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A Higher-Level Building Block Test Standard for Sub-Element level Features

Suited for Design, Geometry, Bondline &
Material evaluation

Approach

Structural Element
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gap between coupon & components level test.

Primary goal is to identify weak designs using the Test Flndlngs & AnaIySIS Takeaways

selected methodology which also introduces — “ Seven Point Bend (7PB) is clearly a mixed-mode test
complex loading scenario.
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TECHNICAL DESCRIPTION

A unique test methodology aimed at detecting
bonded joints, sandwich designs, attachment
features etc. The methodology aims to bridge the

“ Easy to install & operate; yet robust enough to introduce complex
loading (long. & transv. bending components)
Project Goals “ Developed Cohesive Zone based model is able to capture general
" Design & Development of sub-element based test methodology for Monolithic & Bonded Structures specimen kinematics & damage growth.
|

Self-similar crack progression at skin-stringer interface w/ Zero

" Evaluate design conservatism in lower-level compared to higher-level Building Block Testing thickness cohesive layer is robust
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round — M&P Variability
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Background - Static Overload Factor (ECF+SF)
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M&P variability
® Sensitivity to defects

® Evaluate process spec limits
Environmental effects
Thermoset vs. thermoplastics
Effectiveness of joints

Manufacturing defects/features and in-service
damages

® Damage threat assessment

® Scaling

® Repair

® Durability and damage tolerance

® LEF substantiation (statistical modal values)

Validations roup e
(*k1, *k2, ..) ANALYSIS VERIFICATION

GROUP B
DESIGN VALUE
DEVELOPMENT

Smart ML-BBT and/or TSO

Validate design concepts
Verify analysis methods
Provide substantiating data

for design values GROUP A
Demonstrate compliance UEP:“:CEFE%?E"NT
with criteria

Demonstrate ability of FEM
to predict strain values

ML-BBT 1 Joint Design Validation

Damage Threat Assessment

» :
»

ML-BBT 2

ML-BBT n »
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NIAR 7PB Test Setup: T & Hat — Stringers

Load cells

DIC Systems — 2 employed (front & back)

Images are stitched post-test

Each load cell capacity 2050 Ibf . .. |
T-stringer (Pristine - SB)

Test frame rating 11 kip




7PB Quasi-Static Tests: Brief Summary B S v

. e — NIAn
Y i 4
a ge‘ Skin/flange separation "l‘"
“\“ B Co-Bonded B Secondary-Bonded o {coheswe f,a”u.re W/ damage i
\_\a'\_' 2500 Fy 12 progression into first ply)
2000 = 10 : ; ' § 2
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1500 | 9
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= 1000 | = e
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Pristine

Pre-cracked

® Fairly Low COV: Highest 11% & lowest of 4%
® Predominantly Cohesive failure observed
® Inter-ply failure by crack migration into fist ply and beyond

y = |
Specimen Type| Fab. Process| Specimen Config. | Avg. Failure Load [Ibf]] COV [%0] FAA'S.E?'"'AE‘_CB'O‘
T-Stringer Pristine (Baseline) 5096.4 6.2 1.5“6‘000 B Co-Bonded @ Secondary-Bonded i
Co-bonded Pre-cracked 5211.1 3.9 I
Impacted 5231.2 3.1 WA L6
Secondary Pristine (Baseline) 4856.2 4.8 _ 000 | =
bonded Pre-cracked 4478.7 5.1 % 3000 | L 4 ”E“
Impacted 4910.1 2.9 E 2000 F c
Pristine (Baseline) 1777.1 4.2 1000 | 2
Co-bonded Pre-cracked 957.4 6.3 5 Lo
Impacted 1691.2 10.3 & z 3
Secondary Pristine (Baseline) 2046.3 114 £ § %
bonded Pre-cracked 1067.7 9 =
Impacted 1934.1 10 10




Prediction of Damage Initiation & Evolution in Co-bonded T & Hat-Stringers

Co-Bonded T-Stringer (Pristine)

o'

