consumption may significantly vary with different 

cache configurations and workloads. This method helps classify processors for the 

appropriate target markets (portable versus line-powered). A high-level simulation 

platform for multiprocessor systems is presented in [92]. Multiprocessing chips will have 

heterogeneous, programmable hardware elements that lead to different execution times 

for the same software executing on different resources as well as a mix of desktop-style 

and embedded-style software. They will also have a layer of programming across 

multiple programmable elements forming the basis of a new kind of programmable 

system which is referred as a Programmable Heterogeneous Multiprocessor (PHM). 

Current approaches using instruction set simulation for performance modeling of single-

core systems would become far too prohibitive in terms of simulation time for the 

heterogeneous multiprocessing systems. They describe the foundations of a layered 

approach to modeling and performance simulation of PHM. They modeled a multi-

processor SOC at high-level using MESH (Modeling Environment for Software and 
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Hardware) and low-level using cycle-accurate ISS (Instruction Set Simulator). 

Experimental results show only 5.5% of error in an average. The trade-off between the 

energy dissipation of software and that of system resources like cache and main memory 

is shown in [67]. It is concluded that there is no straight forward way to evaluate the 

change in total system energy for the changes in system parameters and applications. 

Optimization tools can be used to optimize various cache parameters.  

Embedded avionics systems usually have caches and support pipelining for higher 

performance; they need offline guarantees for the satisfaction of their timing constraints. 

The variability of execution times exists on all system layers, in the processor 

architecture and the software development for single tasks. Approaches to improve the 

average case behavior of systems may be very unfortunate. Predictability of real-time 

systems is a lively research area. AbsInt‘s aiT tool is discussed in [143]; aiT is in routine 

use in the aeronautics and the automotive industries. In [68], an OS-controlled cache 

predictability mechanism for real-time systems is presented. 

Our goal, in this work, is to implement a cache optimization methodology that 

improves the predictability and performance/power ratio at the same time.  

 

2.4 Workload  

The workload defines all possible scenarios and environmental conditions that the 

system-under-study will be operating under. The quality of the workload used in the 

simulation is important for the accuracy and completeness of the simulation results [40], 

[120]. A workload-based approach to performance testing that can be applied to large 

industrial software systems is described in [13].  
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To satisfy the future demands embedded systems should incorporate many more 

functions for real-time and background computations [146]. The performance, 

predictability, and power analysis of a real-time embedded system usually relies on the 

worst-case execution time (WCET) of the target applications. The traditional worst-case 

analysis may return overly pessimistic estimates of the system performance.  This may 

cause catastrophic failure for multi-core real-time systems where each core may have its 

own OS and clock. A new method to characterize tasks with variable execution needs is 

presented in [77].  

Video coding techniques from the Moving Picture Experts Group (MPEG) are 

described in [42], [165]. MPEG, a working group within the International Organization 

for Standardization (ISO), finalized MPEG4 (Part-2) in 1998. MPEG4 delivers 

professional-quality audio and video streams over a wide range of bandwidths over the 

Internet, from cellular phone to broadband and beyond. The development of H.264/AVC 

is summarized in [106], [112], [149], [171]. The Video Coding Experts Group (VCEG) 

from the ISO MPEG and the International Telecommunication Union's 

Telecommunication Standardization Sector (ITU-T) has developed a new standard, 

Advanced Video Coding (AVC) – widely known as H.264/AVC or MPEG4 Part-10. 

H.264/AVC is the improved version of H.263 and it is widely used in videoconferencing 

systems. We consider MPEG-4 and H.264/AVC applications in this work.  

Detailed traces can be collected using ARMulator to drive the VisualSim 

simulation program [5], [156]. FFmpeg and JM-RS (96) are used with Cachegrind to 

decode MPEG4 and H.264/AVC encoded file [161], [164]. Workload is generated after 

post-processing Cachegrind output.  
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2.5 Simulation  

Performance evaluation is a long-standing research topic [78], [79]. Various 

performance modeling techniques are discussed in [83], [91] as shown in Table 2.1. 

Direct measurement is a post-design step and not useful for systems under design. 

Analytical methods are okay for preliminary design explorations. However, analytical 

methods are not suitable for assessing detailed design trade-offs of future complex system 

architectures.  

 

Table 2.1: Performance evaluation techniques 

Measurement Analytical Simulation 

Post-design step Current/pre- design step Pre-design step 

SW monitor inside chip Mathematical description Computer programs 

Accurate Fast evaluation; 

less accurate 

Slow evaluation; 

more accurate 

Less flexible Less flexible More flexible 

 

Simulation using computer programs and/or tools has become very popular in last 

decade [49]. The increased complexity of future architectures and applications make 

performance simulation very challenging. Understanding the performance of 

multiprocessors and distributed systems requires analyzing them separately and 

observing their interaction with the entire system architecture A Real-TIme System 

Simulation Tool (ARTISST) is described in [37]. 

Performance evaluation methodologies in articles appearing in the Proceedings of 

the International Symposium on Computer Architecture are shown in Table 2.2. Here, the 

total is not necessarily the sum across the columns because some papers used more than 

one evaluation method. This table is adapted from Reference [152].   
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Table 2.2: Performance evaluation methodologies used by researchers [152] 

Year Total 
Papers 

Simulation Measurement Analytical Others 

Total % Total % Total % Total % 

2004 31 27 87 3 10 1 3 0 0 

2001 25 22 88 2 8 0 0 2 8 

1997 30 24 80 6 20 0 0 0 0 

1993 32 23 72 9 28 6 19 1 3 

1985 43 12 28 1 2 14 33 16 37 

1973 28 2 7 0 0 5 18 21 75 

 

Distributed simulation for chip-multiprocessors (CMP), introduced in [31], is 

based on message passing interface (MPI). This approach is found effective in distributed 

host system consisting of workstations connected with a high-speed network. 

Various trace-driven methods and over 50 trace-driven simulation tools are 

surveyed in [135]. Considering the strengths and weaknesses of different approaches, no 

single method is the best when all criteria (including accuracy, speed, flexibility, expense, 

and ease-of-use) are considered. 

We perform an extensive search for suitable tools to develop the simulation 

platform for our usages. In [107], some modeling and simulation languages and tools are 

listed with a short description for each item. BuildSim, LabView, MicroSaint, 

SimCreator, SimuLink and MatLab, VisSim, and VisualSim are some of the popular 

simulation tools. We install and test some of them in FAU Mobile Computing Laboratory 

and 319 Open and Teaching Laboratory. We find that no single tool is suitable enough 

for real-time multi-core system analysis. We select a set of simulation languages and 

tools consisting C, VisualSim [172], Heptane [162], and Cachegrind [159] (with FFmpeg 

[161] and JM-SR (96) codec [164]) to develop and run our simulation programs.  
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2.6 Other Related Issues 

In the previous subsections, we have discussed some selected articles focusing on 

cache optimization, embedded system, and performance-power- predictability issues. We 

have also summarized some articles addressing the workload and simulation issues. In 

this subsection, we cover other related issues including the execution time predictability, 

performance/power ratio, and scalability in real-time embedded systems. 

In [8], [10], [74], and [136], the architecture of an embedded system running 

multimedia applications is explored. A simulation program is developed to evaluate the 

system performance in terms of utilization, delay, and total transactions for various CL1 

sizes. In [8], the memory latency of cluster-based cache-coherent multiprocessor systems 

with different interconnection topologies is evaluated. In [10], cache parameters are fine 

tuned for embedded MPEG4 and H.264/AVC video CODEC.  

The demand for supporting real-time applications in embedded systems is 

growing. Execution time predictability is important for any real-time system. Cache 

improves performance but poses challenges by increasing the unpredictability. It has been 

shown that for embedded systems with a well known workload, static cache locking helps 

to determine the worst case execution time (WCET) and cache-related preemption delay. 

In [11], a static I-Cache locking scheme is proposed that makes the real-time embedded 

system more predictable. FFT, MI, and DFT applications are used as inputs to run the 

simulation program. CPU utilization for both static cache analysis (no cache-locking) and 

cache locking is obtained by using the Heptane tool. Experimental results show that the 

cache locking scheme improves both predictability and performance when the right cache 
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blocks are locked and appropriate cache parameters are used. Experimental results also 

show that predictability can be further enhanced by sacrificing the performance. 

A data bypass cache and a predictor table with CL1 and CL2 (as victim cache) are 

used in [75]. This method reduces access latencies by determining whether a load should 

bypass the main cache hierarchy and issue an early load to main memory. This technique 

improves performance and power. 

One of the biggest challenges in shared memory multi-core (or multi-processor) 

systems is scalability. In [65], a group of researchers from Stanford University propose 

DASH (Directory Architecture for SHared memory) architecture, where snoopy protocol 

is used inside the cluster and clusters are connected via a mesh interconnection network. 

The DASH architecture achieves near-linear performance growth as the number of 

processors increases from a few to a few thousand. The architecture significantly reduces 

the memory latency and provides higher processor utilization and higher overall 

performance [41]. In [74], the DASH architecture is enhanced by adding CL2. Ring and 

hypercube networks are evaluated in addition to the mesh network. The architecture is 

simulated for a total of 16 processors – 2 or 4 processors in a cluster. Simulation results 

show reduced memory latency due to the addition of CL2. 

It is important to note that Moore‘s law encourages multi-core embedded systems; 

however the performance does not depend only on the number of cores. According to  the 

law of diminishing returns, in a production system with fixed (say, size) and variable 

(say, labor) inputs, beyond some point (size and labor), each additional unit of variable 

input produces less and less additional output. From Amdahl's law by Gene Amdahl, the 

speedup of parallel computing is limited by the fraction of the problem that must be 
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performed sequentially [61]. So the scalability should be justified against the 

performance gain (that depends on architecture, system software, and applications). 

 

2.7 Summary 

The hunger for faster performance is never satisfied. Every new performance 

advance in processors leads to another level of greater performance demands from 

consumers. Most manufacturers are adopting multi-core processors to acquire additional 

processing speed for very little additional power consumption. 

Important advantages and disadvantages of multi-core processors are summarized 

in Table 2.3. On one hand, multi-core processors improve performance for a very little 

extra energy; multi-core architectures take less die area and provide high cache/bus snoop 

performance. On the other hand, multi-core systems require higher bus/memory 

bandwidth. Some multi-core architecture requires new software. Existing application 

codes running in single-core systems need to be re-written to take advantage of multi-

core architecture.  

 

Table 2.3: Advantage (+) and disadvantage (-) of multi-core processors 

Item Advantage (+) or 
Disadvantage (-) 

Performance + 

Power consumption + 

Die area + 

Cache/bus snoop performance + 

Bus/memory bandwidth - 

Existing software usages (Cell processor: in-order, 

no branch prediction, etc) 

- 

Real-time support / predictability ?? 
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Multi-core processors bring high processing speed for trivial additional power, as 

well as the ―multi-core cache unpredictability‖. If the unpredictability is not manageable, 

it may cause catastrophic failure of the entire system. In order to improve predictability, 

IBM is not using pipelining in Cell and cache in SPEs, but that makes software 

development more complicated and may cause shared level-2 cache bottleneck for larger 

applications. Studies show most vendors including Intel and AMD are using level-1 and 

level-2 caches in their multi-core processors. 

We know that cache is the primary source of execution time unpredictability. 

