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Improving Adhesive Bonding Through 
Surface Characterization 

• Motivation and Key Issues  
– Most important step for bonding is surface 

preparation 
– Inspect the surface prior to bonding to ensure proper 

surface preparation 
• Objective 

– Develop quality assurance (QA) techniques for 
surface preparation 

• Approach 
– Investigate surface preparations, process variables  



 Statement of Work 

✔ = work completed --- = not of focus, diffuse reflectance for rough surfaces 
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Surface Characterization/QA Technique 

Contact Angle (CA) FTIR 

Goniometer Surface 
Analyst 

DATR Diffuse 
Reflectance 

Cure Temp and Dwell Time ✔ ✔ --- In progress 

Peel Ply Preparation Material ✔ ✔ ✔ ✔ 

Si Contaminants ✔ ✔ ✔ (Boeing) 

Peel Ply Orientation ✔ ✔ 
No effect 

N/A ✔ 

Peel Ply + Abrasion ✔ --- ✔ 

Scarfed/Sanded Surfaces ✔ TBD --- ✔ 

Effect of Measurement on 
Bonding Surface 

✔ TBD TBD N/A 

Sandpaper Type ✔ --- ✔ 

Peel Ply + Plasma Treatment ✔ TBD --- ✔ 
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Peel Ply Surface Preparation 
• Polymer fabric, last layer applied to composite before cure, 

removed directly before bonding 
• Produces repeatable and consistent surfaces  
• Provides surface roughness  roughness influences CA 

measurements and surface energy [1-3] 

• Can prevent contamination 
• Materials system specific[4-7] 

 Improve mechanical considerations, some chemical alterations can 
lead to poor bonds 

 
Peel ply 

Composite 
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Peel Ply Surface Preparation 
• Materials system specific[4-7] 

– Difference in bond quality (failure mode, Mode I strain 
energy release rate (GIC)) with use of different peel ply 
materials[5] 
 
 
 
 
 
 
 
 
 
 

• Peel ply: mechanical and chemical alterations to 
surface 

 Can atmospheric pressure plasma treatment change 
chemistry of peel ply surface and activate it? 
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Atmospheric Pressure Plasma Treatment 

• Partially ionized gas: unbound 
electrons, electrically charged 
ions, neutral atoms and 
molecules[8,9] 

• Chemically active[8]  
• Advantages 

– Can be automated  reduce 
process variability and increase 
reliability and processing rates[10] 

– No vacuum system[8]  more 
versatile, no part size limit 

 

[10] 
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Experimental Overview 

• 3 systems chosen known to produce weak bonds 
• Atmospheric pressure plasma treat peel ply prepared composites 

– High plasma treatment (slower raster speed) 
– Low plasma treatment (faster raster speed) 
– Out time (time after plasma treatment before bonding 

• Characterize surfaces with various analysis techniques and relate 
to bond quality 
– Analysis methods: CA, FTIR, X-ray photoelectron spectroscopy (XPS) 
– Bond quality: double cantilever beam (DCB) test 

Investigate the effect of plasma treatment on bond 
quality and surface characterization 

measurements of peel ply prepared composites 



Material Systems 
• Toray T800/3900-Nylon PP- MetlBond 1515-3M 
• Toray T800/3900 - 60001 PP- EA9394 paste 
• Hexcel T300/F155 - 60001 PP- EA9696 film 
Weak Bonds (low G1C with interfacial failures) 
 
 
•  Surface Preparation 

Atmospheric pressure plasma treatment: PlasmaTreat 
1. no plasma (control)  
2. 1 in/s plasma treatment (high) 
3. 6 in/s plasma treatment (low) 
4. Out time up to 30 days after plasma 
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Contact Angle Methodology – Surface Energy 
• Adhesive must wet substrate – controlled by 

surface energy 
• Surface energy calculated from Owens-Wendt 

model  (γtot = γp + γd)[11-13] 

• Four fluids: deionized water (DI H2O), diiodomethane 
(DIM), ethylene glycol (EG), and glycerol (GLY)  

• Wettability envelopes: 2D representation of 
surface energy[14] 

 

Side-view of drop as viewed 
from goniometer camera 

Drop application:  dispense 
drop, raise surface 

θ 

1 μL  

Spontaneous 
Wetting 

Non 
Wetting 
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FTIR Methodology – Surface Chemistry 

• Diffuse reflectance FTIR for 
rough surfaces 
– Chemical information from 1-10 
μm[15]  

• Mid-IR data range (4000-650 
cm-1) 

• 90 scans with 16 cm-1 resolution 
• 7 spectra averaged per sample 
• GRAMS IQ software used for 

principal component analysis 
(PCA) of spectra 
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An IR beam path for 
diffuse reflectance  



XPS Methodology – Surface Chemistry 

• Surface (2-5 nm) 
chemistry 

• Three survey scans 
– Composition – atomic 

percentages 
– Linear fit 

• One high-resolution 
carbon scan 
– Fit C 1s peak with 

multiple peaks  carbon 
chemical states 
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DCB Testing – Bond Quality 
• Mode I strain energy release 

rate (GIC) and failure mode 
• 7-8 samples per condition 
• Area method for GIC calculations 

