

2015 Technical Review Michael Arce, Karen Harban, and Mark Tuttle University of Washington

- Motivation and Key Issues
 - Load-bearing discontinuous fiber composites (DFCs) are currently used in transport aircraft structures such as the Boeing 787
 - Certification achieved by testing large numbers of individual parts (certification by "point design")
 - Project goal is to transition to a certification process based on analysis supported by experimental testing

<u>Technical Approach</u>: HexMC (a DFC used on the B787) selected as a model material. HexMC prepreg consists of randomly-oriented "chips" of B-staged AS4-8552 (0.125x 8mm x 50mm). For this material, perform:

- Experimental studies of HexMC mechanical behaviors, starting with simple coupon-level specimens and progressing towards "complex" parts
- Study the effects of processing (e.g., impact of material flow during compression molding on stiffness and strength)
- Develop stochastic dtructural analysis methods (aka "probabilistic" or "Monte-Carlo" analyses)
- Compare measurements with analytical-numerical predictions

Current Researchers (University of Washington):

- Prof. Mark Tuttle (PI)
- Michael Arce and Karen Harban, MSME Students

Additional Past Participants (University of Washington):

- Prof. Paolo Feraboli
- Graduate students: Marco Ciccu, Tyler Cleveland, Brian Head, Marissa Morgan, Tory Shifman, Bonnie Wade

FAA Personnel:

• Lynn Pham (Tech Monitor), Larry Ilcewicz, Curt Davies Industry Participation:

- Boeing: Bill Avery
- Hexcel: Bruno Boursier, David Barr, and Sanjay Sharma

Major topics of earlier papers/presentations:

(original presentations available: http://depts.washington.edu/amtas/events/index.html)

Major topics of earlier papers/presentations: (original presentations available: http://depts.washington.edu/amtas/events/index.html)

- HexMC coupon tests (e.g., UNT, OHT, UNC, OHC):
 - elastic and failure properties exhibit relatively high levels of scatter
 - HexMC is notch insensitive
- Documented by Feraboli et al:
 - (a) J. Composite Materials, Vol 42(19)
 - (b) J. Reinf. Plastics and
 - Composites, Vol 28 (No 10)
 - (c) Composites Part A, Vol 40

Major topics of earlier papers/presentations:

(original presentations available: http://depts.washington.edu/amtas/events/index.html)

•"High-flow" and "ply-drop" panel tests: material flow causes modest chip/fiber alignment (optical microscopy) and measureable change in stiffness and strength (coupon tests)

Tuttle/Shifman: JAMS '09 & '10, AMTAS Fall '09 and Spr '10

Major topics of earlier papers/presentations:

(original presentations available: http://depts.washington.edu/amtas/events/index.html)

•"High-flow" and "ply-drop" panel tests: material flow causes modest chip/fiber alignment (optical microscopy) and measureable change in stiffness and strength (coupon tests) Tuttle/Shifman: JAMS '09 & '10, AMTAS Fall '09 and Spr '10

 Modeling stiffness/strength via stochastic laminate analogy (SLA) Feraboli/Ciccu: JAMS '10 & '11, AMTAS Fall '10

Major topics of earlier papers/presentations: (original presentations available: http://depts.washington.edu/amtas/events/index.html)

•"High-flow" and "ply-drop" panel tests: material flow causes modest chip/fiber alignment (optical microscopy) and measureable change in stiffness and strength (coupon tests) Tuttle/Shifman: JAMS '09 & '10, AMTAS Fall '09 and Spr '10

 Modeling stiffness/strength via stochastic laminate analogy (SLA) Feraboli/Ciccu: JAMS '10 & '11, AMTAS Fall '10

•Elastic bending stiffness of HexMC angle beams with non-symmetric crosssections

Feraboli et al: JAMS '11, Tuttle/Shifman: AMTAS Fall '10, JAMS '11

Major topics of earlier papers/presentations (continued): (original presentations available: http://depts.washington.edu/amtas/events/index.html)

 B-basis and B-Max measures of modulus (inferred from UW HexMC coupon data) used during FEM analyses of HexMC beams; predicted elastic stiffnesses bound both measurements and SLA predictions Tuttle/Head: AMTAS Fall '12 & '13

Major topics of earlier papers/presentations (continued): (original presentations available: http://depts.washington.edu/amtas/events/index.html)

