
AirBus-A525 Wingbox contest (Fall 2023)

Design and Build the lightest semi-monocoque wingbox to withstand the bending and twisting loads. The cantilevered wingbox weighing no more than **0.75 lbs** must carry a dead load 'Q' of 5 lbs and minimum end load 'P' of **15 lbf** to qualify. The wingbox will be tested to failure and the team achieving the highest score based on a weighted rubric will be the winner. The score will be based on the wing design documentation, construction quality, and performance.

Eligibility:

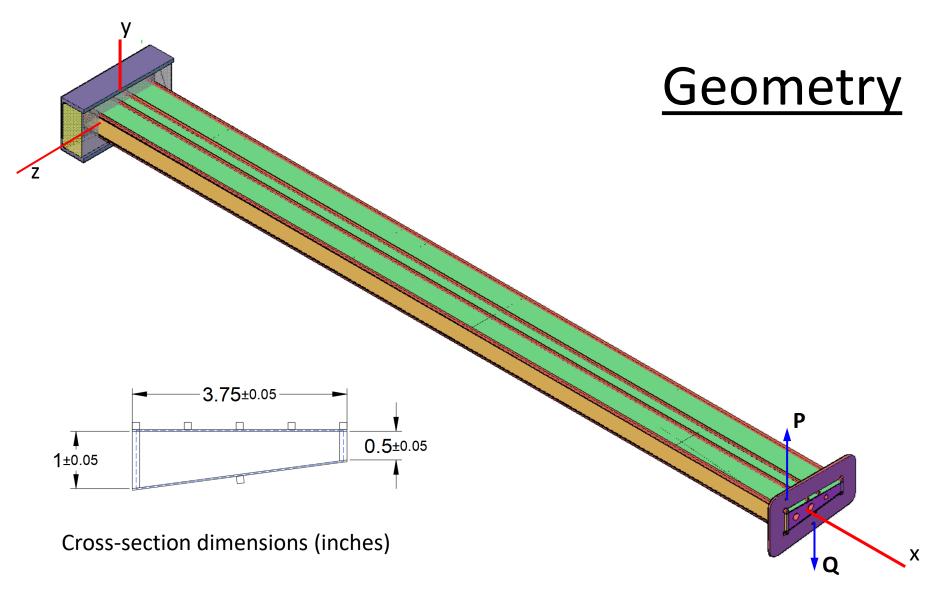
Open to student groups (≤ 5) enrolled in the Fall 2023 AE 525 course

Deadlines:

Entry: Enrolled in AE 525

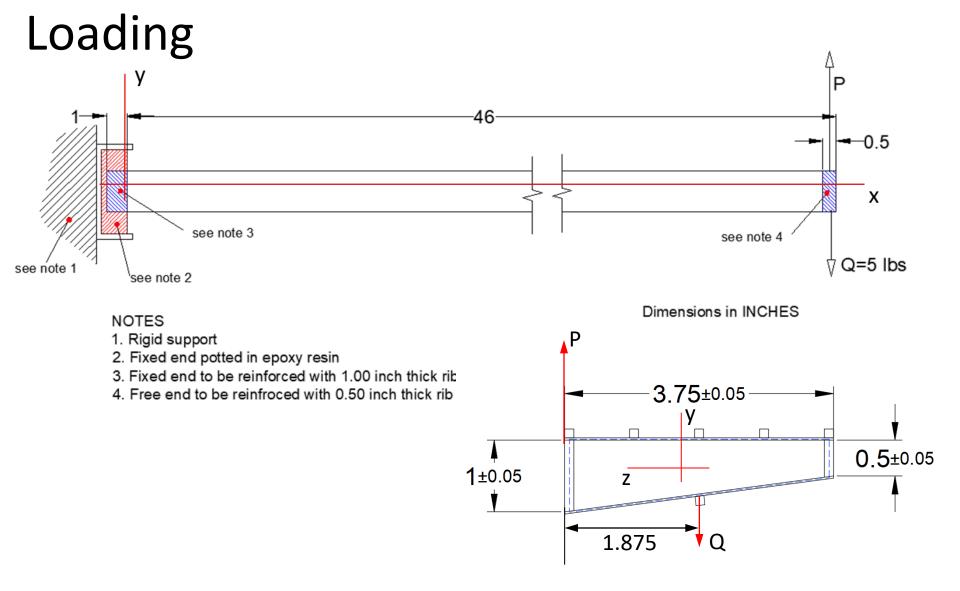
Submissions:

Drawings : 5PM (CDT), November 27th 2023


Wingbox & Report: 6 PM (CDT), December 8th 2023

Awards:

1st Place : \$1500 2nd Place : \$1000 3rd Place : \$500



Notes:

- 1. Active length of 46 inches + 1 inch for potting end
- 2. The stringers must be placed on the outside (locations shown in the figure are for illustration only)
- 3. End will be potted by Flight Structures Lab

NOTE: The teams will be provided with a Basswood ribs for the fixed end (1.00 inch thick) and free end (0.5inch thick). The stringers, spars and skin must extend the entire length (47 inches)