− E: area of curve 
− A: crack length 
− B: specimen width 

• Bondline thickness 
measurements to ensure 
consistency 
 
 

DCB Test 
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DCB Results 
• 3-fold increase in 

GIC for plasma 
treated samples 
compared to 
control 

• Failure modes 
correspond to 
fracture energies 

Adhesion Failure Cohesive/Interlaminar 
Failure 
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•GIC values decreased  slightly after 408 and 720 
hour ambient exposure 
•Differences correspond with surface 
characterization  
•All values within acceptable range 

Cohesive 

Interlaminar 

DCB Results-Out Time 
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Contact Angle Measurements 

• Plasma changed polar character of surface 
– Polar fluids wet more on plasma treated surfaces 
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Surface Energy 

• Significant increase in polar (and total) surface energy 
− Polar groups promote adhesion[16-18] 

• Very little change in dispersive surface energy 
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Wettability Envelopes 

• Significant increase in surface energy shown by 
wettability envelopes 
– Could help explain difference in bonding 
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•Decreasing surface energy  smaller wettability envelope 
•After 30 days, still much larger than control 
 

 

Wettability Envelopes-Out Time 
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FTIR Spectra 

• No obvious nylon peaks on composite surfaces or changing peaks in 
those locations 

– Due to sampling depth (up to 10 μm) vs. depth of plasma treatment (few nm)? 

 PCA to detect differences? 

Amide II Band:  
C-N stretch + 

CO-N-H bend[20] 

Amide IV 
Band: C-CO 

stretch[20] 

Amide V Band: 
N-H out-of-

plane bend[20] 
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FTIR  PCA – Preliminary Results 

• Clusters observed 
• Low samples overlap with control samples 
• Differences could be due to polar groups on surface 

or other factors (reflectivity, roughness) 
 XPS to understand chemical differences 
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FTIR PCA - Out Time 

•Data for 408 and 720 hour samples differ from remainder 
•Roughly correlates with contact angle trend 
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XPS Measurements – Survey Scans 

• Plasma increased oxygen significantly 
• Carbon and nitrogen decreased on plasma treated surfaces 
• Sulfur from proprietary tougheners in matrix, curing agent? 
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XPS Measurements – High-Resolution Spectra 

• Amide groups on control surfaces 
– From nylon peel ply 

• No nylon groups on plasma treated 
surfaces  

• Oxygen containing functional 
groups after plasma treatment 
– Polar groups promote adhesion[16-18] 

– Carboxyl groups bond with epoxy 
adhesive during cure?[21] 
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Summary of Key Results 
• DCB measurements 

– 3-fold increase of GIC for plasma treated samples 
– Cohesive/interlaminar failure for plasma treated samples, adhesion failure 

for controls 
– Strong bond formed up to 30 days after plasma treatment 

• Contact angle and surface energy 
– Plasma increased surface energy, notable polar component 
– Slight decrease in surface energy over time (30 days) 

• FTIR measurements 
– Some differences detected with PCA, potential for QA 
– Needs further investigation-repeatability? 

• XPS measurements 
– Clear differences in C, N, and O content on all samples 
– N-C=O on controls (nylon PP), COOH on plasma treated samples 

 
 DCB measurements correlate well to CA and XPS 
 Similar results in other systems (250 F and RT paste adhesives) 



• Plasma treatment turned a bad surface prep. good 
(reversed the curse of the nylon peel ply!) 
 Surface energy 
 Surface chemistry 
 Fracture energy 
 Failure mode 

• Strong bonds produced up to 30 days after plasma 
• Acceptable surface chemistry, fracture energy and failure mode 

• Surface chemistry measurements have potential for QA 
• Surface Energy 
• FTIR with advanced analysis 

 

 
 

Conclusions 
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Potential Future Work-Plasma 

• Plasma treatment variables: 
– Different plasma treatment raster speeds 

 Is there a plasma treatment threshold? 

– Other material systems 
• Durability of  bonded composites 

– Hot/wet testing 
– Thermal cycling 
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Ongoing and Future Work 2014-15 

• Amine Blush in Paste Adhesives 
– Amine rich surface can form under certain conditions 
– Can lead to weak/poor bonds with paste adhesive 
Can amine blush be detected? 
How much amine blush is acceptable? 
Working with GA partners (Epic, Textron)  

• Bonded Repair of Aged Aircraft (TBD) 
• Surface characteristics of scarfed surface 
• Surface chemistry 
• Surface energy 
• Bond strength 
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Amine Blush Kit- Detection of Carbamates 

Visual test for “amine blush” 
Amine blush present  if … 
…sample yellow compared to control 
What level is detected? 
What level affects bond strength? 
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Amine Blush Test Plan 
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• 2 paste adhesives 
– One known to amine blush 
– One Amine based claimed not to blush 

• Characterize adhesive surface (various conditions) 
– Amine blush kit 
– pH –litmus paper 
– FTIR 
– XPS? 

• Characterize Bond Quality 
– Lap Shear 
– DCB 
– Fractography 
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Questions and comments are 
strongly encouraged. 

 
Thank you. 
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