Specimen 06: 1630 Ibf

FE - Model: 1621 It

Specimen 01: 162

~32%

T
& | mem——
T O b
"t ®

Co-Bond

Specimen 06: 659 Ibi

1500

177x0.09° |
[jpmsss= = )

”_r-z._._h'l _______________________________

2.98x%0.517

o

2000

8000
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e - —-©-~FE-Model .
1 1 |
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Applied displacement [in]
ed HAT-Stringer (Pristine)

[ ]

:FE Failure Load

" Hat-Stringer: Co-bonded
: (Pristine Configuration)

——— Specimens: 1 -3, 5
— Specimen - 4
Specimen - 6
—O— FE-Model
I I
0 0.2 04 0.6 0.8 1

Applied displacement [in]

l— ——————————— =

| SC8R: Contimium Shell |
COH3D8: Cohesive Laver |
Non-comeident nodes |

displacanent

| Compositepiy

I Composite ply Iii I

| Cotmsivelay Far |
T |

Stringer (Hat or T)
Analysis

v

NF, SLB)

I

! |

¢ Global load Verification Cohesive > l LT LS (B '
(DCB,E |

\ 4

Cohesive zone Meshing

Guidelines

Panel Model

Failure load
predicted within 3%

(7PB Analysis)

.

= Zero thickness COH Layer
(Collapsed Nodes)

NGro Ko 7) |

Parameters

Penalty &, '
| | stimessx, | K=—0=50 |

|
! Interface - = [MEG,
| Strength, 7, ¢

Noodle
region

Skin/flange separation
(cohesive failure w/ damage
progression into first ply)




Impact Study w/ 7PB:
* ~31% ~61% .
n
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BLOCK 6

BLOCK 5

GROUP B
DESIGN VALUE
DEVELOPMENT

e

BLOCK 4 — “
STRUCTURAL ELEMENT TESTS |\
i S TR A

BLOCK 3

MATERIAL
DEVELOPMENT

Fragment Testing &
Validations =k, *k2, .

DT
Manuf. Defects

In-service Damage

Repair

Non-standard test methods
Design-specific features/materials/layups, etc.

M&P,
CLT, FEM,
SOF (ECF+SF), LEF

Standard tests
Generic layups

Reevaluate Margins
against Mid-level BBT

Bonded Repair
* Parent material
* Repair materials
* Adhesive

CACRC

ToRsIoN %"" .

WTRMIDLATE GUTROARG PUIL
sran BAYAREA
it UBCOMPINENT

$

Development of Mid-Level
Building Block Standards

Smart ML-BBT and/or TSO
Validate design concepts
Verify analysis methods

Provide substantiating data for
design values

Demonstrate compliance with
criteria

Demonstrate ability of FEM to
predict strain values

14




GOAL.: /dentify Weak Design w/t Aid of selected Test Methodology which introduces Complex Loading Scenario
(representative of an actual control surface).
Al

Sandwich Monolithic 15
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nl Il — - Transport Category Approach

Top Facesheet _<30°

* Double Ramp Sandwich : /- :]Flhn o
Rib Attachments in GA -/ + I

e A e A e e S e e ™

..____________________________________________,‘-

F Interface Shear & Normal Stress Compared

* High asymmetrical :
shear and normal \
stresses in Torsion & .. i

Torsfon + Pt Load Case Torsion Torsion + Fixed Load Tension

Bottom Facesheet Nomex Core

* Ramp Angle, Radius, Materials, etc. o

___________________________________________

/ E. Mechanical Testing
Wﬁ“ﬁ‘? 9?:] |,_|_r]_ﬂ_ Face.ﬂ'(n)re Ramp Disbond Initiation

/

P e e o

365 561 562 566
1200 T T T - o
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. B0 o pamp > Dish, lrl-/\ }
|

G -
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&
=
T

200 : i -
Mid-ramp Dist. 1016 mm [4.0 in]
Conflig, 4P - 1/§-3.0-0.5

I 1

L] 1] 2n k1] a0
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Defect Sensitivity = Low

ivity = High

Fuselage Section Multi-Stringer Compression Single-Stringer Compression Skin/Stringer 7PB

il

Damage Induced Configurations

gglobal

€local

Conservatism in design based on lower-level allowable vs higher-level building block testing



