

Nanomechanical Property Characterization of Adhesive Bondlines

Rita Olander, PhD Candidate MSE

PI: Brian Flinn

Research Collaboration FAA, Boeing, and UW FAA Tech Monitor: Ahmet Oztekin FAA Sponsors: Cindy Ashforth, Larry Ilcewicz

Outline

- Motivation & Key Considerations
- Background
 - Bonding process, interfaces, and interphases
- Experimental Approach
 - Experimentation via Nanomechanical and Nanochemical Methodologies
- Preliminary Results & Discussion
- On-going Work
- Acknowledgements

Motivation & Key Considerations Long-Term Exposure Effects

- Composite joints are designed to undergo thousands of service hours under environmental conditions (e.g. hot-wet, fuel, hydraulic fluid)
 - Diffusion of moisture \rightarrow hygrothermal effects
 - Cyclic loading \rightarrow ratchet and fatigue effects
 - Oxygen-rich and elevated temperatures \rightarrow thermo-oxidative effects
- Better techniques for evaluating long-term exposure on bondline interphase and constituents are desired
 - Physical and chemical changes
 - Changes in mass density and toughness
 - Plasticize
 - Tg changes
 - Moisture absorption, cross-link density, free volume
 - Do regions within the bondline behave differently long-term?
 - Are bonds changing, and if so, are they changing at different rates?

Composite Bond Architecture Types

Secondary Bonding

MATERIALS SCIENCE & ENGINEERING

UNIVERSITY of WASHINGTON

Cobonding

6/14/2024

ritaj2@uw.edu

Composite Bond Architecture Types

UNIVERSITY of WASHINGTON

Secondary Bonding Cocure

Cobonding

- adherend 1 fully cured (left), adherend 2 uncured (right)
- surface preparation on adherend 1 (left)
- bonded with adhesive

Complex, heterogenous

interphase

RROI# 24-181587-ETT

Motivation & Key Considerations

- Bonding creates an interphase between two materials
 - Interphase can affect bond strength and durability
 - factors influencing interphase development need further investigation
- Characterization of the micron-scale regions within bondlines is complex due to their size
 - Complex microstructures and chemistries different from bulk materials
 - Investigate effect of potential changes in microconstituents

Regions within Cobonded Systems

Peel Ply Surface Preparation for secondary bond

6/14/2024

ai2@uw.edu. 8

Preliminary Investigation

- Nanomechanical method to evaluate adhesive bondlines was developed
- Distinct bondline regions were detected

Properties in distinct bondline regions were found to be statistically different

Develop nanomechanical and nanochemical methodology to evaluate interphase properties of cobonded systems

Value to Industry

- Support evaluation of existing or new bonding systems
 - Characterize interfaces and/or interphases within systems
 - Bulk properties vs. Interface/Interphase proprieties
 - Evaluate effect of toughening particles, scrim, additives, etc.
 - Potentially act as screening tests for new systems
 - Process development
- Further understand the long-term exposure effects
 - Assessment of lifecycle of bonding systems
 - Micro level changes to bonding system

Figure adapted from Blohowiak, K.Y., et al., "Qualified Bonded Systems Approach to Certified Bonded Structure," NATO Specialists' Meeting AVT-266 on Use of Bonded Joints in Military Applications, STO-MP-AVT-266, Apr 2018

Understand fundamental science of matrix/adhesive interactions

ritaj2@uw.edu

AMTAS Research Objectives

- Understand the long term effects of in-service exposure and moisture saturation effects on the various regions of bondlines (structure and properties)
- Understand the influence of additives, tougheners, and scrim found in adhesives (and not matrix resins) on bondline properties with long-term exposure
- Identify potential long term exposure relationships between matrix resins and adhesives

- 1. Development/application of new techniques to investigate interphases in structural adhesive bonding systems
 - Nanomechanical Methodology
 - Nanoindentation (property mapping)
 - NanoDMA glass transition temperature ranges at nanoscale
 - Nanochemical Analysis Photo-induced Force Microscopy (PiFM)
- 2. Development of model system to investigate degree of comingling
 - Controlled mixtures of bulk adhesive and bulk resin
 - "Cocure Interphase Mixtures" based on "Rule of Mixtures" Theory
- 3. Investigation of high temperature exposure effects on interphases in bondlines

- 1. Development/application of new techniques to investigate interphases in structural adhesive bonding systems
 - Nanomechanical Methodology
 - Nanoindentation (property mapping)
 - NanoDMA glass transition temperature ranges at nanoscale
 - Nanochemical Analysis Photo-induced Force Microscopy (PiFM)

Secondary Bond Systems	Compare 2 adhesive systems	
Cocure Systems	Compare 1 adhesive system to other types	
Caband Systems	Compare 3 adhesive systems	
Cobond Systems	"Cocure Interphase Mixture" Models	