- B-basis and B-Max measures of modulus (inferred from UW HexMC coupon data) used during FEM analyses of HexMC beams; predicted elastic stiffnesses bound both measurements and SLA predictions Tuttle/Head: AMTAS Fall '12 & '13
- Measurement/prediction of crippling/buckling/fracture of HexMC angle beams with symmetric cross-sections (FEM/SLA analyses and deterministic FEM with B-Basis and B-Max properties):

Tuttle/Head/Arce: AMTAS Fall '13, JAMS'14

Current Objective:

• To predict damage accumulation and final fracture of a HexMC intercostal when loaded as a simple cantilevered beam

Technical Approach:

- Model the intercostal using NASTRAN and the SLA approach
- Predict chip failures using the Tsai-Wu failure criterion
- Model damage accumulation using a simple "ply discount" scheme

Two different experimental data bases are available for comparison to prediction: 1) Tests conducted at the UW (loaded end is free to rotate or displace in any direction)

Two different experimental data bases are available for comparison to prediction:

1) Tests conducted at the UW:

- extensive end rotation
- all failure occurred along top of the

(nominally) compressive flange

CECA

Two different experimental data bases are available for comparison to prediction:

- Tests conducted at the UW:
 - extensive end rotation
 - all failure occurred along top of the

(nominally) compressive flange

Two different experimental data bases are available for comparison to prediction:

 Hexcel tests (guided end cannot rotate or displace out-of-plane reaction forces T and M were not measured; data proprietar

Root Bolt Pattern

Two different experimental data bases are available for comparison to prediction:

 Hexcel BCs resulted in widely dispersed failures... six distinct failure regions identified

Summary:

- Divide the structure to be modeled into Random Laminate Volume Elements (RLVEs)
- Assign randomly-selected and nonsymmetric stacking sequence to each RLVE :
 - fiber angles in one RLVE are independent of neighboring RLVEs
 - number of plies = number of through-thickness chips, reflecting local part thickness
- Further divide all RLVEs into "traditional" finiteelement mesh

Example: HexMC tensile coupon

Example: HexMC tensile coupon

One of 20 RLVEs

Example: HexMC tensile coupon

One of 20 RLVEs
 Random stacking sequence differs in neighboring RLVEs

Example: HexMC tensile coupon

One of 20 RLVEs **Random stacking** sequence differs in neighboring RLVEs Each RLVE divided into $6 \ge 6 = 36$ finite elements (720 elements used in model)

Example: HexMC tensile coupon

To predict tensile modulus: (a) enforce uniform end displacement:

$$\left| \varepsilon_{axial} \right|_{nom} = \frac{\Delta l}{l}$$

Example: HexMC tensile coupon

To predict tensile modulus: (a) enforce uniform end displacement: Δl

$$\varepsilon_{axial}\Big|_{nom} = \frac{\Delta l}{l}$$

(b) monitor total reaction force *R* at fixed end:

 σ_{axial}

Predicted displacement contour plots

Predicted Young's Modulus

(Based on recommended RLVE dimensions ~19 mm =~ 0.76 in)

Strain (microstrain)

 Recommended RLVE size established by matching standard deviation of predicted modulus vs modulus measured using DIC...best match for RLVE size ~0.76 in (19.1 mm)

0.097 in (2.5 mm) thick specimens

0.19 in (4.9 mm) thick specimens

Stochastic Laminate Analogy (SLA) Applied to the HexMC intercostal

- Hexcel provided a solid model of the intercostal
- NASTRAN mesh created using midsurfaces
 generated from the solid model
- Laminated shell elements used; different PCOMP cards used to represent differing thicknesses

Stochastic Laminate Analogy (SLA) Applied to the HexMC intercostal

181 RLVEs were defined

FE mesh based on:

- 9235 nodes
- 8915 elements

Advanced Materials in Transport Aircraft Structure

Advanced Materials in Transport Aircraft Structure

Three different criterion for overall structural failure have been explored:

- Define final fracture when all plies/chips in a single element have failed

Three different criterion for overall structural failure have been explored:

- Define final fracture when all plies/chips in a single element have failed... *too conservative*

- Define final fracture when all plies/chips in a single element have failed... *too conservative*
- Define final fracture when all plies/chips in a selected number of elements have failed

- Define final fracture when all plies/chips in a single element have failed... *too conservative*
- Define final fracture when all plies/chips in a selected number of elements have failed ... arbitrarily selected 10 elements

