

Certification of Discontinuous Fiber Composite Forms for Aircraft Structures

2013 Technical Review Brian Head and Mark Tuttle University of Washington

- Motivation and Key Issues
 - Certification of DFC parts currently achieved by testing large numbers of individual parts (certification by "point design")
 - Desire to transition to certification based on analysis supported by experimental testing

- Motivation and Key Issues (continued)
 - Previous modeling of HexMC parts over predicted buckling loads by more than 20%
 - Suspected cause of errors include local stiffness variation and membrane bending coupling effects
- Objective
 - Develop a method of predicting modulus variation and Membrane-Bending Coupling (MBC) effects in HexMC
 - Use the method to better understand the disparity between predictions and experiments

- Approach
 - By comparison of measured stiffness variations and out of plane displacements to predictions, determine modeling parameters
 - Using modeling parameters determined by comparison to coupon testing, apply modeling method to more complex geometries, to evaluate method

- Principal Investigators & Researchers (UW):
 - PI: Mark Tuttle
 - Grad Students: Brian Head and Michael Arce
 - (Prior to 2011 Prof. Paolo Feraboli and his grad students also participated)
- FAA Technical Monitor
 - Lynn Pham
- Other FAA Personnel Involved
 - Larry Ilcewicz
- Industry Participation
 - Boeing: Bill Avery
 - Hexcel: Bruno Boursier, David Barr, Marcin Rabiega and Sanjay Sharma

Testing - Setup

- Two thicknesses of flat specimens were cut 1.5" x 13" (0.157" and 0.097" thick)
 - Specimens of each thickness came from two different plates, four plates total
- 9 inch gauge length
- In total 20 tests were run
 - Nine specimens of each thickness
 - One specimen of each thickness was tested twice, observing each side one time

Testing - Setup

- Specimens were speckled for DIC
- Tested to 12.7 ksi at 0.02 in/min
 - 1847 lbf for thin
 - 3000 lbf for thick

Coupling - Measurement

- Specimens did not start out flat
- Used minimum of standard deviation of out of plane position to establish when the specimen was flat

Coupling

Coupling

Coupling – Factor Determination

Spec 14 Out of Plane Displacement

Coupling – Factor Measurement Repeatability

Modulus – Gauge Regions

 Average strain over four sizes of gauge regions was measured

- 0.25 in² - 3.38 in²

- 6.75 in²

- 13.5 in²

Modulus – Thick Spec. Contour Plots

Modulus – Thin Spec. Contour Plots

Modulus – Results

			1/4	1/2					1/4	1/2	
Thick	G1	G2	Surf	Surf	Ext	Thin	G1	G2	Surf	Surf	Ext
Spec 1 S1	7.87	8.06	7.56	7.55	7.09	Spec 11 S1	5.92	6.46	6.19	6.16	6.16
Spec 1 S2	7.16	6.09	7.13	7.11	7.20	Spec 11 S2	7.27	6.41	6.43	6.34	6.24
Spec 2	7.62	6.49	7.15	7.10	6.94	Spec 12	7.02	6.87	6.74	6.67	6.52
Spec 3	7.68	6.68	7.11	7.10	7.28	Spec 13	6.32	7.55	7.18	7.31	6.19
Spec 4	6.72	6.15	6.81	6.91	6.44	Spec 14	7.00	5.03	6.63	6.57	6.12
Spec 5	6.58	6.48	6.18	6.20	6.09	Spec 15	8.47	6.55	6.32	6.30	6.42
Spec 6	6.42	7.33	6.21	6.32	6.47	Spec 17	6.95	6.94	6.60	6.69	6.29
Spec 7	5.14	8.11	6.20	6.17	6.36	Spec 18	4.57	7.40	5.66	5.75	5.79
Spec 8	5.89	7.45	6.60	6.81	6.61	Spec 19	6.60	8.23	6.98	6.97	6.90
Spec 9	6.65	6.67	7.11	6.99	6.67	Spec 20	5.81	8.72	5.74	5.72	6.17
Min	5.1	.4	6.18	6.17	6.09	Min	4.57		5.66	5.72	5.79
Avg	6.8	86	6.81	6.83	6.71	Avg	6.	81	6.45	6.45	6.28
Max	8.1	.1	7.56	7.55	7.28	Max	8.	72	7.18	7.31	6.90
St Dev	0.7	' 4	0.49	0.46	0.39	St Dev	1.	04	0.49	0.50	0.29
						A Center of Excellence					

Modeling Approach

- Visual Basic program written to interface with FEMAP API
 - Creates RLVE regions of user specified size
 - Assigns random stacking sequence to each one
 - Meshes model with user defined mesh size
 - Each run takes about 5-7 seconds
 - Model is run a statistically significant number of times