Adhesive Characterization

- Nanomechanical Property Testing
 - NanoDynamic Mechanical Analysis (DMA)
 - Nanoindentation (modulus and hardness)
- Photo-induced Force Microscopy (PiFM)
- MacroDMA
- Moduluated Differential scanning calorimetry (MDSC)
- Fourier Transform Infrared (FTIR)
- Free Volume Evaluation

MATERIALS SCIENCE & ENGINEERING

UNIVERSITY of WASHINGTON

ritaj2@uw.edu

- 2. Development of model system to investigate degree of comingling
 - Controlled mixtures of bulk adhesive and bulk resin
 - "Cocure Interphase Mixtures" based on "Rule of Mixtures" Theory

Model #	Fabrication Method	Adherend Resin	Adhesive Resin
1	Acetone Extraction	Toray T800S/3900-2 Prepreg	Solvay Metlbond® 1515-3 modified epoxy supported
2	"Neat" Resin, FlackTek SpeedMixer®	Toray 3900-2 Same Qualified Resin Transfer Molding (SQTRM)	AF 555 unsupported film

3. Investigation of high temperature exposure effects on interphases in bondlines

	Surface Preparation				
	Bond Type	Adherend ^[F1]	(cured adherend only) [F2]	Adhesive [F3]	
Baseline	Secondary Bond	Toray T800S/3900 resin	Diatex 1500EV6 woven polyester	Solvay Metlbond® 1515-4	
DCB Sample ^[F4]		Baseline		modified epoxy supported	
Baseline	Cobond	loray 1800S/3900 resin	Precision Fabric Group 60001	Solvay Metlbond® 1515-3	
DCB Sample ^[F5]			polyester peel ply	modified epoxy supported	
2hrs @ 330°F	Cobond	Toray T800S/3900 resin	Precision Fabric Group 60001	Solvay Metlbond® 1515-3	
DCB Sample ^[F5]			polyester peel ply	modified epoxy supported	
1hr @ 400°F	Controlled High Temperature Exposures			Solvay Metlbond® 1515-3	
DCB Sample ^[F5]	Controll		polyesier peer ply	modified epoxy supported	
30days @ 3300°F	Cobond	Toray T800S/3900 resin	Precision Fabric Group 60001	Solvay Metlbond® 1515-3	
DCB Sample ^[F5]			polvester peel plv	modified epoxy supported	
Lab Ambient 2008 Exposure DCB	Secondary Bond	Toray T800S/3900 resin	Precision Fabric Group 60001	Solvay Metlbond® 1515-3	
Sample ^[F5]	F		polyester peel ply	modified epoxy supported	
2012 environmentally exposed	EN	vironmental Exposure	50001 50001	Solvay Metlbond® 1515-3	
Scrapped Cobond ^[F4, F6]		Toray FGF-108 29M	polyester peel ply	modified epoxy supported	
Scrapped Parts Cobond ^[F4, F6]	Cohond Timo S	Torov T0008/2000 regin	Provision Febrie Crown 60001	Solvay Metlbond® 1515-3	
		tress, Environmental		modified epoxy supported	
[E1] 250°E ourod oarbon fiber reinforced poly	mor motrix				

[F1] 350°F cured carbon fiber reinforced polymer matrix

[F2] Peel ply removed just prior to bonding

[F3] 350°F cured film adhesive

[F4] Samples produced by manufacturer

[F5] Samples produced by UW in lab setting

[F6] boneyard uncontrolled environment not maintained and exposed to the elements (e.g., standing water)

7 MATERIALS SCIENCE & ENGINEERING

UNIVERSITY of WASHINGTON

Coupon Considerations

Bondline variation observed through nanomechanical testing could be due to:

- Different material batches
 - Material changes at the supplier level
- Material changes (e.g. out time, storage conditions, moisture)
- Coupons were fabricated at different locations with different equipment
- Different autoclave cure runs, potentially years apart
 - Coupon level panels versus configured part manufacturing

6/14/2024

Nanomechanical and Nanochemical Anaylsis

Olander, R., 16 ritaj2@uw.edu

Nanoindentation Methodology

- Hysitron TriboIndenter 980 with Berkovich diamond indenter tip
- Indent surface from tens of nanometers to several micrometers deep
- Extreme Property Mapping (XPM[™])
 - Hardness and reduced modulus mapped across bondline
- Nano-Dynamic Mechanical Analysis (NanoDMA)

Hysitron TriboIndenter 980 at U. Washington

UNIVERSITY of WASHINGTON

ritaj2@uw.edu

Nanoindentation Limitations

- At this time, no relationship exists between nanomechanical characterization to any engineering properties used in the design, analysis and certification of bonded composite structures
- Subsurface heterogeneity can influence measurements
- Plastic zone around indentation can affect nearby measurements
 - Increasing spacing can prevent plastic zone interactions but results in lower spatial resolution