Real-time systems are currently not taking full advantages of cache memory especially in 

multi-core environment. Research needs to be done to develop methodologies so that 

multi-core processors can improve both predictability and performance to support real-

time systems consuming no or very little additional power. In the following chapters, we 

present various cache modeling and optimization techniques to improve the execution 

time predictability and performance/power ratio of multi-core, as well as single-core, 

real-time embedded systems.  
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CHAPTER 3 

CACHE MODELING AND OPTIMIZATION FOR SINGLE-CORE 

SYSTEMS 

 

The popularity of embedded systems in various fields such as multimedia, signal 

and image processing, high-speed networks, and information systems is on the rise. To 

satisfy the growing consumer demands, more functions are being added to modern 

computing systems. With improved CPU speed, cache memory sub-system deficiency is 

the major barrier to improving the performance of such complex systems. Studies show 

that there is sufficient reuse of values for caching that should significantly reduce the 

memory bandwidth requirement for real-time applications. Each application has its own 

composition of the instruction and data set. Proper understanding of the cache memory 

hierarchy and the target application is obvious to improve the performance of such a 

system. The focus of this chapter is cache modeling and optimization for single-core 

systems to enhance performance. The architecture we simulate includes a cache memory 

subsystem with two levels of caches. We use VisualSim and Cachegrind simulation tools 

to model, analyze, and optimize cache size, line size, associativity level, and cache levels 

of the target architecture running H.264/AVC video decoding algorithm. 
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3.1 Introduction  

Applications drive the architecture of embedded computing systems. For 

multimedia processing, low-power high-performance adaptive computing architecture is 

expected [111]. For many embedded devices, single-core implementation is 

recommended to meet the power consumption and cost requirements. Due to the 

improvements in the semi-conductor industry, required computational speed to 

implement such a device is easy to achieve. However, due to the growing disparity 

between the increasing CPU speed and the memory speed, the amount of traffic from 

CPU to memory leads to a significant processor/memory speed gap. A small, fast, and 

expensive memory, called cache, is used between CPU and main memory to improve 

performance by dealing with memory bandwidth bottlenecks and other issues like bus 

contention problem.  

The basic cache memory organization of a single-core architecture is shown in 

Figure 3.1. As shown in Figure 3.1(a), if CPU speed is 400 MHz and main memory speed 

is 100 MHz (memory is slower than the CPU), then CPU wastes at least 3 cycles if it 

needs something from main memory. Cache improves performance by reducing the data 

access time. Using data stored in the cache helps cut down bus traffic significantly. As 

shown is Figure 3.1(b), first-level or on-chip cache (CL1) is on the same chip with the 

CPU and operates almost at the same speed as the CPU does. CL1 may be split into level-

1 instruction cache (I1) and data cache (D1) for improved performance. Due to the 

success with CL1, second-level or off-chip cache (CL2) has been introduced (see Figure 

3.1(c)). Today, multi-level caches in various configurations are available. Data transfer 

between CPU and cache and cache and main memory are different. Data between CPU 
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and cache is transferred as data object and between cache and main memory as block as 

shown in Figure 3.1(d). 

 

Figure 3.1: Cache memory hierarchy – cache, main memory, and data transfer. 

 

3.2 Performance Improvement  

Modeling and simulation technique is very effective for the early analysis of any 

computing system. For future products (when the actual product does not exist yet), 

conceptual modeling and simulation is probably the only way to make scientific design 

decisions. As we already know, most single-core architecture has cache to improve 

performance. However, cache performance (and the overall system performance) for a 

target application greatly depends on the values used for various cache parameters (like 

cache size, line size, and associativity level). Larger cache size usually improves 
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performance by reducing capacity cache miss. But, cache is expensive and after a limit 

performance improvement for increased cache size is not significant. Bigger line size 

helps improve performance by reducing compulsory cache miss. Conversely, aggressive 

increment in line size introduces cache pollution and decreases performance. Higher 

associativity level is proven to improve performance by reducing conflict cache misses. 

In spite of this, after a point increase in associativity level makes the system more 

complicated without any significant performance improvement. Therefore, it would be 

beneficial to analyze and optimize the cache memory hierarchy in a single-core 

embedded system using the target applications.  

 

3.3 Modeling and Simulation  

In this chapter, we model a single-core architecture and simulate the model to 

improve the performance by tuning various cache parameters. Simulation details are 

presented in the following subsections.  

 

3.3.1 Assumptions 

In order to simplify the model and run the simulation program, we make the 

following assumptions. 

 A single-core system with CL1 (I1 and D1) and CL2 is considered. 

 The dedicated bus that connects CL1 and CL2 introduces negligible delay 

compared to the delay introduced by the system bus which connects CL2 and 

main memory. 
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 Task time has been divided among CPU, CL1, CL2 (when exists), bus, and 

main memory proportionally. 

 Write-back update policy is implemented for reduced CPU utilization. 

According to this policy the CPU is released immediately after CL1 is 

updated. 

 CIF YUV 4:2:0 formatted (352 pixels by 288 lines, 30 fps) video stream file 

has been used to generate a representative .264 file. 

 

3.3.2 Simulated Architecture 

The target architecture has a processing core to run video decoding algorithm. 

The system has CL1 and CL2 caches. CL1 is a split into I1 and D1 caches and CL2 is a 

unified cache as shown in Figure 3.2. CL2 and the main memory are connected to a 

shared bus. The processing core communicates with the main memory via CL1 and CL2. 

The compressed (i.e., encoded) video files are in the main memory. The core reads them 

using the cache memory subsystem, processes (decodes) them, and writes them back to 

the main memory through the caches. 

 
 

Figure 3.2: Simulated architecture for embedded system running H.264/AVC decoder. 
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3.3.3 Simulation Tools and Workload 

In this chapter, we use trace-driven hardware/software co-simulation technique. 

Using VisualSim we develop the model of the target architecture and run the simulation 

program. We use workload of H.264/AVC decoding algorithm, an important and 

demanding multimedia application, to run our simulation program. Using Cachegrind and 

JM RS (96), we collect I1, D1, and CL2 miss rates and D1 and CL2 read/write references 

for various cache parameters. We evaluate the performance in terms of miss ratio and 

total number of transactions processed by different system components for various cache 

size, line size, associativity, and cache levels. 

The original YUV file we use to generate .264 file is a common intermediate 

format (CIF) YUV 4:2:0 video stream with image format 352 pixels by 288 lines, 30 fps. 

Using H.264/AVC JM RS (96) CODEC, we decode a .264 file (to a new YUV file). 

Using Cachegrind, we collect the total references for I1, D1, and CL2. Data (D1) and 

CL2 references consist of read and write references. As shown in Table 3.1, the 

H.264/AVC file (.264 file) that we decode has 62% instruction and 38% data references 

at CL1. Data references are consist of 75% read and 25% write. At CL2, we see 84% read 

and 16% write references. These numbers are used to run the simulation program.   

Table 3.1: Workload – CL1 (I1 and D1) and CL2 references while decoding .264 file 

Total CL1 References (K) CL1 References (K) 
I1                  D1 

D1 Refs (K) 
Read                Write 

194322 120163 

(62%) 

74159 

(38%) 

55765 

(75%) 

18394 

(25%) 
 

Total CL2 References (K) CL2 Refs (K) 
Read                Write 

191 161 (84%) 30 (16%) 
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3.3.4 Experimental Results 

In this chapter, we model and optimize the cache memory subsystem of a single-

core architecture running H.264/AVC video decoding algorithm to improve performance. 

We present the results obtained using Cachegrind and VisualSim in this subsection. 

First, we present the miss ratio due to the variation of CL1 (I1 + D1) cache size 

where CL1 line size is fixed at 32B and associativity at 8-way are shown in Figure 3.3. 

We keep, CL2 fixed at cache size 1M, line size at 32B, and associativity at 8-way. 

Experimental results show that the miss rate decreases when CL1 size is increased from 

8K + 8K to 16K + 16K. It is also observed that the decrease in miss rate of D1 is higher 

than that of I1. According to our simulation results, for CL1 (D1 + I1) size 16K + 16K 

and bigger, the decrease is not significant. So using a CL1 (I1 + D1) size greater than 

16K + 16K may not offer any benefit.   

 

 
 

Figure 3.3: Miss ratio versus CL1 (I1+D1) size. 
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Second, the miss ratio due to the variation of CL2 cache size where CL2 line size 

is fixed at 32B and associativity at 8-way are shown in Figure 3.4. In this case, CL1 is 

fixed at cache size 16K+16K, line size 32B, and associativity 8-way. It is observed that 

for CL2 size of 256K or smaller the miss rates remains unchanged, from 256K to 2M the 

miss rates decrease sharply, and for 2M or bigger the miss rates decrease slowly until it 

becomes 0%. From cost, space, and complexity standpoints, larger CL2 (bigger than 

2MB in this case) may not provide any significant advantage. 

We obtain the miss rates for various CL2 size using both Cachegrind and 

VisualSim (see Figure 3.4). Results from VisualSim and Cachegrind follow the same 

pattern supporting the fact that for CL2 size from 256 KB to 2 MB the miss ratio 

decreases sharply. For other CL2 sizes, the decrease in miss ratio is negligible.  

 

 
 

Figure 3.4: Miss ratio versus CL2 size from VisualSim and Cachegrind. 
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Third, increasing the line size reduces compulsory cache miss ratio (compulsory 

miss occurs on the first access to a block). However, too large a line size may increase 

capacity cache misses (capacity miss occurs because blocks are discarded from the cache 

as the cache cannot contain all blocks needed for program execution). Figure 3.5 shows 

that for a smaller cache size, miss rates start decreasing with the increase in line size. 

After a certain point, known as cache pollution point (128B for D1 in this case), miss 

rates start increasing. In this case, line size 128B or higher may not be efficient as it 

requires more data to be read and written (in case of a miss).  

 

 
 

Figure 3.5: Miss ratio versus line size. 
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Fourth, using Cachegrind, we collect miss ratio by varying associativity level for 

CL1 (D1+I1) cache size 16K+16K, CL2 size 1M, and line size 32B. The miss rates for 

different levels of associativity are shown in Figure 3.6. The miss rates significantly 

decrease when we go from 2-way to 4-way associativity. Going to 8-way to higher, the 

changes are not significant.  

 

 
 

Figure 3.6: Miss ratio versus associativity. 

 

Using VisualSim, we investigate the impact of the presence of a CL2. CL2 size is 

varied and performance metrics, namely total number of transaction and CPU utilization, 

are obtained. We keep CL1 (D1+I1) size fixed at 16K+16K, line size at 32B, and 

associativity at 8-way. We change CL2 size from 128K to 4 MB and keep CL2 line size 

fixed at 32B and associativity at 8-way.  

 



 48 

In our simulation, memory references are initiated at the CPU and are referred to 

CL1; if not satisfied in CL1, is referred to CL2. Finally, requests unsuccessful at CL2 are 

satisfied from the main memory (MM) via the shared bus. Simulation results show that 

total number of transactions through the bus and main memory decrease with the increase 

of CL2 size as shown in Figure 3.7. We run our simulation program for a total of 1M 

transactions; 380,000 of those transactions are data and the rest 620,000 are instructions. 

Transactions are referred to D1 or I1 by the CPU. For D1 miss ratio 1.0% and I1 miss 

ratio 0.4%, (3,800 + 2,480) or 6280 requests go to CL2. For CL2 size 128K (miss ratio is 

0.3%), only 19 requests go to MM via the shared bus. For CL2 size 2M (miss ratio is 

0.03%) only 2 tasks go to MM. For CL2 cache size 4M or higher, no requests go to the 

main memory as miss ratio becomes 0.0%. 

 
 

Figure 3.7: Total number of transactions versus CL2 size. 

 

Studies show that addition of CL2 decreases the bus traffic and latency and 

improves system performance.  
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Using VisualSim simulation model, we investigate the impact of various video 

files with different bit-rates on CPU utilization. Bit-rates may be different for various 

reasons including quality of service and index of animation (example, a landscape 

panning is coded differently from a football match). In our simulation, we keep CL2 

fixed. We start with task-rate 0.1 tasks per unit time and increase it up to 2 tasks per unit 

time. Simulation results show that utilization increases with increased task-rate. At task 

rate of 2 tasks per simulation time units, utilization is close to 100% for CL1 (D1+I1) size 

(8K + 8K) as shown in Figure 3.8. Further increase in task rate (with other parameters 

unchanged) causes the system to break down. System cannot process all the tasks, once 

the task queue is full it starts dropping the tasks. A bigger cache size at this situation 

should reduce the utilization. In this experiment, CL1 (D1+I1) size (64K + 64K) reduces 

CPU utilization by 30% (approximately).  

 

 
 

Figure 3.8: CPU utilization versus task-rate. 
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3.4 Summary 

In this chapter, we focus on enhancing the performance of a single-core 

embedded system through cache modeling and optimization for H.264/AVC decoder. 