Scoring rubric

The designs will be scored based on the following formula

$$Score = S_{\textit{design}} + S_{\textit{performance}} + S_{\textit{analysis}} + S_{\textit{report}}$$

$$S_{design} = 100 \left[0.6 \frac{\left(N_{stringer} - 5 \right)}{0.003 \left(N_{stringer} + 5 \right)^3} + 0.4 \frac{15}{\left(N_{rib} \right)} - \left(\frac{N_{stacked}}{8} + \frac{N_{adjacent}}{8} \right) \right]$$

$$S_{performance} = 0.5 \frac{P_{\text{max}}}{W_{\text{Wing}}} + 0.1 \frac{Q}{\delta_{Q}} + 0.05 \left[\frac{P_{\text{max}}}{\delta_{\text{max}}} + \frac{P_{\text{max}}}{\theta_{\text{max}}} \right] - 10 \frac{W_{\text{Wing}}}{0.75}$$

$$S_{\textit{analysis}} = 10 \Big(1 - f \left(P_{\text{max}}, P_{\textit{pred}}, 0.1 \right) \Big) + 10 \Big(1 - f \left(\delta_{\mathcal{Q}}, \delta_{\mathcal{Q}_{_}\textit{pred}}, 0.1 \right) \Big) + 10 \Big(1 - f \left(\delta_{15}, \delta_{15_{_}\textit{pred}}, 0.1 \right) \Big)$$

$$f\left(A,A_{pred},\beta\right) = \begin{cases} 0 & \frac{\left|A-A_{pred}\right|}{A_{pred}} \le \beta \\ \frac{\left|A-A_{pred}\right|}{A_{pred}} - \beta & otherwise \end{cases}$$

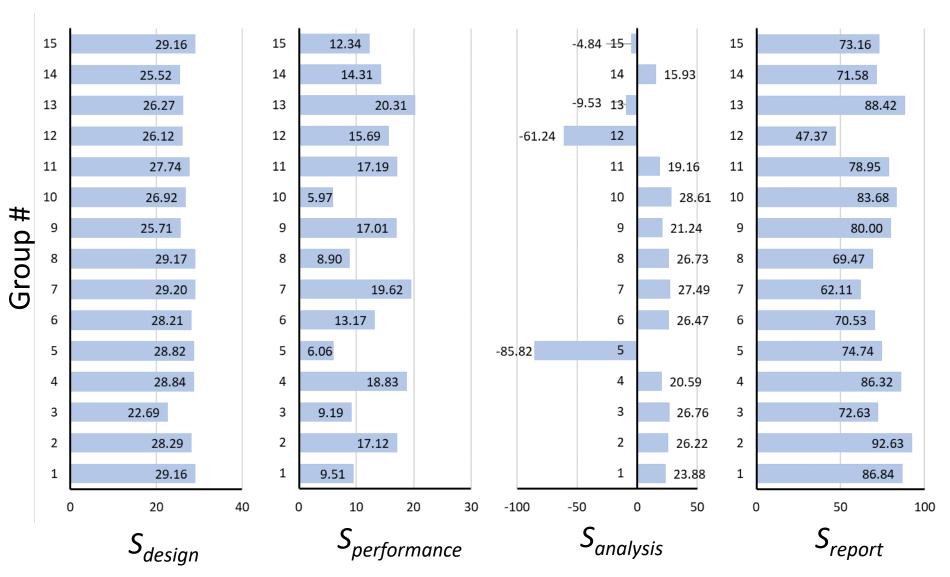
$$\begin{cases} W_{TOTAL} \sim \text{Total weight (wing box + end block)} \\ W_{SUPPORT} \sim \text{Weight of end block} \\ W_{WING} \sim \text{ weight of wingbox (lbs)} \\ \text{(should not exceed 0.75 lbs)} \end{cases}$$

$$P_{\text{max}} \sim \text{Measured failure load} \\ P_{pred} \sim \text{predicted failure load (lbs)} \\ \delta_{30} \sim \text{Measured end deflection (along load) at P=15 lbs (+Q=5lbs)} \end{cases}$$

Note: The tolerances for strength and stiffness are based on variability in material properties.

 δ_{30_pred} ~ Predicted end deflection (along load) at P=15 lbs (+Q=5lbs)

 δ_{o} ~ Measured end deflection (along load) at Q=5 lbs


 δ_{Q-pred} ~ Predicted end deflection (along load) at Q=5 lbs

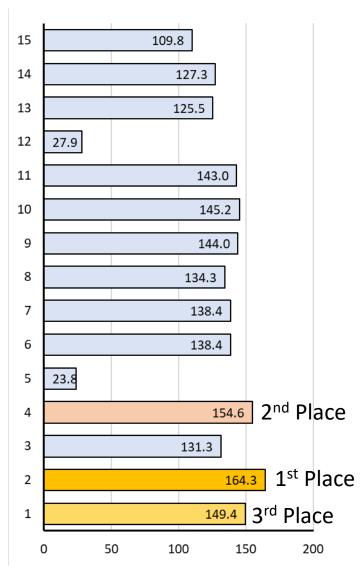
 $\delta_{\rm max} \sim {
m Measured} \ {
m end} \ {
m deflection} \ {
m at} \ {
m failure}$ $\theta_{\rm max} \sim {
m Measured} \ {
m end} \ {
m twist} \ {
m at} \ {
m failure} \ ({
m degrees})$

Category Scores

AIRBUS

AirBus-AE525 Wingbox contest (2023 Fall): Winners

1ST PLACE


 Mason Hensley, Joseph Macko, Caleb Perkins, Peter Stuhlsatz

2ND PLACE

Erik Anderson, Julia Buie, Zachary
 Oakley, Hunter Robertson

3RD PLACE

Treyton Blecke, Luke Cotter, Diego
 Fuentealba, Aiden Holt

Score