Modeling Approach

- Visual Basic program written to interface with FEMAP API
 - Creates RLVE regions of user specified size
 - Assigns random stacking sequence to each one
 - Meshes model with user defined mesh size
 - Each run takes about 5-7 seconds
 - Model is run a statistically significant number of times

 E_1

 E_{22}

 v_{12}

 G_{13}

18.1 Msi

1.34 Msi

.302

0.565 Msi

Modeling - Convergence

 Convergence of the predictions was obtained after ~5000 predictions

All modeling configurations run 5000 times

Modeling – Mesh Sizing

- Mesh size
 - Global stiffness and out of plane displacements found to be mesh independent for proper mesh sizes
 - Local strains found to be mesh dependent, diverging as mesh size decreased

Modeling – RLVE Sizing

• For this study we chose to choose the RLVE size by comparison of predicted strain variations and out of plane displacements to experiments

Modeling – RLVE Sizing

 For this study we chose to choose the RLVE size by comparison of predicted strain variations and out of plane displacements to experiments

Modeling – Modulus Variation

Modeling – Modulus Variation

Modeling – Modulus Variation

Thick	0.25	5" RLVE	0.5	" RLVE	0.75" RLVE		
	Avg	St Dev	Avg	St Dev	Avg	St Dev	
Area	(Msi)	(Msi)	(Msi)	(Msi)	(Msi)	(Msi)	
0.25	6.52	0.487	6.554	0.778	6.60	1.10	
3.375	6.49	0.167	6.474	0.318	6.45	0.449	
6.75	6.49	0.144	6.473	0.295	6.44	0.411	
13.5	6.53	0.070	6.500	0.149	6.47	0.228	
Error	-2.76%		-3.18%		-3.64%		

Thin	0.25	" RLVE	0.5	" RLVE	0.75" RLVE		
	Avg	St Dev	Avg	St Dev	Avg	St Dev	
Area	(Msi)	(Msi)	(Msi)	(Msi)	(Msi)	(Msi)	
0.25	6.40	0.602	6.470	1.063	6.53	1.42	
3.375	6.37	0.208	6.308	0.408	6.28	0.569	
6.75	6.36	0.190	6.306	0.376	6.27	0.530	
13.5	6.40	0.108	6.343	0.201	6.29	0.287	
Error	1.91%		1.00%		0.21%		
				A Center al Cumilence		-	

JOINT ADVANCED MATERIALS & STRUCTURES CENTER OF EXCELLENCE

RLVE Sizing – Thick Specimen

RLVE Sizing – Thin Specimen

Modeling – RLVE Sizing

- Suggested RLVE size taken to be average of two
 - Independent of thickness
 - 0.76" x 0.76"

	Suggested				
	RLVE Size (in)				
Gauge					
Area					
(in^2)	Thick	Thin			
0.25	0.50	0.51			
3.375	0.82	0.64			
6.75	0.85	0.71			
13.5	1.27	0.77			
Average	0.86	0.66			

Modeling – Coupling

 Out of plane displacements are predicted by model

Typical thin model

Modeling – Coupling

• Predicted displacements are of the same order of magnitude as measured

	Thick			Thin		
	0.25"	0.5"	0.75"	0.25"	0.5"	0.75"
	RLVE	RLVE	RLVE	RLVE	RLVE	RLVE
Avg						
(in/Msi)	0.349	0.623	1.014	0.691	1.37	2.08
St Dev						
(in/Msi)	0.134	0.260	0.411	0.282	0.576	0.881

Conclusions

- RLVE modeling is capable of predicting stiffness variation of HexMC, provided proper RLVE size is chosen
- MBC effects could not be consistently measured, but RLVE modeling did predict coupling between in plane loads and out of plane displacements

Application to Angle Buckling -Preliminary Results

 Previous work predicted buckling load of angle beams subjected to pure bending

– JAMS 2012 and AMTAS 2012

 For small angle size previous efforts over predicted buckling by 20 – 25% or more

Future Work

- Complete analysis of buckling of angle beams
- Area based failure criteria for use with RLVE modeling
- Apply RLVE method to intercostal predictions

Benefit to Aviation

- Results of this study will ultimately help establish a method to certify DFC aircraft parts by analysis supported by experimental measurements
 - RLVE modeling effort provides insight into the cause of under prediction of buckling loads when isotropic properties are used for modeling

End of Presentation.

Thank you.

JOINT ADVANCED MATERIALS & STRUCTURES CENTER OF EXCELLENCE