The architecture includes a processor to run the decoding algorithm and a two-level cache 

memory subsystem. We optimize cache size, line size, associativity level, and cache 

levels for the system. Simulation results show that this cache modeling and optimization 

technique can be effectively used to enhance the performance of single-core embedded 

systems running real-time applications. 
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CHAPTER 4 

CACHE MODELING AND OPTIMIZATION FOR MULTI-CORE 

SYSTEMS 

 

Power consumption and dissipation are important design factors for modern 

computing systems. Excessive power consumption is a direct threat to the battery-life of a 

battery operated device. High power dissipation requires a sophisticated cooling system. 

From die area and cost point of view, power consumption is very crucial for embedded 

systems. In Chapter 3, we have seen how cache modeling and optimization helps improve 

performance of single-core systems. In this chapter, we improve performance/power ratio 

of multi-core embedded systems by cache optimization. Both single-core and multi-core 

embedded systems have caches. In multi-core systems, the cache memory subsystem is 

more complicated than in single-core systems. Even though multi-core architecture 

improves performance/power ratio by simultaneously processing the tasks and running at 

a lower frequency, there are opportunities to improve performance/power ratio of this 

architecture by cache optimization. We simulate a dual-core system and run the 

simulation program using MPEG4 decoding algorithm. Experimental results show that 

performance/power ratio can be improved by optimizing cache parameters. Results also 

show that CPU utilization and total number of transactions can be adjusted by changing 

the cache size and task rate. 
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4.1 Introduction  

Multi-core processor is the future of computing as it improves performance/power 

ratio. Embedded systems increasingly use multi-core processors in order to satisfy the 

computational needs. In a multi-core CPU or chip-level multiprocessor (CMP), two or 

more independent cores are combined into a die. There may be multiple levels of caches 

and caches may be organized in a number of ways. The processors share the same 

interconnect network with the rest of the system. Key hardware components for such a 

system include – CPU, memory, bus, cache, etc. Other important components are 

operating system and applications. Such a system may be homogeneous (distributed 

system contains same kind of hardware and software) or heterogeneous (distributed 

system contains many different kinds of hardware and software working together in 

cooperative fashion to solve problems). Figure 4.1 shows a multi-core system. In a multi-

core system, the applications are broken into smaller tasks and given to different 

processors. A processor may be designed to perform a specific task assigned to it. For 

example, CPU-1 runs on an open operating system, has only CL1, and performs Task-1. 

On the other hand, CPU-N has CL1, CL2, CL3, and real time operating system (RTOS) 

to perform Task-N.  All CPUs share main memory through a single shared bus. 

In this chapter, we consider a simplified multi-core architecture with 2 processing 

cores; each core has its own private CL1. We develop a cache modeling platform for this 

architecture and optimize cache parameters to analyze and improve performance and 

decrease power consumption (i.e., improve performance/power ratio).  
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Figure 4.1: Shared bus multi-processor architecture. 

 

4.2 Performance/Power Ratio Improvement  

If cache parameters are not properly chosen the system may operate under poor 

performance and may consume huge amount of power. Like single-core, multi-core 

performance/power ratio can be improved by cache optimization. However, cache 

optimization in multi-core is difficult. In multi-core, each core may have its own private 

CL1 and there may be private and/or shared CL2 (and higher levels of caches). Cache 

optimization in multi-core systems is very important to improve performance/power 

ratio. This cache optimization technique is very effective for homogeneous multi-core 

system as each core should be equally capable of processing tasks. 
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4.3.1 Assumptions 

The following assumptions are made to simulate cache optimization in a multi-

core architecture. 

 A real-time embedded system with two cores is considered in order to 

evaluate the performance/power ratio accurately. When both cores are used, 

one of the two cores, DSP (a digital signal processor), processes video data in 

real-time and the other core, AP (an application processor), displays the 

processed video data.  

 AP (runs under general purpose operating system) is capable of handling the 

traffic in sync with DSP (runs under real-time operating system). 

 DSP and AP use IPC/MU to communicate with each other without any delay. 

 Data transfer between CPU and cache is considered as a frame. 

 Size of shared main memory is unlimited – there is no delay involved with the 

actions of reading from buffer, writing into main memory, etc. 

 

4.3.2 Simulated Architecture 

To analyze the impact of cache optimization on performance and power 

consumption of a multi-core embedded system, we simulate an architecture that has two 

processors. The architecture is designed to support video communication applications. 

When both cores are used, one of the two cores, a digital signal processor (DSP), decodes 

the encoded video streams and the other core, an application processor (AP), plays it 

back. Both DSP and AP have CL1. As illustrated in Figure 4.2, DSP reads and writes 

video data via its cache and AP reads the decoded video data using its cache. DSP and 
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AP use inter-processor communication (IPC) with a register-based messaging unit (MU) 

and a shared memory system. Here, main memory is being shared by DSP and AP and 

they are connected via a shared bus. DSP writes the decoded video streams into the main 

memory and sends a message to AP. AP reads the video streams and plays them back.  

 

 
 

Figure 4.2: Simulated architecture of a dual-processor system. 
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directionally predictive picture (B frame), are considered. The dependencies among 

frames are shown in Figure 4.3. For an example, P frames can be decoded from previous 

I (or P) frame. Both previous I (or P) and next P frames are needed to decode any B 

frame. For this study, we stay on the conservative side by assuming that the data transfer 

rate between CPU and the cache is in frames. 

 

 
 

Figure 4.3: Sample MPEG4 GOP with 7 picture frames. 

 

For DSP, the hit ratio and miss ratio are calculated based on the cache sizes and 

the MPEG4 decoding algorithm. Cache size is finite and fixed for a specific architecture. 
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there is one miss per N frames and the hit ratio is (N-1)/N and the miss ratio is 1/N. 

Total number of bytes (B) in a MPEG4 CIF YUV 4:2:0 encoded file is 

N*3*width*height/2. Here N is the total number of frames. So, for CIF YUV 4:2:0 352 

pixels by 288 lines encoded video stream, 

Frame Size = 3*352*288/2 bytes ≈ 152 KB  
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Table 4.1 summarizes the hit ratio and miss ratio of different CL1 sizes for both 

DSP and AP processor.  

 

Table 4.1: Hit ratio and miss ratio for DSP and AP caches 

Cache size 
(KB) 

Max. Frames 
Cache can hold 

DSP 
Hit            Miss 
(%)             (%) 

AP 
Hit            Miss 
(%)              (%) 

384 2 28 72 50 50 

512 3 86 14 67 33 

1024 6 86 14 84 16 

 

From above table, DSP does not take advantage of increasing cache size from 512 

KB to 1024 KB, so the hit ratio (also the miss ratio) remains unchanged for DSP. But the 

cache hit ratio of AP increases from 67 to 84 as cache size increases from 512 KB to 

1024 KB. This is because to decode a B frame, DSP may need access to at most 2 other 

frames (previous I or P frame and the next P frame). So having more than 3 frames into 

the cache does not improve hit ratio over having exactly 3 frames into the cache for DSP. 

 

4.3.4 Experimental Results 

It is important to design the components of cost sensitive products for the worst-

case but not to over-design it. In this work, we explore the impact of cache optimization 

of performance/power ratio of a multi-core embedded system running MPEG4 

application. We stay on the conservative side by assuming that the data transfer rate 

between CPU and cache is in frames while generate workload to run the simulation 

program. 
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We first present CPU utilization for various cache sizes. Figure 4.4 shows CPU 

utilization for various cache sizes for task rate 0.1 time units. For cache size of 384 KB, 

we see that only two frames can be kept into the cache at a certain point of time. We 

know B frames are predicted based on both previous I (or P) frame and next P frame. As 

a result there would be more cache misses. When cache size is increased to 512 KB, three 

frames fitted into the caches at the same time and the miss rate is reduced significantly. 

Then we increase cache size to 1024 KB. It is noticeable that utilization of AP, bus, and 

memory dropped considerably. But DSP utilization did not change. This is because, even 

though DSP cache can have 6 frames at the same time, it can use at most 3.  

 

 
 

Figure 4.4: Utilization versus cache size with task rate 0.1 time units. 
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Figure 4.5 shows the results for task rate 0.2 time units. At this increased task 

rate, DSP utilization for cache size of 384 KB should go beyond 100% which is not 

possible. As a result simulation stops abnormally indicating a system failure. Please note 

that results for cache size 384 KB is not included in Figure 4.5. For cache size of 512 KB, 

AP utilization becomes extremely high. At this task rate, if cache size is increased to 

1024 KB, AP utilization reduces significantly, but DSP utilization remains unchanged 

due to the fact that DSP does not take advantage of having more than 3 frames into the 

cache at the same time.  

 

 
 

Figure 4.5: Utilization versus cache size with task rate 0.2 time units. 
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We also study mean delay for various cache sizes. For DSP and AP, mean delay 

is significant for cache size of 384 KB. As cache sizes increase, DSP and AP delay 

decreases. Bus and memory delay do not change significantly, since each of them 

processes almost the same number of requests almost at the same processing speed. It is 

important to notice that DSP mean delay remains the same for 512 KB and 1024 KB even 

though AP mean delay decreases.  

 

 
 

Figure 4.6: Mean-delay versus cache size. 
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Total power consumption for different cache sizes is shown in Figure 4.7. DSP 

power consumption decreases sharply from 384 KB to 512KB but remains unchanged 

from 512KB to 1024KB. However, AP power consumption decreases from 384 KB to 

512KB and from 512KB to 1024KB. The differences between the total power 

consumption by the bus and main memory due to cache size changes are not significant, 

since the application has a very high hit ratio for all the cache sizes.  

 

 

Figure 4.7: Total power consumption versus cache size. 

 

We also investigate the impact of various cache sizes on the total number of 

transactions processed (see Figure 4.8). We measure transaction as the total number of 

tasks entered into and tasks exited from the component during the whole period of 

simulation. For DSP and AP, the total number of transactions processed remains 

unchanged with the variation of cache sizes. As cache size increases, more requests are 
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satisfied from the cache; as a result, total number of transactions for the bus and main 

memory decreases. 

 

 
 

Figure 4.8: Transactions (tasks entered and exited) versus cache size. 

 

From Figures 4.4 and 4.6, we observe that for cache size of 384 KB, DSP and AP 

utilization and delay are very high when compared with those for cache size of 1 MB. So 

for our architecture cache size of 512 KB is optimal where DSP and AP utilization are 

between 25% and 60% and the bus and main memory utilization are reasonable.  

Finally, we investigate the impact of adding an additional core to a single-core 

system by comparing the mean delay and total power consumption by the single-core 

system and the dual-core system, respectively. In Table 4.2, the row with 1 core 

represents the results for a single-core and the row with 2 cores represents the results for 

a dual-core. Experimental results using cache size 384 KB and MPEG4 decoding 

workload show that total number of transactions per core becomes just half as the second 
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core is used. It is also observed that the mean delay decreased more than 45% for less 

than 5% additional power consumption.  

 

Table 4.2: Performance Vs power consumption for single- and dual-core 

Cache 384 KB 

 
Core(s) 

Performance Total Power 
Consumption 

(unit) 
Total Mean 
Delay (unit) 

Transactions 
Per Core 

1 383 1000 858 

2 210 500 901 

 

 

4.4 Summary 

In this chapter, we explore a cache modeling and optimization technique to 

improve performance and decrease power consumption of a multi-core embedded system 

running MPEG4 decoding algorithm. Experimental results show that adding more 

processing core improves performance for small amount of extra power (i.e., increases 

performance/power ratio). Simulation results, also, show that cache size and task rate 

have significant influence on CPU utilization. CPU utilization can be adjusted by 

changing cache size and task rate. This cache modeling and optimization technique can 

enhance the performance/power ratio of real-time multi-core embedded systems. 
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CHAPTER 5 

CACHE LOCKING TO IMPROVE PREDICTABILITY 

 

Cache improves performance by reducing the speed gap between the main 

memory and CPU. However, the execution time becomes unpredictable due to cache‘s 

adaptive and dynamic behavior. Real-time applications are subject to operational 

deadlines and execution time predictability is considered mandatory to support them. 