Evaluation of Wing-Box Structure | Top-Down Fragmented Testing

Defect Sensitivity = Low

* Less Web Bending
e Complex/realistic loading

| Material System | Horizontal Load Offset, Offset_h (in)
IM71‘5320 1 0.0 107 35 3.5
IM7/5250-4 00 100 35

Defect Sensitivity = Medium

e Excessive Web Bending!

Potential out-of-plane Failure modes due to

direct/indirect loading of spar elements[%2]

Direct Pull-Off Due
to Fuel Pressure

....................................
Interlaminar Shear

Indirect Pull-Off Due Failure of Rabbet

to Panel Postbuckling

—

. |

Vertical Displacement & Induced Rotation

16
| 14 -""‘Il_os_ee_..
O [0)]e) O
=12 - aee
b 2 P
o w 10 P ’ - ’
Bearing/Roller ] L
in 3 = 8 e
22;2\@ g% Horizontal Load Offset o 50% .-
09 % [Otfset_h E 5 7
a2 / 2
= 350" = 4 ©
= s H— ) -
i I1.?5‘ @ Pristine @ Emebedded Radial Defect
S oo ®" 0
ILT Coupon C-Spar 2-Spar Wing-box

Section

Uniform Strain distribution in typical ILT Specimen under bending.
Centrally aligning peak - 30% though thickness (Hard Layup IM7/s250-4)

Defect Sensitivity = High

C-Spar under BENDING + END FORCE

18



C-Spar Static — Environmental Conditioned and Tested @ RTA [RTW]

0.80

% Moisture Uptake
o © © o o
W By wn =1] ~l
o (=] (=] o o

o
o
(=]

o
ia
=)

0.00

ETW Conditioning Data @ 180F, 85% RH

69 .70

Qea 068 085 _ggs
061

033

0.28 .28
0.26

83 0.3 084
U.E1
79
075

.72 HF—B MO

e 069
67
0.65

—IM7/5250-4 BMI
IM7/5320-1 UNI
—T650,/5320-1 8HS

7 14 21 28 35 42 49 56 63 70 77 84

91 98 105 112 119 126 133 140 147

Time (days)
= TR

154

5500
5000
4500
4000
3500

LY ]
Lt o
o o
o o

Web Stress (psi)
B

28%

HH

Inner Web-Stramn
Outer Web-Stram

RTA

IM7/5320-1 UNI
(Epoxy)

* Strain gages are lacated at spar web mid-point

RTW

T650/5320-1 SHS
(Epoxy)

6500
6000

5. 5500

5000
4500 -
4000
3500
3000
2500
2000 @
1500 &
1000
500

0

)

train* (microstrain

S

Ab

C-spars were preconditioned at 180°F, 85% RH and tested at room temp.
Additionally, testing will be conducted at elevated temp. (220F) condition.

19
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Suppegt Span = 8 in

7-point bend L-shear tie Test Setup

Failure Mode / Out-of-Plane Deformation

—TP-B-1 —TP-RW-1 TSB-1 —TP-UW-1
i J_'_‘_’_,_-;'
Initial Load drop (LD-1) was
i observed earlier in TP-B,
hence higher stiffness
degradation was observed
0.0 0.2 0.4 0.6 0.8 1.0

Displacement (in)

1.2

2500

N
o
o
o

1500

1000

500

Average Load (Ibf)

» 7PB replicates buckling modes akin
to skin/stiffener compression via
out-of-plane displacements

> Initial Load Drop was higher for
Thermoplastic Weldment (TPW) than
both TP and TS-Bonded

» Final Load Drop was similar for both
TPW and TPB

Initial Load Drop

Thermoplastic Resistance Ultrasonic Thermoset
1
T
LD-I LD-F LD-I LD-F LD-I LD-F LD-I LD-F
TP-Bonded TP-RW TP-UW TS-Bonded
IM7/5320 - 1



7-Point Bend Rectangular-Hat Stringer [APC/AS4D]

XCT image of
sequentially welded R-

hat stringer stiffened
7-point bend Rect.-hat stringer test setup skin at the interface

» TP-UW failed at 50% higher load than TP-Bonded.