Nanomechanical Characterization

Extreme Property Mapping (XPM)

Olander, R., 19 RROI# 24-181587-ETT

Nanomechanical Characterization

Nano-Dynamic Mechanical Analysis (NanoDMA)

X-Sol stage

MATERIALS SCIENCE & ENGINEERING

UNIVERSITY of WASHINGTON

00 00 RUKER Nanoindentation Sample Example X-Sol tip

Nanodynamic mechanical analysis on a submicron scale \rightarrow Oscillating force applied to nanoindenter tip \rightarrow sinusoidal stress is applied \rightarrow strain of the material is measured \rightarrow Measures viscoelastic properties of the material $Tan(delta) = \frac{E''}{E'}$ E'' = loss modulus (measuring viscous response)

E' = storage modulus (measuring elastic response)

- Heated stage used to vary temperature
 - \rightarrow show variations in the moduli
 - \rightarrow Determine the glass transition temperature (Tg) range

RROI# 24-181587-ETT

Nanochemical Characterization

Photo-induced Force Microscopy (PiFM)

- Non-contact AFM method relying on tipsample force interactions [19,20]
- Highly localized field created by excitation laser focused on a metal coated AFM tip [19,20]
- Fixed-wavelength PiF images to map individual chemical constituents
- Identify characteristic absorptions specific to bulk materials and controls at room temperature
 - \rightarrow Investigate degree of comingling
 - \rightarrow Investigate effects of high temperature

Objective: Use characteristic absorptions to investigate degree of comingling and thermal stability

6/14/2024

Preliminary Results

Olander, R., 22 ritaj2@uw.edu

Bondline Property Mapping XPM – Cobond Toray 3900-2 and Solvay MB1515-3

Cobonded systems show distinctive mechanical property trend within bondline:

Resin> Cocure Interphase > "Bulk" Adhesive > Adhesive near Secondary Bond Interphase

Bondline Property Mapping XPM – Cobond Toray 3900-2 and Solvay MB1515-3

Solvay MB1515-3 TDS Dry T_g is 338°F (170°C) G' knee by dynamic mechanical analysis

Exposure below reported T_g of the adhesive (330°F) \rightarrow potential "post cure" effect Exposure above reported T_g of the adhesive (400°F) \rightarrow potential change in adhesive regions

ritaj2@uw.edu, 24 RROI# 24-181587-ETT

NanoDMA Cobond Toray 3900-2 and Solvay MB1515-3

NanoDMA Cobond Toray 3900-2 and Solvay MB1515-3

NanoDMA Cobond Toray 3900-2 and Solvay MB1515-3 with High Temperature Exposures

Only significant change in T_g occurs in Adhesive near Secondary Bond Interphase

Preliminary Conclusions

• Cobonded Systems have distinctive nanomechanical properties

- Cobonded interphase regions showed intermediate values between the "bulk" properties of the adhesive and resin → significant mixing during cure
- Nanomechanical property trend within bondline

Resin Cocure Interphase "Bulk" Adhesive Adhesive near Secondary Bond Interphase

- Nanomechanical properties change with high temperature exposures
 - Increase in modulus and hardness suggest "post cure" effect after high temp exposure below T_q
 - Decrease in modulus potentially indicating change of materials after high temp exposure <u>above</u> T_g
 - NanoDMA may be able to detect subtle changes in T_g due to the degree of comingling across bondline regions in cobonded systems

On-going Work

- 1. Nanochemical Analyis PiFM on bonded systems
- 2. "Cocure Interphase Mixtures" Model System
 - Characterization of comingling regions using controlled mixtures
 - T_g
 - Chemical Analysis
- 3. Characterize adhesive bondlines with various heat exposures
 - Correlate adhesive bondlines with various exposures to controlled mixtures → understand the effect of heat exposures on bondline properties

On-going Work

- 1. Nanochemical Analyis PiFM
- PiF spectra indicates peak location shifts, broadening/sharpening, absorbance
 - Peak 1 shift with increased comingling
 - Peak 2 peak broadening with increased comingling

Wavenumber (cm^-1)

PiFM can be used to estimate the degree of comingling in each bondline region

On-going Work

2. "Cocure Interphase Mixtures" Model System

Prepreg

Acknowledgements

- University of Washington
 - Molecular Analysis Facility, National Science Foundation (grant NNCI-1542101) Molecular Engineering & Sciences Institute

 - Clean Energy Institute
 - Material Science & Engineering
 - Flinn Group
- The Boeing Company
- Toray Composite Materials America
- Federal Aviation Administration
- FAA Center of Excellence at the University of Washington (JAMS/AMTAS)

Molecular Engineering & Sciences Institute

CLEAN ENERGY INSTITUTE

UNIVERSITY of WASHINGTON

Questions?

Contact the author