Studies show that cache locking helps determine the worst case execution time (WCET) 

and cache-related preemption delay. In this chapter, we introduce an effective cache 

locking technique to enhance the predictability of an embedded system running real-time 

applications. We propose an algorithm that selects the blocks that may cause more cache 

misses in the same execution. We obtain hit ratio and mean delay for both cache analysis 

(no cache locking) and cache locking. Experimental results show that our proposed cache 

locking scheme improves predictability and performance up to locking 25% of the cache 

size, after that (if more blocks are locked) predictability may be further enhanced by 

sacrificing performance. 

 

5.1 Introduction  

Real-time multimedia applications running in embedded systems are becoming 

more popular day by day. Processing real-time applications on embedded systems is a 
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significant challenge for the memory subsystem. In a real-time system, the hardware and 

software are subject to operational deadlines from event to system response (a real-time 

constraint). A non-real-time system has no deadline, even if fast response is desired. 

Figures 5.1(a) and 5.1(b) show two systems – running non-real-time and real-time 

applications, respectively. In a real-time system, hardware requests are satisfied in a 

timely manner by the real-time operating system. A real-time deadline must be met, 

regardless of the system load.  

 

Figure 5.1: Systems running non real-time and real-time applications. 

 

Execution time predictability is a crucial factor for the success of real-time 

complex systems. The presence of cache is an important source of unpredictability due to 

its adaptive and dynamic characteristics; as a result, programs may behave in an 

unexpected way and it may be difficult to predict their execution time. Extensive research 

has been done to predict the worst-case behavior of embedded applications in order to 

determine the safe and precise bounds on tasks‘ worst-case execution time (WCET) and 

cache related preemption delay. In [140], the impact of data caches on predictability in 

(a) System running a non real-time application. Hardware requests are satisfied as 
soon the responses are ready. 

(b) System running a real-time application. Hardware requests must be satisfied 
before the deadline. 
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multitasking hard real-time systems is discussed. Cache locking mechanisms adapt 

caches to the needs of real-time systems. Recent studies show that cache locking reduces 

the time required to perform a memory access and improves predictability by removing 

both intra-task and inter-task interferences [108]. However, excessive cache locking 

decreases performance as effective cache size decreases. In this chapter, we focus on 

improving predictability of a real-time embedded system with little or no negative impact 

on performance/power ratio by developing an efficient cache locking scheme.  

 

5.2 Cache Locking in Real-Time Single-Core Systems  

Cache locking is a technique to hold a set of memory blocks inside the cache for 

the entire duration of the execution time [21], [22], [97]. Once a block is locked into the 

cache, the replacement algorithm excludes it to be removed until the application is 

completed. Cache locking has proven some potential to improve the execution time 

predictability of single-core systems running real-time applications. However, aggressive 

cache locking may decrease the performance by increasing cache misses (as the effective 

cache size decreases).  

Currently available cache locking schemes are either lengthy or not-so-accurate. 

For example, [99] introduced two algorithms to address predictability – one for 

minimizing utilization and the other one for minimizing interferences. The genetic 

algorithm used in [25] does not guarantee selecting the right blocks to be locked. In this 

chapter, we introduce an efficient cache locking scheme that is based on the static tree-

graph generated by the Heptane (Hades Embedded Processor Timing ANalyzEr) tool 

[162]. Heptane generates a tree-graph for C source files. The main objective of this 
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scheme is to lock the blocks that cause more misses if not locked. Figure 5.2 shows the 

major steps of our proposed cache locking scheme.  

 

 

Figure 5.2: Major steps of proposed cache locking scheme. 

 

The syntax tree is a tree whose nodes represent the structure of programs in the 

high-level language and whose leaves represent basic blocks. Leaves in the syntax tree 

coincide with the nodes in the control-flow graph. Appendix B shows Heptane generated 

tree-graph for FFT code. From the tree graph, in static analysis we collect the name of the 

node, number of instructions, the total number of cycles, and cache miss information for 

each node.  From the off-line analysis we determine which code section of the source file 

causes more misses. We divide the analysis in several parts including the root node of the 

main C source file, the calling function for the C source file, all leaf node analysis for the 

root node and top loop node level analysis. We collect instruction block (IB) addresses‘ 

cache miss information based on the tree graph and we generate an instruction cache 

locking XML file (with the block addresses that should be locked). In order to implement 

:: Major Stapes in our Proposed Cache Locking Scheme 
Input: Instruction Block (IB) Address Miss info from Heptane tree-graph 
Output: Instruction cache locking XML file 
START: 
 Read the Input File (created by off-line analysis) 
 Create IB-Address Miss Block List 
 Sort IB-Address Miss Block List (the block that causes the most misses 

becomes the number one candidate to be locked, and so on) 
 List the Candidate Blocks (based on cache size, line size, and percent of 

locking) 
 Create Instruction Cache Locking XML File 

END 
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the static cache locking scheme, a small routine is required to be executed at the system 

start-up to load the content of the cache with the selected IB-address values and lock the 

cache blocks so that its contents remain available during the whole system execution.  

This cache locking scheme helps determine the right amount of correct blocks to 

be locked which is the key to improve both the predictability and performance. This 

block selection algorithm may also be used for pre-fetching and pre-loading the cache.   

 

5.3 Simulation  

We simulate a real-time single-core system to evaluate the impact of our proposed 

cache locking scheme on the predictability and performance. Simulation details are 

presented in the following subsections.  

 

5.3.1 Assumptions 

Important assumptions for modeling the target architecture and running the 

simulation program include the following, 

 A single-core architecture is considered and only I1 cache locking is 

implemented.  

 Modified cache replacement strategy is used for I1. But random cache 

replacement strategy is considered for D1 and CL2.  

 For both CL1 and CL2, write-back memory update policy is used.  

 The average delay introduced by the bus that connects CL2 and the main 

memory is 10 times longer than the average delay introduced by the bus that 

connects CL1 and CL2. 
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5.3.2 Simulated Architecture 

Heptane provided target architecture considered in this experiment is the 

simplified Pentium processor (P1 like the P54C) processor from Intel Corporation. The 

architecture model consists of a BTB (branch target buffer) and a cache system and a 

memory description. No data cache is modeled. Only one-level instruction cache is 

considered. One of the two integer pipelines is simulated. Furthermore, branch prediction 

module is kept disabled. In this study, we consider an instruction cache with cache size 

ranges from 2 KB to 32 KB, line size from 32 to 512 Bytes, and the associativity level 

from 1 (direct-mapped cache) to 16 (set associative cache). In this simulation, an 

instruction is assumed to execute in 1 clock cycle in the case of a cache hit, and 10 clock 

cycles otherwise.  

 

5.3.3 Simulation Tools and Workload 

Heptane package is used to develop the model and to run the simulation program 

in this work. Three applications, Fast Fourier Transform (FFT), Matrix Inversion (MI), 

and Discrete Fourier Transform (DFT), are used to run the simulation. The actual ―C 

code‖ of these applications is used as the input to the simulation. Table 5.1 shows the 

code size, number of instructions, and computing time of these applications.  

 

Table 5.1: Some statistics of FFT, MI, and DFT applications  

Applications Code Size 
(KB) 

Number of 
Instructions 

Computing Time (no locking) 
(Kilo Cycles) 

FFT 2.34 365,184 121,235 
MI 1.47 227,518 186,519 
DFT 1.16 171,307 258,456 
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5.3.4 Experimental Results 

In this work, we implement our proposed cache locking algorithm to obtain the hit 

ratio and mean delay for FFT, MI, and DFT applications in a single-core system. Using 

Heptane, we obtain the computing time and WCET.  

Hit ratio and mean delay obtained for 2 KB and 4 KB cache sizes by varying the 

amount of cache locked, from 0% to 50% (with 12.5% increment) of the cache size, using 

FFT code is shown in Table 5.2.  

 

Table 5.2: Cache locking and hit ratio for FFT application 

LINE SIZE 128 BYTES, ASSOCIATIVITY 8-WAY 

 
Cache 

Locking 
(%) 

Cache Size 2K Cache Size 4K 

Num of 
Block 

Locked 

Hit Ratio 
(%) 

Num of 
Block 

Locked 

Hit Ratio 
(%) 

0.0 0 95.00 0 100.00 
12.5 3 95.71 6 100.00 

25.0 8 96.43 16 100.00 
37.5 11 96.12 19 100.00 
50.0 16 95.27 19 100.00 

 

Experimental results indicate that the hit ratio is the maximum (i.e., performance 

is also the maximum) at 25.0% cache locking for FFT when cache size is 2KB. However, 

cache locking has no positive impact on hit ratio for 4KB cache as FFT code entirely fits 

into the cache. 
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We conduct theoretical and mathematical analysis of the impact of the cache 

locking on hit ratio and present those results along with simulation results using FFT 

code. Assuming 80% hit ratio (without cache locking), 50% cache size locking produces 

100% hit ratio when B = C / 2, where B is the number of blocks that causes misses and C 

is the total number of blocks in the cache. Also, as illustrated in Figure 5.3, for B = C and 

B = 2 * C, hit ratio increases gradually but not as sharply as does for B = C / 2. However, 

the simulation results show that initially hit ratio increases when cache locking is applied. 

But beyond 25% locking, hit ratio decreases. This is because in theoretical study it was 

not considered that as locked cache size increases, the effective cache decreases which 

cause cache hit rate to decrease. 

 

 

Figure 5.3: Hit ratio versus cache size locked. 
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We obtain the mean delay for FFT, MI, and DFT by varying the cache locking 

capacity. As shown in Figure 5.4, FFT causes the maximum delay followed by MI and 

DFT. For FFT, we notice that the minimum mean delay (i.e., maximum performance) is 

at 25% cache locking. But for MI and DFT, mean delay remains unchanged. This is 

because MI or DFT code size is smaller and that fits entirely in 2 KB I1 (but FFT code 

does not).  

 

 

Figure 5.4: Mean delay versus cache size locked. 

 

In our experiment, if cache locking capacity is increased beyond 25%, 

predictability increases but performance decreases (i.e., mean delay increases). So, for 

maximum performance we chose the cache locking capacity at 25% of the cache size. In 

the following subsections, we discuss the impacts of cache size, line size, and 

associativity level on the performance of FFT, MI, and DFT applications at 25% cache 

locking.  
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We investigate the impact of cache size on mean delay (i.e., performance) for 

FFT, MI, and DFT applications. We keep line size fixed at 128 Bytes and associativity 

level at 8-way. Experimental results are shown in Figure 5.5. For the given line size and 

associativity level, the mean delay of both static cache analysis (no cache locking) and 

cache locking decreases (i.e., performance increases) with the increase in the cache size 

for FFT when cache size is increased from 2 KB to 4 KB. No changes in mean delay for 

FFT for cache size bigger that 4 KB. There is no change in mean delay for MI and DFT 

due to the increase in cache size.  

 

 

Figure 5.5: Mean delay versus cache sizes. 
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Mean delay obtained for both static cache analysis (no cache locking) and cache 

locking for FFT, MI, and DFT applications are shown in Figure 5.6 with varying line 

sizes. For the cache size fixed at 2 KB and the associativity level fixed at 8-way, the 

mean delay decreases (i.e., performance increases) with increases in the line size from 32 

to 128 Bytes for FFT; for line sizes higher than 128Bytes, mean delay increases (i.e., 

performance decreases). No change is noticed in mean delay for MI and DFT due to the 

increase in line size.  

 

 

Figure 5.6: Mean delay versus line sizes. 
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Finally, we obtain the mean delay for both static cache analysis (no cache 

locking) and cache locking by varying associativity level as shown in Figure 5.7. Results 

show that for a cache size of 2 KB and a line size of 128 Bytes, the performance of static 

cache locking scales better than the one of no cache locking with an increasing level of 

associativity for FFT. Cache locking benefits from the increasing associativity level in 

eliminating both intra-task and inter-task interference. Again, there is no change in mean 

delay for MI and DFT due to the changes in associativity level.  

 

 

Figure 5.7: Mean delay versus levels of associativity. 

 

5.4 Summary 

The demand for real-time applications in embedded systems is growing. 

Execution time predictability is an important design factor for any real-time system. 