3500

3000

2500

Load (Ibf)
o
3

[E
Ul
o
o

i ' | Substrate Failure
Interface
i 2-Part Failure
i ——Ultrasonic Welded
. I—Bonded|FM3OO—2M
0.0 0.2 0.4 0.6

Displacement (in)

0.8

22



BOTTOM SUPPORTS (x5)

TOP LOAD PINS (x2)
Config 1: 7.5" Load Span

7PB Testing Configurations

TOP LOAD PINS (x2)
Config 2: 6.5" Load Span

B.0"
® 8
7.5 6.5"
8.0"
% @ ® e
8 ®
= Hat(trapezoidal) Stringer [Thermoset] = T-Stringer [Thermoset]
» Hat(rectangular) Stringer [Thermoplastic] » L-Stiffener (Fatigue) [Thermoplastic]
+ L-Stiffener/Shear-Tie [Thermoplastic]
Static
Configuration Material Interface Adhesive Pristine Pre-Crack Impacted
Co-Bonded X X X
T-Stiffener
Thermoset Secondary-Bonded X X X
- - EA 7000
Hat-Stiffener with curved | [7800/3900-2] | o_Bonded X X X
Skin (Omega Hat
COnfiguration) Secondary-Bonded X X X
Bonded FM 300-2 X
L-Stiffener/Shear Tie
Thermoplastic Fusion by Weldment X
[APC/AS4D]
Hat-Stiffener [TC1225/T700] Bonded FM 300-2 X
(Flat/Rectangular
Fusion by Weldment X

Configuration)

** pre-Crack = 2” x 1” Disbond Region Centrally on Each Flange

TP—B :[FM300-2] Thermoplastic Adhesive Bond
TS—B :[EA7000] Thermoset Adhesive Bond
Secondary bonded unless specified as Co-bonded (Co)

RW : Resistance Weld (TP)
uw : Ultrasonic Weld (TP)
|
i RO.25"
-—1">
10"

519"

337" RO.25"

3

vl

RO.25"/

¢ >1"

23



7PB Performance — Materials, Configurations & Joining Methods

& Initial Load Drop ®Pristine B Pristine
2,500 3,500
3,000
2,000
2,500
< 1,500 52,000
= =
< (5%
o 21,500
Layup / Ply 16 Ql -1 1,000 -~
Layup / PI 16 Ql 1,000
Material TC1225/T700 yup / Ply
IM7/5320-1 500 Material APC/ASAD 500
Adhesive FM300-2M Adhesive FM300-2M
0 0
Load Distance 7.5” Load Distance 7.5" uw TP-B
®Pristine ®WPre-Crack @ Imapacted mPristine ®mPre-Crack @ Imapacted
2,500
5,400
2,000 5,200 ]
5,000
< 1,500 _
= S 4,800
g e
3 1,000 S 4,600
Layup / Ply 10/11 Plies Layup / Ply 24Ql 4,400
Material T800/3900-2 500 Material T800/3900-2 4200
Adhesive EA7000 Adhesive EA7000
0 4,000
Load Distance 7.5” TS-B TS - B (Co) Load Distance 6.5” TS - B (Co)

24
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1. Substrate

* Layup, Interface Orientation, Thickness
* Material Type, Fiber/Matrix system

3. Surface Preparation

» Characterization to enhance bond durability
* Condtamination, Decontamination

» Surface Prep. (Mechanical, Energetic, UV)
* Fracture Characteristics

Adhesive Joints as a System

2. Adhesive

» Type/Class, Paste, Film
* Adhesive Characterization
¢ Performance and Compatibility

