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Predicting Modulus and Membrane-Bending
Coupling in Discontinuous Fiber Composites

« Motivation and Key Issues

— Certification of DFC parts currently achieved by
testing large numbers of individual parts (certification
by “point design”)

— Desire to transition to
certification based
on analysis supported
by experimental testing




Predicting Modulus and Membrane-Bending
Coupling in Discontinuous Fiber Composites

e Motivation and Key Issues (continued)

— Previous modeling of HexMC parts over predicted
buckling loads by more than 20%

— Suspected cause of errors include local stiffness
variation and membrane bending coupling effects
* Objective
— Develop a method of predicting modulus variation and

Membrane-Bending Coupling (MBC) effects in
HexMC

— Use the method to better understand the disparity
between predictions and experiments
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Predicting Modulus and Membrane-Bending
Coupling in Discontinuous Fiber Composites

e Approach

— By comparison of measured stiffness variations and
out of plane displacements to predictions, determine
modeling parameters

— Using modeling parameters determined by
comparison to coupon testing, apply modeling
method to more complex geometries, to evaluate
method
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Predicting Modulus and Membrane-Bending
Coupling in Discontinuous Fiber Composites

* Principal Investigators & Researchers (UW):

Pl Mark Tuttle
e Grad Students: Brian Head and Michael Arce
e (Priorto 2011 Prof. Paolo Feraboli and his grad students also

participated)
e FAA Technical Monitor
 Lynn Pham

« Other FAA Personnel Involved
o Larry llcewicz

 Industry Participation
 Boeing: Bill Avery

 Hexcel: Bruno Boursier, David Barr, Marcin Rabiega and
Sanjay Sharma
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Testing - Setup

* Two thicknesses of flat specimens were cut 1.5”
X 13" (0.157” and 0.097” thick)

— Specimens of each thickness came from two different
plates, four plates total

* 9inch gauge length
e |n total 20 tests were run

— Nine specimens of each thickness

— One specimen of each thickness was tested twice,
observing each side one time
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Testing - Setup

e Specimens were
speckled for DIC

e Testedto 12.7
ksl at 0.02 in/min

— 1847 Ibf for thin
— 3000 Ibf for thick




Coupling - Measurement

e Specimens did not start out flat

e Used minimum of standard deviation of out of

plane position to establish when the specimen
was flat
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Coupling
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Coupling
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Coupling — Factor Determination

Spec 14 Out of Plane Displacement
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Coupling — Factor Measurement

Repeatability
Coupling Factors by Specimen
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Modulus — Gauge Regions

e Average strain over four sizes of gauge regions
was measured

N2

- 0.25 In o 0 0
— 3.38in?

- 6 75 |n2 55 =4 55
— 13.51in?

# [mm] 110 ¥ [mm] 110 [mim] 110

165 165 165

220 220 220

Z nm] ZJnm] Z lnm]
-2 7 162534 DOBES -2 7 16253¢ DOEESD 2 7 167534 IEES
¥ [rm] *f [mm] % [mm]

4

JAWS

JOINT ADVANCED MATERIALS & STRUCTURES
CENTER OF EXCELLENCE

AMIAS

Advaned Maferiafs i
Transpart Alreraft Siructurez

13




Modulus — Thick Spec. Contour Plots
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Modulus — Thin Spec. Contour Plots
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Modulus — Results
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1/4 |12 1/4  [1/2

Thick G1 G2 Surf Surf Ext Thin G1 G2 Surf Surf Ext

spec151| 7.87| 8.06] 7.56| 7.55] 7.09|spec11s1| 5.92| 6.46| 6.19| 6.16[ 6.16
spec152 | 7.16| 6.09] 7.13| 7.11| 7.20|spec11s2| 7.27| 6.41| 6.43| 634 6.24
Spec 2 7.62| 6.49| 7.15| 7.10| 6.94] Spec12 7.02| 687| 6.74] 667| 6.52
Spec 3 7.68| 6.68| 7.11| 7.10| 7.28] spec13 632| 755| 7.18] 7.31| 6.19
Spec 4 672| 6.15| 6.81| 691| 6.44|Spec14 7.00| 503| 663 657 6.12
Spec 5 6.58| 6.48| 6.18| 6.20| 6.09] Spec15 847| 655| 632 630 6.42
Spec 6 6.42| 733| 6.21| 632| 6.47]|Spec17 695| 6.94| 6.60| 6.69| 6.29
Spec 7 5.14| 8.11| 6.20| 6.17| 6.36] Spec18 457| 7.40| 5.66| 575| 5.79
Spec 8 5.89| 7.45| 6.60| 6.81| 6.61]Spec19 6.60| 823| 698 697| 6.90
Spec 9 6.65| 6.67| 7.11| 6.99| 6.67] Spec20 581 872| 574| 572| 6.17
Min 5.14 6.18] 6.17] 6.09 | Min 4.57 5.66] 572| 5.79
Avg 6.86 681 6.83] 6.71]Avg 6.81 6.45| 6.45| 6.28
Max 8.11 756| 7.55| 7.28] Max 8.72 7.18| 7.31| 6.90
St Dev 0.74 0.49] 0.46] 0.39][st Dev 1.04 0.49] os50[ 0.29
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Modeling Approach