Cache improves performance but introduces challenges to improving execution time 

predictability [54]. It has been shown that for embedded systems with a well known 
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workload, static cache locking helps to determine the worst case execution time and 

cache-related preemption delay. In this chapter, we introduce an effective cache locking 

scheme that makes the real-time embedded system more predictable. We use the FFT, 

MI, and DFT application codes as inputs to our simulation program developed by 

Heptane package [162]. We obtain hit ratio and mean delay for both static cache analysis 

(no cache-locking) and cache locking. Experimental results show that our cache locking 

algorithm improves predictability when application does not fit entirely in the cache. 

Also, performance can be improved when the right cache blocks are locked and 

appropriate cache parameters are used. Experimental results also show that predictability 

can be further enhanced by sacrificing performance.  
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CHAPTER 6 

MISS TABLE BASED CACHE LOCKING WITH VICTIM CACHE 

TO IMPROVE PREDICTABILITY AND PERFORMANCE/POWER 

RATIO 

 

Cache memory increases execution time unpredictability and makes it difficult to 

support real-time applications. Execution time unpredictability becomes worse in multi-

core processors due to the presence of multi-level caches. Multi-level caches consume 

significant amount of energy as caches are power hungry. Modern embedded systems 

require tremendous amount of processing speed (i.e., high-performance) to support real-

time complex applications. Studies indicate that proper implementation of cache locking 

may improve the predictability and performance/power ratio. In this chapter, we propose 

a Miss Table at cache level to improve cache locking performance and we use victim 

cache between CL1 and CL2 to increase cache hit ratio. This scheme is effective for both 

single-core and multi-core embedded systems. We consider a multi-core architecture with 

shared CL2, where each core has a VC between its CL1 and the shared CL2. Cache 

parameters are first optimized for optimal performance/power ratio. Then the blocks that 

are expected to cause more misses are locked (up to a certain number of blocks using 

MT) for the maximum predictability. It is observed that the proposed scheme with MT 

and VCs significantly improves predictability, reduces mean delay, and reduces total 
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power consumption for smaller amount of locked cache (up to 25% of the cache size). It 

is also observed that predictability can be improved even further by locking more blocks 

at the expense of performance/power ratio. 

 

6.1 Introduction  

Single-core processors are simple (with one processing core and its cache 

memory organization) and cheap compared to multi-core processors. That‘s why single-

core processor is the first choice for some embedded systems. However, embedded 

systems are adopting multi-core processors in their architectures to meet the requirement 

for high performance/power ratio. The popularity and demand of multi-core real-time 

systems are increasing in both desktop and embedded markets [9], [127]. Unlike single-

core architecture, multi-core architecture is complicated as it has multiple cores and 

multiple (levels of) caches. In a multi-core processor, two or more independent cores are 

combined into a die. In most cases, each processor has its own level-1 cache, split into 

instruction and data caches. The multi-core processors usually have other-levels of caches 

(CL2, CL3, etc) [47], [102], [109], [166]. CL1 is usually private to each core, but CL2 

(and higher level caches) can be configured in a number of ways. For example, CL2 may 

be private to each core or shared by all cores. Therefore, cache optimization becomes 

very important (at the same time, very difficult) in a multi-core system with multi-level 

caches. Studies show that cache parameters significantly influence system performance 

[5], [10], [33], [35]. Multi-core architectures are more suitable for real-time applications, 

because concurrent execution of tasks on a single processor, in many respects including 

energy requirement, is inadequate for achieving the required level of performance and 
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reliability. The problem is that cache introduces execution time unpredictability and real-

time applications demand execution time predictability and cannot afford to miss 

deadlines. Therefore, it becomes a great challenge to support real-time applications on 

multi-core systems.  

Studies show that for single-core systems, cache locking improves the 

predictability [11], [12], [24], [97], [139]. Cache locking is the ability to prevent some or 

all of the instruction or data cache blocks from being overwritten. Cache entries can be 

locked for either an entire cache or for individual ways within the cache. Entire cache 

locking is inefficient if the number of instructions or the size of data to be locked is small 

compared to the cache size. In way locking, only a portion of the cache is locked by 

locking ways within the cache. Unlocked ways of the cache behave normally. Way 

locking is an alternative of entire locking. Using way locking, Intel Xeon processor may 

achieve the performance of using local memory without cache by Synergistic Processing 

Elements (SPEs) in IBM Cell processor architecture [18], [19], [43], [117], [124], [157].  

The integration of billions of transistors in a single chip is now possible. As a 

result, the multi-core design trend is expected to grow for the next decade. To the best of 

our understanding, current multi-core processors are not able to take full advantage of 

cache locking, because most existing cache locking mechanisms are developed for single-

core processors. In this chapter, we introduce Miss Table based cache locking scheme 

with victim cache, which is suitable for both single-core and multi-core systems, to 

improve the predictability and performance/power ratio by selecting the blocks wisely for 

cache locking and replacement and by storing victim blocks from level-1 caches and 

supporting stream buffering.  
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6.2 Improving Predictability and Performance/Power Ratio  

Execution time predictability is one of the key design factors for any real-time 

system. Also, power consumption is very crucial for embedded systems. As a result, 

increasing performance and predictability and decreasing power consumption is the 

primary focus of cache optimization in real-time embedded systems. Multi-core 

architectures are more complex than single-core architectures and caches in multi-core 

make the unpredictability even worse. 

Cache optimization techniques are proven to increase performance and reduce 

power consumption in embedded systems. Studies show that predictability in a single-

core system can be improved by applying cache locking technique. In this chapter, we 

introduce a Miss Table based cache locking scheme with victim cache(s) in order to 

increase the predictability and performance/power ratio for both single-core and multi-

core real-time embedded systems.  

 

6.3 Introducing Miss Table at Cache Level 

Cache locking is a known technique to hold a set of memory blocks inside the 

cache for the entire duration of the execution time [24], [97]. Once a block is locked into 

the cache, the replacement algorithm excludes it from being removed until the execution 

is completed. Cache locking improves predictability. However, foolish block selection 

and aggressive cache locking may decrease the performance by increasing cache misses 

(as the effective cache size decreases). Studies show that performance increases with the 

increase of the cache locking capacity for smaller values (0% to 25% of the cache size).  
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We introduce a table that contains information about all or some important blocks 

those cause more cache misses related to the code being processed. We call it a Miss 

Table (also referred as MT). MT is, primarily, introduced for improved cache locking 

performance. MT also helps improve cache replacement performance. MT is 

implemented at cache level in such a way that it can be accessed from the cache(s) where 

cache locking is implemented and all other cache(s) below that level. For level-2 cache 

locking, MT should be accessed by CL2, CL1, and victim caches (if any). Block 

addresses are sorted in descending order of the number of misses they cause. For each 

application/function, after post-processing the tree-graph generated by Heptane package, 

block address information is prepared for the MT. During system initialization, MT is 

populated with the corresponding block addresses. MT information is used to select the 

blocks to be locked or replaced. For better performance, MT should store information 

about at least ‗N‘ cache blocks, where N = total cache size / size of a cache block.  

 

6.3.1 Miss Table Workflow 

The schematic diagram of an embedded system with one core, Miss Table, and 

cache memory subsystem is shown in Figure 6.1. MT is loaded during the initialization 

process with block information selected from off-line analysis. Cache blocks are locked 

(inside CL1 or CL2) using the information stored in MT. During execution, when a new 

block is brought into CL2 (or CL1), it is checked using the MT information if the block 

should be locked in case of CL2 locking (or CL1 locking). ‗L‘ bit is set to indicate a 

block is locked. If the requested memory block is not found in CL1 (even though CL1 is 

full), CL2 is checked for the requested block. In this case, a victim block (VB) in CL1 is 
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selected using the Miss Table. A victim block should be a block with ‗L‘ bit is clear (i.e., 

block is not locked) and minimum number of misses. Finally, a CL1 victim block is 

replaced by the requested memory block (from CL2).  

   

Figure 6.1: Schematic diagram of an architecture showing one core, Miss Table, 

and cache memory hierarchy.  

 

6.3.2 Victim Block Selection Criteria 

Using the Miss Table information, a modified replacement policy is used to select 

the victim block from CL1. In case of a CL1 miss, a victim block should be selected. This 

policy selects a block that is not locked and has the minimum number of misses. In case 

of a tie in the number of misses, a block should be selected randomly. Summarized below 

are the important criteria of a victim block: 

a) A victim block cannot be a locked block. 
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b) A victim block should have the minimum number of misses among the un-locked 

blocks (in CL1) at the time of selection. 

c) In case of a tie in the number of misses, a block should be selected randomly. 

 

6.4 Victim Cache between Level-1 and Level-2 Caches  

Victim cache (also referred as VC) is considered as a bypass cache and a predictor 

table between CL1 and CL2. Victim blocks from CL1 are temporarily stored in VC 

(instead of destroying them). This method of using VC reduces access latencies by 

determining whether a load should bypass the main cache hierarchy and issue an early 

load to main memory [75]. The victim cache hierarchy is suitable for systems with 

limited cache-memory area (like embedded systems) and applications that perform a 

large amount of memory accesses (like multimedia) [155]. Victim cache hierarchy has 

the potential to reduce execution time and improves predictability for some applications. 

Also, victim cache hierarchy offers improved cache energy consumption with 

comparable performance gain by reducing cache misses [4]. 

Figure 6.2 shows the schematic diagram of an architecture with a core, MT, VC, 

and cache memory hierarchy. VC resides between CL1 and CL2 and can access MT. 

Requested memory block is first checked into CL1. If not found in CL1, VC is checked; 

if not found in VC, CL2 is checked. Finally, if not found in CL2, pre-fetching or stream 

buffering (an improved version of pre-fetch when multiple blocks are fetched from main 

memory) is performed. Requested block goes to CL1 (from main memory via CL2). In 

case of stream buffering, the additional blocks go to VC. CL1 and VC select victim block 

using the Miss Table. In this work, cache locking is implemented in CL2.   
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Figure 6.2: Schematic diagram of an architecture showing one core, MT, victim cache, 

and cache memory hierarchy.  

 

6.4.1 Flow inside the Core 

Flow diagram inside a core with the proposed Miss Table and victim cache is 

shown in Figure 6.3. In case of a CL1 (I1 or D1) miss, MT is used to find the victim 

block (VB). If a CL1 miss is followed by a VC miss and VC is full, then a non-dirty VC 

block (or multiple VC blocks for stream buffering) is selected using MT information. If 

the request is not satisfied from CL2, stream buffering (updated pre-fetch) is performed. 

In case of stream buffering, the requested block goes to CL1 (as expected) and the 

additional blocks go to the VC. 
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Figure 6.3: Schematic diagram of the flow inside the architecture with one core, MT, 

VC, and cache memory hierarchy. 
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6.4.2 Control Logic for the Victim Cache 

The main purpose of the victim cache is to hold the victim blocks from CL1. In 

addition, it can be used when stream buffering is performed. Figure 6.4 shows the control 

logic for VC. It is important to note that VC can be turned off or on functionally. If VC is 

functionally off, in case of a CL1 miss, CL2 is checked (bypassing the VC) for the 

requested block. When VC is being used, in case of a VC hit, a swap between CL1 block 

and VC block is done using a register (Reg1 in Figure 6.2). If stream buffering is used, 

then the additional blocks fetched from main memory is loaded into VC (the requested 

block goes to CL1). 

 
Figure 6.4: Control logic for the proposed victim cache and stream buffer.  

 

 

:: Victim Cache Control Logic 
START: 
If (CL1_Request) Then 
   If (VC_Disable) Then 
      Done // Perform normal as if VC does not exist 
   Else // VC_Enable 
      Reg1  CL1 cache line victim block (VB) 
      If (VC_Hit) Then 
         CL1  VC cache line (Hit) 
         VC  Reg1 
      Else // VC_Miss 
         If (VC_Full and Dirty_Block) Then  
            CL2  VC cache line(s) with minimum misses  
         End If  
         If CL2 miss, Issue Pre-fetch or Stream_Buffering 
         CL1  Reference block from CL2 or MM 
         IF (Stream_Buffering) Then 
            VC  Additional blocks from CL2 or MM 
         End If 
      End If // VC_Hit / VC_Miss 
   End If // VC_ Disable / VC_Enable 
End If // CL1_Request 
END 



 87 

6.5 Additional Techniques  

Additional techniques, which have been proven to improve the predictability and 

performance/power ratio by increasing hit ratio include selective pre-loading, pre-

fetching, and stream buffering. 