- Define final fracture when all plies/chips in a single element have failed... *too conservative*
- Define final fracture when all plies/chips in a selected number of elements have failed ... arbitrarily selected 10 elements
- Define final fracture when overall stiffness has been reduced by some percentage (10%, say)

- Define final fracture when all plies/chips in a single element have failed... *too conservative*
- Define final fracture when all plies/chips in a selected number of elements have failed ... arbitrarily selected 10 elements
- Define final fracture when overall stiffness has been reduced by some percentage (10%, say) highest computational expense

Material Properties

Chips properties are assumed to be equivalent to those of unidirectional AS4/8552*:

E ₁₁ ,	E ₂₂ ,			0° Strength (ksi)		90° Strength (ksi)		In-Plane
(tensile, Msi) (tensile, V_{12} (tensile) (tensile)	V ₁₂ (tensile)	G ₁₂ (Msi)	Tensile	Comp	Tensile	Comp	Shear Strength (ksi)	
19.1	1.34	0.302	0.70	299	215	9.27	38.38	13.28

*Marlett, K., "Hexcel 8552 AS4 Unidirectional Materials Property Data Report", Nov 2011. Available online at: <u>http://www.niar.wichita.edu/coe/ncamphexcel.asp</u>

Analysis	Number of Ply - Chip Failures	Load at Final Fracture	Analysis Time
1	942	339.62	10 H, 40 M
2	765	397.41	8 H, 45 M
3	872	494.21	9 H, 10 M
4	620	397.85	7 H, 10 M

Load Vs Displacement

Analysis	Number of Ply - Chip Failures	Load at Final Fracture	Analysis Time
1	942	339.62	10 H, 40 M
2	765	397.41	8 H, 45 M
3	872	494.21	9 H, 10 M
4	620	397.85	7 H, 10 M

Load Vs Displacement

Intercostal failure Predictions: Hexcel BCs Fracture Criterion: All plies in a single element failed Normalized failure loads

	Number of Ply	Load at Final	
Analysis	Failures	Fracture	Time
1	1079	0.864332	5 H <i>,</i> 40 M
2	3900	0.998955	20 H <i>,</i> 40 M
3	3514	1	18 H <i>,</i> 50 M
4	1555	0.909943	8 H <i>,</i> 35 M
5	1787	0.947572	9 H <i>,</i> 50 M
6	1699	0.934449	9 H, 20 M
7	1621	0.867419	9 H, 5 M
8	792	0.742157	4 H <i>,</i> 45 M
9	2315	0.878562	12 H, 35 M
10	1240	0.800165	7 H, 20 M

Intercostal failure Predictions: Hexcel BCs Fracture Criterion: All plies in a single element failed Normalized failure loads

Load vs Displacement

Normalized Displacement, inches

Intercostal failure Predictions: Hexcel BCs Fracture Criterion: All plies in a single element failed Normalized failure loads

Intercostal failure Predictions: Hexcel BCs

• Fracture criterion based on 90% stiffness reduction is computationally expensive

Analysis	Number of Ply Failures	Load at Final Failure	Time
1	10872	1	49 hrs 30 min
2	8766	0.949042	41 hrs 20 min
3	8641	0.934321	44 hrs, 20 min

Intercostal failure Predictions: Hexcel BCs

• Fracture criterion based on 90% stiffness reduction predicts clearly nonlinear behavior

Number of Ply Failures

Summary

- The Stochastic Laminate Analogy (SLA) has been combined with a simple ply discount scheme to predict:
 - Initial elastic stiffness
 - Damage accumulation
 - Final Fracture
 - of a HexMC intercostal loaded as a cantilevered beam
- •Two boundary conditions were considered
- Results are very promising, however
- A complete stochastic analysis involving dozens/hundreds of analyses is computationally very expensive.
- Additional FE analyses currently being performed

Benefit to Aviation

Results of this study will ultimately help to establish methods to certify DFC aircraft parts by analysis supported by experimental measurements

Thank you!

Questions?

Actenter of Excellence Advanced Materials in Transport Aircraft Structures

JOINT ADVANCED MATERIALS & STRUCTURES CENTER OF EXCELLENCE

Convergence Study - Intercostal

Final mesh (element) size is 0.078 in, following software recommendation

Convergence Study