 Visual Basic program written to
Interface with FEMAP API

— Creates RLVE regions of user
specified size

— Assigns random stacking sequence
to each one

— Meshes model with user defined
mesh size

— Each run takes about 5-7 seconds

— Model is run a statistically significant | E,, 1.34 Msi

number of times Vi, 302
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Modeling Approach

 Visual Basic program written to
Interface with FEMAP API

— Creates RLVE regions of user
specified size

— Assigns random stacking sequence
to each one

— Meshes model with user defined
mesh size

— Each run takes about 5-7 seconds

— Model is run a statistically significant | E,, 1.34 Msi

number of times Vi, 302
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Modeling - Convergence

« Convergence of the predictions was obtained
after ~5000 predictions

RLVE Model Convergence
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 All modeling configurations run 5000 times
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Modeling — Mesh Sizing

e Mesh size

— Global stiffness and out of plane displacements found
to be mesh independent for proper mesh sizes

— Local strains found to be mesh dependent, diverging

as mesh size decreased
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Modeling — RLVE Sizing

e For this stuc
Size by com

y we chose to choose the RLVE
parison of predicted strain variations

and out of p

ane displacements to experiments
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Modeling — RLVE Sizing

e For this study we chose to choose the RLVE
size by comparison of predicted strain variations

-and-edt-ef-plane-displacements- to experiments
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Modeling — Modulus Variation
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Modeling — Modulus Variation
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Modeling — Modulus Variation

25

Thick 0.25” RLVE 0.5” RLVE 0.75” RLVE
Avg St Dev Avg St Dev Avg St Dev
Area (Msi) | (Msi) (Msi) | (Msi) (Msi) | (Msi)
0.25 6.52 0.487| 6.554 0.778 6.60 1.10
3.375 6.49 0.167| 6.474 0.318 6.45 0.449
6.75 6.49 0.144| 6.473 0.295 6.44 0.411
13.5 6.53 0.070| 6.500 0.149 6.47 0.228
Error -2.76% -3.18% -3.64%
Thin 0.25” RLVE 0.5” RLVE 0.75” RLVE
Avg St Dev Avg St Dev Avg St Dev
Area (Msi) | (Msi) (Msi) | (Msi) (Msi) | (Msi)
0.25 6.40 0.602| 6.470 1.063 6.53 1.42
3.375 6.37 0.208| 6.308 0.408 6.28 0.569
6.75 6.36 0.190| 6.306 0.376 6.27 0.530
13.5 6.40 0.108| 6.343 0.201 6.29 0.287
Error 1.91% 1.00% 0.21%




RLVE Sizing — Thick Specimen
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RLVE Sizing — Thin Specimen
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Modeling — RLVE Sizing

e Suggested RLVE size
taken to be average of two

— Independent of thickness
— 0.76" x 0.76”

JOINT ADVANCED MATERIALS & STRUCTURES
CENTER OF EXCELLENCE

Suggested
RLVE Size (in)
Gauge
Area
(in"2) Thick |Thin
0.25| 0.50| 0.51
3.375| 0.82| 0.64
6.75| 0.85| 0.71
13.5| 1.27| 0.77
Average 0.86] 0.66
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Modeling — Coupling

E ducational Lizenze - For Educational and Traiming ze Only

e Out of plane
displacements are
predicted by model
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Modeling — Coupling

* Predicted displacements are of the same order
of magnitude as measured

Thick Thin
0.25" |0.5" 0.75" |0.25" |0.5" |[0.75"
RLVE |RLVE |RLVE |[RLVE |RLVE |RLVE

Avg
(in/Msi) 0.349| 0.623| 1.014| 0.691| 1.37| 2.08
St Dev
(in/Msi) 0.134| 0.260| 0.411| 0.282| 0.576| 0.881
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Conclusions

« RLVE modeling is capable of predicting stiffness
variation of HexMC, provided proper RLVE size
IS chosen

« MBC effects could not be consistently
measured, but RLVE modeling did predict
coupling between in plane loads and out of
plane displacements
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Application to Angle Buckling
-Preliminary Results

* Previous work predicted buckling load of angle
beams subjected to pure bending

— JAMS 2012 and AMTAS 2012

 For small angle size previous efforts over
predicted buckling by 20 — 25% or more

3 Small Angle Buckling
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Future Work

 Complete analysis of buckling of angle beams

e Area based failure criteria for use with RLVE
modeling
* Apply RLVE method to intercostal predictions

33




Benefit to Aviation

« Results of this study will ultimately help establish
a method to certify DFC aircraft parts by analysis
supported by experimental measurements

— RLVE modeling effort provides insight into the cause
of under prediction of buckling loads when isotropic
properties are used for modeling
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