Selective pre-loading: Selective pre-loading is a technique to load the caches 

with previously selected blocks to reduce compulsory (cold start/first reference) cache 

misses. Studies show that if blocks are selected wisely then selective pre-loading 

improves both performance/power ratio and execution time predictability by reducing 

compulsory misses. 

Pre-fetching: Pre-fetching is a technique that allows memory subsystem to 

import data into the cache before the processor needs it. Pre-fetching may improve 

predictability for (hard) real-time systems. However, aggressive pre-fetching can lead to 

cache pollution and also increase memory traffic [94]. In distributed shared memory 

(DSM) systems, remote memory accesses take much longer than local ones, and hence 

data pre-fetching should be effective for such systems [64]. 

Stream buffering: Stream buffering is an improved pre-fetching technique where 

multiple blocks (instead of one) are brought from main memory when a pre-fetch request 

is executed.  Studies show that stream buffering is a very powerful technique to improve 

performance and predictability and to reduce total power consumption [44], [58]. 

In this chapter, we simulate a multi-core architecture where we implement 

selective pre-loading using MT and stream buffering using victim caches. 
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6.6 Workload Characterization for Cache Locking 

We find currently available workload and workload characterization methodology 

inadequate to simulate cache locking in multi-core architecture. Therefore, we propose a 

workload characterization methodology that can be used to simulate cache locking in 

both single-core and multi-core systems. Proposed workload characterization technique 

has the following three phases – code division, code estimation, and block selection. 

 

6.6.1 Phase-I: Code Division 

In phase-I, we analyze the application(s) and divide the code into smaller 

segments if needed (see Figure 6.5). In order to support small applications, the 

applications are mapped directly among the cores. Each application should be assigned to 

a free core (entire application is considered). In order to support a large application, the 

code is divided into smaller (end-to-end) functions in such a way that a function can be 

assigned to a core (each function is considered separately). Code division is crucial for 

big applications (in terms of code-size). 

 

Figure 6.5: Code division workflow diagram. 
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In this work, we consider real-time MPEG4, H.264/AVC, FFT, MI, and DFT 

applications of which MPEG4 and H.264/AVC code is divided into smaller segments. 

After Phase-I is completed, phase-II and phase-III can be done simultaneously. 

 

6.6.2 Phase-II: Code Estimation 

In phase II, we estimate important operations for each application (in case of 

small applications) or function (in case of large applications). Major steps in phase II is 

shown in Figure 6.6. Code estimation can be done manually for smaller code segments. 

 

Figure 6.6: Code estimation workflow diagram. 
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In this work, VisualSim code annotation technique is used to obtain the number of 

integer, floating-point, load/store, and branch operations. Table 6.1 shows the estimated 

value for FFT algorithm obtained from Phase-II. Complete FFT code used in this work is 

given in Appendix A.  

 

Table 6.1: Code estimation for FFT 

Type of Operation Number of Operation (%) 

Integer 18 

Floating-point 71 

Load/Store 9 

Branch 2 

 

 

6.6.3 Phase-III: Block Selection 

Finally in phase III, we select the blocks for cache locking. Major steps in this 

process are shown in Figure 6.7. A tree-graph for each code segment is created using 

Heptane (Hades Embedded Processor Timing ANalyzEr) tool. The tree-graph for FFT 

code is shown in Appendix B. Contextual information such as block address and cache 

miss are stored in the leaves (example: CALL, CODE) and control-flow nodes (example: 

SEQ, LOOP) (see Figure A in Appendix B). The leaves represent the basic blocks and 

the nodes of a tree-graph represent the structure of a program in the high-level language. 

From the tree graph, we collect the number of instructions and cache miss information for 

each node. From the off-line analysis we determine which blocks make more misses. By 

post-processing the information collected from the tree-graph, we obtain the block 

address that should be locked.  
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The number of instructions and cache misses for sequence nodes (i.e., SEQ) and 

the number of instructions and cache misses for loop nodes (i.e., LOOP) are excluded in 

this work because we consider all code nodes (where a sequence node or a loop node 

represents a set of code nodes). 

 

 

Figure 6.7: Block selection (for cache locking) workflow diagram. 
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Table 6.2 shows the block addresses and total misses (sorted in descending order 

of the number of misses) obtained for FFT algorithm. Blocks are selected for locking 

depending on the cache size, line size, and locked cache size. For an example: if cache 

size is 2 KB, line size is 128 B, and associativity level 8-way, then number of blocks is 

2*1024/128 = 16. So, MT should store information about top 16 blocks (or more) from 

Table 6.2. Now, locking 2 of 8 ways (i.e., 25% cache size) means 4 (25% of 16 is 4) 

blocks should be selected for locking. The best case scenario is that the first 4 blocks are 

selected to be locked.  

 

Table 6.2: Sorted block address of FFT for cache locking 

Cache size 2 KB, line size 128 B, locking 2 of 8 ways (25%) 

Num Block 
Address 

(Hex) 

Total 
Cache 
Misses 

Block in 
MT? 

(Yes/No) 

Block 
Locked? 
(Yes/No) 

1 0 35 Yes Yes 

2 80 33 Yes Yes 

3 300 32 Yes Yes 

4 100 28 Yes Yes 

5 400 17 Yes No 

6 320 15 Yes No 

7 380 14 Yes No 

8 180 12 Yes No 

9 280 11 Yes No 

10 360 11 Yes No 

11 420 10 Yes No 

12 200 9 Yes No 

13 140 4 Yes No 

14 480 4 Yes No 

15 160 3 Yes No 

16 220 3 Yes No 

17 440 3 No No 

18 120 1 No No 

19 260 1 No No 
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From Table 6.2, total cache misses is 246. By locking the first four cache blocks 

(for 25% locking), 124 cache misses can be avoided (i.e., cache miss is reduced by more 

than 50%). At system start-up, a small routine is required to load the content of the cache 

for the selected blocks and lock the cache during the whole execution time. 

 

6.7 Modeling and Simulation  

In the previous chapters, we have seen the positive impact of cache optimization 

and cache locking on performance, power consumption, and predictability. In Chapter 3, 

we model and optimize a single-core system to improve the performance. In Chapter 4, 

we optimize a multi-core system to improve performance/power ratio. In Chapter 5, we 

develop a promising cache locking scheme in a single-core system to improve the 

predictability. In this chapter, we model and simulate an Intel quad-core like multi-core 

architecture to explore the impact of Miss Table and victim caches on the predictability 

and performance/power ratio. We introduce a Miss Table that helps cache locking and 

block selection for replacement. The cache locking scheme is expected to improve 

predictability by locking more important cache blocks into CL2 (we simulate level-2 

cache locking). According to this scheme, the blocks that are anticipated to cause more 

misses should be locked. Therefore, this cache locking scheme is expected to improve 

performance/power ratio by decreasing cache misses. We, also, use victim caches 

between CL1 and CL2. Victim caches are used to temporarily store the victim blocks 

from CL1 and store additional blocks fetched from main memory if stream buffering is 

used. Even though we are simulating a multi-core architecture in this work, this scheme 

can be used in both single-core and multi-core systems.  
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6.7.1 Assumptions 

We make the following assumptions while simulating the proposed Miss Table 

based cache locking scheme with victim caches in this chapter. 

 We simulate a multi-core system with 4 cores; each core has its own CL1 

(split into I1 and D1) and CL2 is shared by all cores. It may be noted that we 

implemented cache locking in a single-core system in the previous chapter. 

 Level-2 cache locking is considered in this work.  

 MT is at cache level and can be accessed from CL1, CL2, and VCs (if any). 

 Selective pre-loading, victim cache, and stream buffering are considered. 

 Write-back memory update policy is used. 

 Modified cache replacement strategy is used in CL1 and VCs (if any) to select 

blocks with minimum misses and in CL2 (to exclude locked blocks). 

 The delay introduced by the bus that connects CL2 and the main memory 

(Bus2 in Figure 6.8) is 10 times longer than the delay introduced by the bus 

that connects CL1 and CL2 (Bus1 in Figure 6.8). 

 

6.7.2 Simulated Architecture 

We simulate an Intel quad-core like architecture, where each core has its own 

private CL1. CL1 is split into I1 and D1 for improved performance. A schematic diagram 

of the simulated multi-core system is shown in Figure 6.8. The architecture consists of 

one shared CL2. Two cores are connected to the CL2 using the same bus to reduce the 

bus contention. We introduce MT to improve cache locking performance and use VCs to 

improve performance/power ratio. Cache locking is implemented in CL2. 



 95 

 
Figure 6.8: Simulated multi-core architecture with MT and VC. 
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total power consumption with and without 25% cache locking. The scheduler generates 

and assigns N (or less) tasks to N homogeneous cores until the total number of tasks are 

completed. Total number of tasks is equal to the total number of instructions in the code.  

 

Figure 6.9a: Workflow diagram of the proposed cache locking scheme using Miss Table 

in an N-core system. 
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For each group of N tasks, the maximum delay is considered to obtain the mean 

delay per task and power consumed by all cores is considered to obtain the total power 

consumption. Figure 6.9b shows the workflow of each core of the considered multi-core 

system with Miss Table and victim caches. Each core uses its victim cache to temporarily 

store the victim blocks from its CL1 and additional blocks from main memory when 

stream buffering is used. The types of the tasks (like integer or float) and cache hit ratio 

are used to obtain the mean delay per task and total power consumption. 

 

Figure 6.9b: Workflow diagram of each core in the proposed scheme using Miss Table 

and victim caches in an N-core system. 
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Table 6.3 shows the relevant system parameters used in this study. These 

parameters are typical for studying currently available processors such as Intel Xeon. 

 

Table 6.3: System parameters and their values 

Parameters Values 

Hit level-1 cache 1 processor clock 

Hit victim cache 2 processor clock 

Hit level-2 cache 3 processor clock 

Stream buffering / bus delay 10 processor clock 

Fill level-1 cache buffer 1 processor clock 

Fill victim cache buffer 1 processor clock 

Fill level-2 cache buffer 1 processor clock 

 

6.7.4 Simulation Tools and Workload 

In this chapter, we present a Miss Table based cache locking scheme with victim 

caches to improve the predictability and performance/power ratio. We develop a 

simulation platform using two popular simulation tools – Heptane and VisualSim. The 

simulation platform includes Heptane in Fedora 10 operating system and VisualSim in 

Windows XP operating system in a Dell PowerEdge 1600SC PC. 

Heptane (Hades Embedded Processor Timing ANalyzEr) is a prominent worst 

case execution time (WCET) analyzer from IRISA, a research unit in the forefront of 

information and communication science and technology [162]. Heptane simulates a 

processing core, takes C code as the input application, and generates tree-graph that 

shows the blocks that cause misses. After post-processing the tree-graph, block addresses 

are selected for the Miss Table. We use Heptane to characterize the workload that should 

be used to run VisualSim simulation program. Input and output parameters for Heptane 

are shown in Table 6.4.  
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Table 6.4: Input/output parameters for Heptane 

Input Output 

Application: C code 

XML file (for locking) 

Block address 

Number of misses 

Number of instructions 

 

VisualSim (short for VisualSim Architect) is an outstanding system-level 

simulation tool from Mirabilis Design [172]. VisualSim provides a graphic interface to 

model and simulate real-time embedded multi-core systems running multimedia 

applications. We use VisualSim to simulate our proposed Miss Table based cache locking 

scheme with victim caches in a multi-core system.  

Input and output parameters for VisualSim are shown in Table 6.5.  