4. Bond Process/Parameters

¢ Bondline Thickness/Variation, Porosity
* Tooling, Pressure, Quality

* Proccess Specifications and Handling

* Environmental Conditions

¢ Process Control

5. Joint Design
* Sigle/Double/Scarf Overlap, Overlap Length

» Skin/Stringer Attachmets
* Joint Type, Geometry
» Strength, Stiffness, Durability

Key Characters for Joint System

Adhesive Type and Compatibility

Surface Preparation Methods
Surface Contaminants
De-contamination Methods
Environmental Conditions

Mfg. Procedure (Co/Sec. Bond)

Joint Design, Load Cases/Intensity,
Mode Mixity Ratios



Bond Process Qualification at Scale — 7 pt Bend Test

-

Failure Loads

____

Ql Hard

Soft
Skin Laminate-Stiffness

x [Ql Stringer]

Soft Ql Hard
Skin Laminate-Stiffness

Joint-System Key Parameters #1 #2 #3
Substrate Material IM7/5320-1 Thermoplastic
1. Substrate -
Substrate Config. Soft Ql/Custom Hard
2. Adhesive/Interface Adhesive FM300-2 (film) EA9394 (paste)
) Surface Preparation Mech. Abrasion Energetic (APT) UV Ablation
3. Surface Preparation — — -
Surface Contamination Pristine Contaminant
4. Bond Process Process Co-Bonding Secondary Bonding
5. Design Feature Joint Desing Hat-Stiffener (Omega) T-Stiffener
Conditioning Test Environment RTA ETW/Moisture
[Secondary Bonding] \
. . Config. Layup Stack-up Distribution
[Mech. Abrasion] [Energetic (APT) Prep.] — 145/0/-45/0/90/0/45/0L5 T 50% [ 38% | 13%
8 al [45/0/-45/90]_2S 16 25% | 50% |25%
[16]Ql [16]Ql . o Soft [45/-45/0/45/-45/45/-45/90]_S 16 13% | 75% | 13%
8 RTA ... 88
PP g _____________ 8
RTA -------------- x """""""""""" ETW
_a_-

27



Environmental Conditioning (Moisture Saturation)

Moisture Saturations for Environmental Testin
09 B .. 0.02%change over 7-days ¥ . ; ; & ASTM D5229 - Moisture Absorption Properties &
o8 OY W s R * Effects due to moisture ingression Equilibrium Conditioning of PMC
0.7 Gain (%) e | ° . oy . .
cos | ¢ T i Challenges with Condltlonmg time for Iarger 5.5 Vapor-exposure testing shall be used to condition the
iio ; %i test articles specimen when the in-service environmental condition is a
?‘j E: e Bondline region saturation vapor suc.h as humid air. Immersion in a liquid bath should be
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Summary

Testing & Evaluation

® The 7PB test methodology was showcased as robust & reliable test method for evaluation of
monolithic/bonded joints (Findings were presented to the ASTM D30 sub-committee on March 2021)

® Development of 7-point bend test as a (ASTM) standard for evaluating the sensitivity of design features
and material/processes for manufacturing defects and potential aging threats at early stages of design
with sufficient load complexity without the use of costly & time-consuming structural tests

® Top-Down approach to evaluate design conservatism when based on lower-level allowables

Analysis Validations

® Expand the continuum damage modeling and
validations for structural details (secondary bonds, co-
bonds, and co-cured hat- and T-stiffeners)

® Discrete damage modeling using regularized extended
finite element analysis (ReFEM) for investigating
competing failure modes and crack migration.

e | mz/s3201
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Looking Forward / Future Work

® Benefit to Aviation

® Development of a test methodology to evaluate various design aspects at early stages of the design
and manufacturing process to mitigate risks

® Understanding of scaling effects and design factors (scatter factor, environmental compensation
factors)

® Next Steps:

® Complete 7-point bend testing of bonded and welded thermoplastic joints (bond process
qualification at scale)

® Experimental evaluation of component-level fuselage section and fragmented testing

® Continued discussions with ASTM D30 about the possibility of standardizing 7-point bend testing
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