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HexMC Material,(450mm wide Roll),~2000

Source: www.hexcel.com

DFCs overview

gsm,~2 mm thick
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50mm x 8mm 8552/AS4 UD
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DFC structural
components

(almost) Net shape design
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DFC performance
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DFC performance
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Challenges for certification

The main mechanisms of damage in the presence of multi-axial loading,
notches and defects are not clearly understood,;

The multi-axial behavior of un-notched and notched DFC structures has
not been characterized yet. This is key for design and certification;

The effects of defects on the overall structural performance has not
been quantified. This is important to provide guidelines for certification
and maintenance of DFC parts;

All the above issues have to be considered keeping in mind the
thickness effect which was shown to highly affect the overall
mechanical behavior
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Proposed methodology and research plan

Damage mechanism investigation

Extensive 3D analysis of damage

progression by micro-Computer
Tomography

Source: UW team
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North Star Imaging X5000 Industrial 2D Digital X-
ray and 3D Computed Tomography (CT) System:
Nominal part envelope: 32’ (dia.) x 48’ tall, Overall
system resolution: 3 um. X-ray energy: 10-450 kV.
Geometric magnification: 2000x.
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Proposed methodology and research plan

Defect analysis
4 « SENT

Experimental and computational
analysis of size effect in DFC structures
to find critical defect sizes keeping in
mind the highly stochastic behavior

DIC invetiatin

Types of defects:
Molded-in defects (e.g. 1.27 cm x 1.27 cm
brass covered with Teflon ) imbedded
between HexMC plies;
Visible damage from impact
Incidental damage: cuts made with a saw
and/or visible surface damages
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Proposed methodology and research plan
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Proposed methodology and research plan

Multi-axial behavior

4 Load cell
Comprehensive experimental campaign
on un-notched and notched specimens
under biaxial loading with various
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Proposed methodology and research plan

Curved beam testing

Comprehensive experimental campaign on curved beam specimens with various thicknesses
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An example of size effect study
to identify the critical defect size
of DFC structures
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Stochastic Laminate Analogy

Discretization into RLVES by VoronoiStochastic Laminate Analogy
tessellation

Randomly
oriented




Damage progression modeling
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The crack is modeled as a smeared crack band with fixed width

h
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the crack opening, W, is calculated as the product of average
strain and band width

The post-peak softening response of the model is
recalibrated to match the experimental fracture
energy!
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Critical defect size for DFCs
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Critical defect size for DFCs
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Size effect law

Let’s define the nominal stress in the specimen as:

. P = applied load D = width
on = P/(tD) t = thickness (1)

the following expression holds for the initial fracture energy:

2 D 2 D Q= a/D
Gyla) = Jg,* g(a) = Ug* glag +c¢;/D) L = eftective modulus

g = dimensionless energy release rate

By expanding g in Taylor Series, retaining only 15t order terms and re-arranging:

. Bazant's Size Effect Law (SEL) for
E*Gy L .
lon = , quasi-brittle  materials (extended to
Dg(ag) + crg'(an) DFCs)
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Size effect of DFCs
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Critical defect size for DFCs
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Conclusions

The efficient design and certification of DFC structures urges the
understanding of a) the main mechanisms of damage, b) the effects of
multi-axial loading and c) defects and stress concentrators

The proposed project aims at addressing the foregoing issues by
coupling computer tomography, computational modeling and multi-
axial experiments on notched and un-notched DFC structures

An example of size effect study was provided. It was shown that a) the
mechanical behavior of DFC structures strongly depend on the size of
the structure compared to the chip size. Small structures behaves an
quasi-ductile, larger structures as brittle; b) the transition between
stress-driven failure and energy-driven failure occurs at crack lengths
of about 2.6 chip size; c) for a crack about 1 chip long, the structural
strength decreases of 10% only; d) this information is key for
certification and for maintenance scheduling.
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