 

Table 6.5: Input/output parameters for VisualSim 

Inputs Outputs 

Number of integers  

Number of floats  

Number of loads/stores 

Number of branches 

Number of tasks  

Cache miss rate  

Miss Table  

Mean delay per task 

Total power consumption 

 

In this work, we use Moving Picture Experts Group‘s MPEG4 (part-2), Advanced 

Video Coding – widely known as H.264/AVC, Fast Fourier Transform (FFT), Matrix 

Inversion (MI), and Discrete Fourier Transform (DFT) applications to run the simulation 

program. Important information about these files is shown in Table 6.6. The number of 

instructions is obtained from Heptane analysis.  
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Table 6.6: Some statistics of MPEG4, H.264/AVC, FFT, MI, and DFT applications  

Applications Code Size 
(KB) 

Number of Instructions 

MPEG4 29.94 5,207,118 

H.264/AVC 22.45 3,905,338 

FFT 2.34 365,184 

MI 1.47 227,518 

DFT 1.16 171,307 

 

Important input parameters used in the simulation are shown in Table 6.7.  We 

obtain results for various I1 (/D1) cache size, line size, and associativity level with and 

without applying cache locking and victim caches.  

 

Table 6.7: Simulation input parameters and their values 

Parameters Values 

I1 (/D1) cache size (KB) 2, 4, 8, 16, or 32 

CL1/CL2 line size (Byte) 16, 32, 64, 128, or 256 

CL1/CL2 associativity level 1-, 2-, 4-, 8-, or 16-way 

CL2 cache size (KB) 256 (fixed) 

Cache Locking level-2 cache locking (0% to 50%) 

Number of cores 4 (fixed) 

 

Output parameters in this work are the mean delay per task and total power 

consumption. We define delay as the time between the start of execution of a task and its 

end. We use an activity based power analysis to compare the total power consumed by 

the system. A system component (core, cache, bus, or main memory) is considered to be 

in one of the three states – Active (Full-On), Standby (On), or Sleep (Off).  

In Active (Full-On) state, a component receives full (adequate) power from the 

system to deliver full functionality to the user. For a task i, a component j consumes Pij 
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(active) amount of power to be fully functional. At this state, it runs maximum number of 

functions and consumes maximum amount power. 

In Standby (On) state, a component is partially powered with automatic wakeup 

on request. For the same task i, the same component j consumes Pij (standby) amount of 

power while remaining in Standby state.  

In Sleep (Off) state, a component is turned off and should not consume any 

significant energy.  

Therefore, the total power consumption by the system is expressed as shown in 

Equation (1). In this equation, X is the total number of tasks and Y is the total number of 

components. 

X, Y 

Pt (total)   = Σ Σ (Pij (active) + Pij (standby)   Equation (1) 

i = 1, j = 1 

 

In this work, we use the power model provided by VisualSim [172] to obtain the 

total power consumption. For multi-core systems with many cores, power model with 

more states is complicated and detrimental (something that can be studied further). 

 

6.7.5 Experimental Results 

In this experiment, we evaluate the impact of Miss Table based cache locking 

with victim caches on the predictability and performance/power ratio for real-time 

embedded systems. We model a system with 4 cores and run the simulation program 

using MPEG4, H.264/AVC, FFT, MI, and DFT workload. We obtain results by varying 

the amount of level-2 locked cache size, I1 cache size, I1 line size, and I1 associativity 

level. We present the simulation results in the following subsections. 
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Previously (in Chapter 5), we have seen that 25% cache locking produces the 

optimal performance and predictability. In this chapter, we apply 25% cache locking to 

show the impact of cache locking. The mean delay per task versus I1 cache size for no 

locking and 25% locking is shown in Figure 6.10. Experimental results show that mean 

delay per task for MPEG4 and H.264/AVC decreases when we move from no locking to 

25% locking and/or from smaller I1 to larger I1; the decrement is significant for smaller 

I1. However, mean delay per task for FFT, MI, and DFT remains the same when we 

move from no locking to 25% locking and from smaller I1 to larger I1. This is because 

FFT, MI, and DFT code entirely fit into I1. But MPEG4 and H.264/AVC applications are 

bigger than those of FFT, MI, or DFT and do not entirely fit into I1. Results also show 

that mean delay per task due to MPEG4 is always greater than those of others. This is 

because MPEG4 has heavier workload than the others‘ workload.  

 

 

Figure 6.10: Mean delay per task versus I1 cache size. 
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Similar behavior is observed for the total power consumption versus I1 cache size 

for no locking and 25% locking (see Figure 6.11). In this experiment, we perform activity 

based power analysis – the more the cache is active, the more power it (and the system) 

consumes. Simulation results show that total power consumption decreases when we 

move from no locking to 25% locking and/or from smaller I1 to larger I1 for MPEG4 and 

H.264/AVC; the decrement is significant for smaller I1. However, total power 

consumption for FFT, MI, and DFT remains almost the same when we move from no 

locking to 25% locking and from smaller I1 to larger I1. Again, this is because the code 

of FFT, MI, and DFT entirely fit into I1 but the code of MPEG4 and H.264/AVC do not 

entirely fit into I1. Like mean delay per task, results also show that total power 

consumption due to MPEG4 is always greater than those of others, because MPEG4 has 

heavier workload than the others‘ workload.  

 

 

Figure 6.11: Total power consumption versus I1 cache size. 
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The results due to FFT, MI and DFT applications are very similar; so in the rest of 

the discussion, the FFT results will also represent the omitted MI and DFT results. 

Similarly, the MPEG4 results will also represent the omitted H.264/AVC results. 

The average delay per task versus I1 line size for no locking and 25% locking is 

shown in Figure 6.12. We notice that the average delay per task goes down for MPEG4, 

regardless of the line size when cache locking is used. For MPEG4, mean delay per task 

decreases with the increase of line size when line size is smaller than 128B, but mean 

delay per task increases with the increase of line size when line size is larger than 128B. 

However, the average delay per task for FFT remains the same. This is because FFT code 

fits entirely in 4 KB I1, so changing line size and/or applying cache locking do not 

impact mean delay per task.  

 

 

Figure 6.12: Mean delay per task versus I1 line size. 
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Similarly, we notice that 25% cache locking helps decrease total power 

consumption regardless of I1 line size [see Figure 6.13]. It is also noted that total power 

consumption decreases with increasing I1 line size leveling off at a line size of 128B. 

Again, total power consumption for FFT remains the same because FFT code fits entirely 

in 4 KB I1 and changing line size and/or applying cache locking do not impact on mean 

delay per task.  

 

 

Figure 6.13: Total power consumption versus I1 line size. 
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The impact of no cache locking and 25% locking on mean delay by varying I1 

associativity level is shown in Figure 6.14. Experimental results show that for any I1 

associativity level, mean delay per task for MPEG4 decreases when we move from no 

locking to 25% locking. Also, the mean delay per task decreases with the increase in I1 

associativity level. The decrease is significant for smaller associativity levels. For 4 KB 

I1, mean delay per task for FFT remains the same when associativity level is changed 

and/or cache is used.  

 

 

Figure 6.14: Mean delay per task versus I1 associativity level. 
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Figure 6.15 illustrates the impact of no cache locking and 25% locking on total 

power consumption by varying I1 associativity level. Experimental results show that for 

any I1 associativity level, total power consumption for MPEG4 decreases when we move 

from no locking to 25% cache locking. Also, total power consumption decreases with the 

increase in I1 associativity level. Again, total power consumption for FFT remains the 

same for 4 KB I1.  

 

 

Figure 6.15: Total power consumption versus I1 associativity level. 

 

Finally, we present the impact of using the Miss Table and victim caches with 

cache locking on mean delay per task and total power consumption. As we know that 

with the increase in the number of locked blocks – on the one hand, cache blocks that 

might cause most of the misses are locked; but on the other hand, the effective cache size 

decreases. Miss Table helps improve hit ratio by selecting the most important memory 

blocks for cache locking and victim caches help improve hit ratio by holding CL1 victim 

blocks (and additional blocks when stream buffering is used). 
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Experimental results show that using Miss Table with cache locking decreases 

mean delay per task for MPEG4 application. From Figure 6.16, it is observed that mean 

delay per task starts decreasing with the increase in the number of locked blocks for 

MPEG4 application. It is also observed that mean delay per task decreases for all amount 

of cache locking when victim caches are used. Beyond 25% cache locking (for MPEG4), 

the mean delay per task increases with the increase in the number of locked blocks. 

Simulation results also show that when smaller applications like FFT entirely fits in I1, 

there is no positive impact of cache locking on mean delay per task. 

 

 

Figure 6.16: Mean delay per task versus level-2 locked cache size (with and without 

Miss Table MT). 
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Using Miss Table with cache locking has positive impact on total power 

consumptions for some applications. From experimental results we notice that total 

power consumption starts decreasing with the increase in the number of the locked blocks 

for MPEG4 application (see Figure 6.17). We also notice that total power consumption 

decreases for all amount of cache locking when Miss Table is used with cache locking 

(up to 25% cache locking for MPEG4). However, for smaller applications like FFT, there 

is no positive impact of cache locking on total power consumption as they entirely fit in 

4KB I1 cache. 

 

 

Figure 6.17: Total power consumption versus level-2 locked cache size (with and 

without Miss Table MT). 
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Finally, we present the impact of using victim caches in MT based cache locking 

scheme on mean delay per task and total power consumption. Experimental results reveal 

that for MPEG4 application, mean delay per task decreases for all amount of cache 

locking when victim caches are used (see Figure 6.18). Beyond 25% cache locking (for 

MPEG4), the mean delay per task increases with the increase in the number of locked 

blocks. Simulation results also show that when FFT application entirely fits in 4KB I1, 

there is no positive impact of using victim caches on mean delay per task.   

 

 

Figure 6.18: Mean delay per task versus level-2 locked cache size (with MT; with and 

without victim cache VC). 

 

Experimental results also reveal that total power consumption starts decreasing 

with the increase in the number of the locked blocks for MPEG4 application as shown in 

Figure 6.19. We also notice that total power consumption decreases for all amount of 

cache locking when victim caches are used. Beyond 25% cache locking (for MPEG4), 
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total power consumption increases with the increase in the number of locked blocks. 

Again, when applications entirely fits in I1 (as FFT fits in 4KB I1), there is no positive 

impact of using victim caches on total power consumption.  

 

 

Figure 6.19: Total power consumption versus level-2 locked cache size (with MT; with 

and without victim cache VC). 

 

6.8 Summary 

Execution time predictability is an essential factor for designing real-time 

systems. Recently designed multi-core processors run at lower frequency and produce 

high performance/power ratio. However, multilevel caches in multi-core processors make 

the execution time predictability very difficult. It has been proven that cache locking 

improves predictability for single-core systems. In this chapter, we improve predictability 

of a real-time embedded system developing Miss Table based cache locking with victim 

caches. We simulate an 4-core system. It should be noted that this cache locking 
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technique is applicable for single-core cache locking, too. The simulated architecture has 

two-level cache memory hierarchy. We generate MPEG4, H.264/AVC, FFT, MI, and 

DFT workloads by post-processing their respective tree-graphs created by WCET 

analysis. A simulation platform is developed to simulate cache locking in multi-core 

systems. The impact of Miss Table and victim caches on mean delay per task and total 

power consumption is summarized in Table 6.8. The percent changes, decrement (-) or 

increment (+), in mean delay per task and total power consumption are relative to the 

values obtained without using Miss Table and victim caches (see Figures 6.16 – 6.19).  

 

Table 6.8: Changes (in %) of delay and power for MPEG4 and FFT applications 

 Application Percentage Changes in 

Delay and Power 

Non-Locking 25% CL2 locking 

Delay Power Delay Power 

Miss Table MPEG4 (-)11 (-)17 (-)25 (-)32 

FFT 0 0 0 0 

Miss Table and 

Victim Caches 

MPEG4 (-)15 (-)22 (-)33 (-)41 

FFT 0 0 0 0 

 

For MPEG4, 33% reduction in mean delay per task and 41% reduction in total 

power consumption are achieved using Miss Table and victim caches. However, using 

Miss Table and victim caches has no positive impact on performance/power ratio for FFT 

when I1 size 4KB or larger. Experimental results show that this method may improve 

execution time predictability by reducing cache misses by more than 50% for 25% cache 

locking (see Table 6.2). Additional predictability enhancement is possible by trading off 

mean delay per task and total power consumption. 
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CHAPTER 7 

CONCLUSION AND FUTURE WORK 

 

Cache improves performance by reducing the speed gap between the main 

memory and CPU. However, cache poses challenges to real-time embedded systems as it 

introduces execution time unpredictability and consumes huge amount of power to be 

operated. In this dissertation, we develop a methodology to optimize cache for real-time 

embedded systems. We improve performance and decrease power consumption by 

optimizing cache parameters. We enhance predictability by applying cache locking. We 

introduce Miss Table at cache level to improve cache locking performance and use victim 

cache(s) to increase cache hits. Simulation results show that Miss Table based cache 

locking with victim cache(s) improves predictability and performance/power ratio. This 

chapter concludes this dissertation and discusses some important extensions of this work.   

 

7.1 Conclusion 

Cache is an essential component in every modern computing system to improve 

the performance by bridging the main memory and CPU speeds. However, cache 

increases execution time unpredictability due to its adaptive and dynamic nature. Also, 

cache consumes vast amount of energy due to the fact that it is power-hungry. Execution 

time predictability is a crucial factor for the success of real-time systems. Similarly, 
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energy requirement is crucial for embedded systems as they suffer from limited 

resources. Studies show that cache parameters have significant influences on the 

performance and power consumption of embedded applications. However, techniques 

used to improve performance/power ratio may worsen the predictability. Similarly, 

techniques used to improve the predictability may worsen performance/power ratio. For 

modern real-time embedded systems, the performance, power consumption, and 

predictability – all are important. Existing solutions do not address the performance, 

power consumption, and predictability issues together and are not very effective for 

multi-core architecture. In this work, we develop a cache optimization methodology to 

analyze and improve the predictability and performance/power ratio of real-time 

embedded systems at the same time.  

First, we develop a cache modeling and optimization technique to enhance the 

performance of a single-core system. Cache size, line size, associativity level, and cache 

levels are optimized to improve the performance. Simulation results indicate that the 

performance of embedded systems can be enhanced by cache modeling and optimization 

for real-time applications. This cache modeling and optimization technique can be used 

to analyze embedded system architectures and determine the optimal cache parameters 

for target applications. 

Second, we develop a methodology to improve performance/power ratio of multi-

core embedded systems using cache optimization. Experimental results, using an 2-core 

architecture running MPEG4 multimedia application, show that utilization, mean delay, 

number of transactions, and total power consumption can be optimized by changing the 

cache size. This cache optimization technique can be used to explore multi-core 
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architecture running real-time multimedia applications and find the optimal cache 

parameters for the best performance/power ratio. 

Third, we introduce a cache locking scheme to improve the predictability of real-

time embedded systems. It is important to note that cache locking performance depends 

on the efficiency and accuracy of the block selection criteria. We introduce an algorithm 

that selects blocks (to be locked), which might cause most misses in the future (of the 

same execution) if not locked. Simulation results show that this cache locking technique 

can drastically improve the predictability in real-time embedded systems.  

Forth, we propose Miss Table at cache level to improve cache locking and cache 

replacement performance. We use victim cache that temporarily stores the victim blocks 

from CL1 and supports stream buffering to improve performance/power ratio by reducing 

cache misses.  This scheme is suitable for both single-core and multi-core architectures. 

Simulation results, using an 4-core architecture running real-time applications, show that 

Miss Table based cache locking scheme with victim caches significantly improves the 

predictability and performance/power ratio. 

Finally, we develop strategies to characterize applications and generate useful 

workload to evaluate cache optimization methodologies. To evaluate our proposed Miss 

Table based cache locking with victim caches in a multi-core system we develop a 

technique that has 3 major phases. In phase-I, we divide large application code into 

smaller end-to-end functions. In phase-II, we estimate major operations (integer, floating-

point, load/store, and branch) in the code segment. Finally in phase-III, we select the 

cache blocks that should be locked. We find the workload very useful.  
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Proposed Miss Table at cache level improves the performance of cache locking 

and cache replacement policy. Victim cache improves hit ratio by storing victim blocks 

from level-1 cache and supporting stream buffering. Experimental results, using an 4-

core architecture, show that this cache locking method may improve execution time 

predictability by reducing cache misses by more than 50% when locking 25% of the 

cache size. In this experiment, proposed Miss Table based cache locking with victim 

caches has significant impact on performance/power ratio. For MPEG4, 33% reduction in 

mean delay per task and 41% reduction in total power consumption are achieved using 

Miss Table and victim caches. However, for small applications like FFT, when the code 

entirely fits in the cache, there is no positive impact of cache locking, Miss Table, and 

victim caches on predictability and performance/power ratio. 

 

7.2 Future Extensions 

Cache optimization is a fundamental area of interest to the computer engineers, 

scientists, and researchers. As future computing architectures and systems change, cache 

memory organization needs to be analyzed and optimized to achieve the optimal 

performance, power consumption, and predictability for the target applications. From 

current design trend, multi-core architecture is the future of all computing systems. Due 

to increasing demands and resource constrains, real-time embedded systems need to be 

designed with special care to meet the future requirements. Our dissertation contributions 

including the simulation platforms can be extended to cope with the following important 

research areas. 
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Evaluate cache locking at various levels of caches: In this dissertation, we 

develop simulation platforms to implement cache locking at level-1 instruction cache in a 

single-core architecture (see Chapter 5) and cache locking at level-2 shared cache in a 

multi-core architecture (see Chapter 6). This work can be extended to evaluate cache 

locking at level-1 data cache (in single-core and multi-core architectures) and at level-2 

private caches in multi-core architectures. 

Investigate data cache locking for embedded systems: Like level-1 instruction 

cache, level-1 data cache also has significant impact on the performance, power 

consumption, and execution time predictability. It is found that for multimedia 

applications there is sufficient reuse of values for caching [121]. Unlike single-core 

architectures, data consistency and concurrency become more challenging in multi-core 

architectures. This work can be extended to investigate cache locking at level-1 data 

cache in both single-core and multi-core embedded systems. 

Explore power-aware multi-core architecture: Due to its tremendous potential, 

multi-core architecture is being deployed in all sorts of modern computing devices. 

Power consumption and dissipation are extremely crucial for complex architectures with 

thousands of cores. The maximum number of cores is expected to be active to achieve the 

best performance. However, the more cores are active, the more power will be consumed 

(and dissipated). Traditionally, the shortest path between the source and the destination is 

the best path; which may not be beneficial for power-aware multi-core systems. 

Therefore, new core allocation strategies and routing algorithms are required to deal with 

multi-core architecture issues including performance and power consumption. Our multi-
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core cache modeling and simulation platform can be extended to explore power-aware 

multi-core architecture.  

We hope the above discussion motivates the interested scholars into considering 

research in the challenging and constrained environment of real-time embedded systems. 

Multi-core architecture is the future of all modern computing areas from desktop to 

embedded environments. Multi-core architecture comes with multi-level caches. At 

present, there is a great deal of research in the areas of performance, power consumption, 

and predictability of multi-core architecture, which makes the prospects of this research 

work very exciting for real-time embedded systems. Our contributions lead to solutions 

that overcome the disadvantages due to the presence of caches in multi-core, as well as 

single-core, embedded systems. Certainly, the potential of caches in real-time embedded 

systems then will be enormous. 
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APPENDIXES 

 

Appendix A: Complete FFT source code. 

Here is the complete Fast Fourier Transform (FFT) source code, annotated the way 

Heptane needs it. Total number of Integer, Floating-point, Load/Store, and Branch 

operations shown in Table 6.1 are calculated for this code. Also, block address and total 

cache misses for that block shown in Table 6.2 are obtained from the Haptane tree-graph 

generated using this code.  

 

Unsigned NumberOfBitsNeeded (unsigned PowerOfTwo) 
{ 
    Unsigned i, res; 
    for (i = 0; PowerOfTwo == 1; i++) [11] { 
        PowerOfTwo = PowerOfTwo / 2; 
        res = i; 
    } 
    return res; 
} 
unsigned ReverseBits (unsigned index, unsigned NumBits) 
{ 
    unsigned        i, rev; 
    for (i = rev = 0; i < NumBits; i++) [10] { 
        rev = (rev << 1) | (index & 1); 
        index = (index >> 1); 
    } 
    return rev; 
} 
 
fft() 
{ 
    unsigned        NumSamples = 2048; 
    double          RealIn [2048]; 
    double          ImagIn [2048]; 
    double          RealOut[2048]; 
    double          ImagOut[2048]; 
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    double          SINTAB [11] [2]; 
    unsigned        NumBits; 
    unsigned        i, j, sin_index, k, n; 
    unsigned        BlockSize, BlockEnd; 
    double          angle_numerator = 2.0 * (3.14159265358979323846); 
    double          delta_angle; 
    double          alpha, beta; 
    double          delta_ar; 
    double          tr, ti; 
    double          ar, ai; 
    SINTAB [0] [0] = 1.0; 
    SINTAB [10] [1] = 0.003068; 
 
    NumBits = NumberOfBitsNeeded (NumSamples); 
 
    for (i = 0; i < NumSamples; i++) [2048] { 
        j = ReverseBits(i, NumBits); 
        RealOut[j] = RealIn[i]; 
        ImagOut[j] = ImagIn[i]; 
    } 
 
    BlockEnd = 1; 
    sin_index = 0; 
 
    for(BlockSize = 2; BlockSize <= NumSamples; BlockSize = BlockSize << 1) 
    [11, pow (2, (i + 1))] { 
        delta_angle = angle_numerator / (double) BlockSize; 
        alpha = SINTAB [sin_index] [0]; 
        alpha = 2.0 * alpha * alpha; 
        beta = SINTAB [sin_index] [1]; 
        sin_index++; 
 
        for (i = 0; i < NumSamples; i += BlockSize) [(2048 / nlast (P, 1))] { 
            ar = 1.0; 
            ai = 0.0; 
  
            for (j = i, n = 0; n < BlockEnd; j++, n++) [nlast (P, 2) / 2] { 
                k = j + BlockEnd; 
                tr = ar * RealOut[k] - ai * ImagOut[k]; 
                ti = ar * ImagOut[k] + ai * RealOut[k]; 
                RealOut[k] = RealOut[j] - tr; 
                ImagOut[k] = ImagOut[j] - ti; 
                RealOut[j] += tr; 
                ImagOut[j] += ti; 
                delta_ar = alpha * ar + beta * ai; 
                ai -= (alpha * ai - beta * ar); 
                ar -= delta_ar; 
           } 
        } 
        BlockEnd = BlockSize; 
    } 
} 
 



Appendix B: Heptane generated Tree-graph for FFT source code. 

Heptane generated syntax tree-graph for First Fourier Transform (FFT) source code is shown in Figure A. A 

syntax tree is a tree whose nodes represent the structure of programs in the high-level language like C and whose leaves 

represent basic blocks. Leaves (example: CALL, CODE) in the syntax tree may coincide with the control-flow nodes 

(example: SEQ, LOOP). 

 

Figure A. Syntax tree-graph for FFT application. 

CODE CALL LOW-
LEVEL 

LOOP SEQ 

1
2

1
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Contextual information regarding leaves and control-flow nodes (CODE, LOOP, 

etc) can be obtained by clicking on the nodes. Contextual information include the 

following, 

a) Number of instructions – total number of instructions regarding that node  

b) Number of cycles – total number of cycles required to execute the instructions 

c) Cache hit – total number of cache hits  

d) Cache miss – total number of cache misses 

The information of a LOW-LEVEL node is decomposed into 3 main areas:  

a) Memory – contains tables for all cache prediction mechanisms.  

b) Branch Target Buffer (BTB) – contains tables for all branch prediction 

mechanisms and the corresponding analysis, if this was done.  

c) Execution – contains tables for all pipelined or un-pipelined executions, plus 

overlapping pipelines. 

In this work, we consider the number of instructions and cache misses for all 

CODE nodes. As shown in the tree-graph, a LOOP node represents a set of CODE nodes. 

So, the number of instructions and cache misses for loop nodes are excluded. Also, the 

number of instructions and cache misses for SEQ nodes are excluded as they are 

negligible. 
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