Comparison of viscoelastic/viscoplastic models for describing the creep and ratcheting behaviors of adhesives

PI: Dr. Lloyd Smith Postdoc: Dr. Yi Chen

WASHINGTON STATE

JAMS Technical Review Apr. 20, 2023

Federal Aviation Administration

Joint Centers of Excellence for Advanced Materials

Introduction

- Project
 - Durability of Bonded Aerospace Structures
- Principal Investigators & Students
 - Lloyd Smith
 - Yi Chen
- FAA Technical Monitor
 - Ahmet Oztekin
- FAA Sponsors
 - Larry Ilcewicz, Cindy Ashforth
- Industry Partnerships/Other Collaborations
 - Boeing, Will Grace, Kay Blohowiak, Ashley Tracey
- Source of matching contribution for the current award
 - WSU and Boeing

Outline

- Background
- Experiment Introduction
- Model Introduction
- Model Comparison
- Summary

Background

- Adhesive films in bonded joints
 - High shear load
 - · Behave differently from adhesive bulks
 - Edge effect, higher shear near edge
 - Reliable strain measurement method
- Strain response to cyclic loads
 - Ratcheting
 - Time-dependent, Plastic
 - Material damage & fatigue life
- Constitutive model
 - Viscoelasticity, Viscoplasticity
 - Damage

WASHINGTON STATE

Aim

Finite Element Analysis

- Predictive capacity
- Parameter calibration
- Numerical implementation

	ABAQUS	Proposed
Linear Viscoelastic	Time-Domain VE	
Viscoplastic	Power-Law Creep	
	Two-Layer VP	
Viscoelastic-Plastic	Parallel Rheological Framework	
Viscoelastic-Viscoplastic		Nonlinear VE-VP

Joint Centers of Excellence for

Outline

- Background
- Experiment Introduction
- Model Introduction
- Model Comparison
- Summary

Experiment Setup

WASHINGTON STATE

- Toughened adhesive: EA9696 (Henkel)
- 45-degree rectangular stacked rosette strain gage
- Scarf Joint: 10°

JAMS Technical Review - Apr. 20, 2023

Creep & Ratcheting

• Creep input

Joint Centers of Excellence for Advanced

Fully Reversed Cyclic

- Ratcheting in tension was more significant than observed in compression
- More residual strain than observed during tensile cyclic tests
- Modulus degradation

Joint Centers of Excellence for Advanced Materials

WASHINGTON STATE

Outline

- Background
- Experiment Introduction
- Model Introduction
- Model Comparison
- Summary

Model Introduction

	ABAQUS	Proposed
Linear Viscoelastic Time-Domain VE		
Viscoplastic	Power-Law Creep	
	Two-Layer VP	
Viscoelastic-Plastic	Parallel Rheological Framework	
Viscoelastic-Viscoplastic		Nonlinear VE-VP

Linear Viscoelastic

Time-Domain Viscoelasticity (L-VE)

$$\tau(t) = G_0 \Upsilon(t) + G_0 \int_0^t g_R(t-s) \dot{\gamma}(s) ds$$

$$g_R(t) = 1 - \sum_{i=1}^N \bar{g}_i \left(1 - \exp\left(\frac{-t}{\tau_i^G}\right) \right)$$

- where $\gamma(t) \& \tau(t)$ time-varying shear strain & shear stress
 - G₀- instantaneous shear modulus
 - g_R dimensionless shear modulus
 - N, τ_i^G , \bar{g}_i material constants

WASHINGTON STATE

Viscoplastic

Power-Law Creep (CRP)

 $\dot{\varepsilon}_e^v = \{A\sigma_e^n[(m+1)\varepsilon_e^v]^m\}^{1/(m+1)}$

where $\dot{\varepsilon}_e^v \& \varepsilon_e^v$ - effective viscous strain & strain rate

 σ_e - equivalent deviatoric stress

A, m, n- material constants. If m=0 & n=1, a linear dashpot

Viscoplastic

> Two-Layer Viscoplastic (TL-VP)

$$\varepsilon = \varepsilon^{ep} + \varepsilon^{ve} = \varepsilon^e + (1 - R)\varepsilon^p + R\varepsilon^v$$

Elastic: $\varepsilon^e = R\varepsilon^e_v + (1 - R)\varepsilon^e_p$
Plastic: $f = \sqrt{\frac{3}{2}(S_{ij} - \alpha_{ij})(S_{ij} - \alpha_{ij})} - \sigma_y$
 $\dot{\alpha}_{ij} = \frac{2}{3}C\dot{\varepsilon}^p_{ij} - \kappa\alpha_{ij}\dot{\varepsilon}^p_e$
Viscous: $\dot{\varepsilon}^v_e = \{A\sigma^n_e[(m+1)\varepsilon^v_e]^m\}^{1/(m+1)}$

WASHINGTON STATE

Viscoelastic-Plastic

Parallel Rheological Framework (PRF)

Elastic: $W_T = \sum_{i=0}^N s_i W(C_i^e)$ $\sum_{i=0}^{N} s_i = 1$ Plastic: $f = \sqrt{\frac{3}{2}(S_{ij} - \alpha_{ij})(S_{ij} - \alpha_{ij}) - \sigma_y}$ $\dot{\alpha}_{ij} = \frac{2}{3}C\dot{\varepsilon}_{ij}^p - \kappa\alpha_{ij}\dot{\varepsilon}_e^p$ Viscous: $D^{cr} = \frac{3}{2a} \dot{\varepsilon}_e^v \bar{\tau}$ $\dot{\varepsilon}_{e}^{v} = \{A\sigma_{e}^{n}[(m+1)\varepsilon_{e}^{v}]^{m}\}^{1/(m+1)}$

Viscoelastic-Viscoplastic

- > Nonlinear Viscoelastic-Viscoplastic (VE-VP)
- Total Strain

$$\varepsilon_{ij} = \varepsilon_{ij}^{ve} + \varepsilon_{ij}^{vp}$$

Viscoelastic Model (Schapery)

$$\begin{aligned} \varepsilon^{ve}(t) &= \frac{1}{1 - D^{ve}} g_0 D_0 \sigma^t + g_1 \int_0^t \Delta D^{(\psi^t - \psi^\tau)} \frac{d(g_2 \sigma^\tau)}{d\tau} d\tau \\ \Delta D^{\psi^t} &= \sum_{n=1}^5 D_n \left(1 - \exp(-\lambda_n \psi^t) \right) \end{aligned}$$

Effect of hydrostatic stress

$$g_0 = \beta_1^j (\sigma_e)^{\beta_2^j} + \beta_3^j$$
, j= +(tension) or - (compression)

Reversed cyclic response

$$D^{ve} = \sum_{i=0}^{N} \zeta_i t^i$$

Viscoelastic-Viscoplastic

- > Nonlinear Viscoelastic-Viscoplastic (VE-VP)
- Viscoplastic Model (Perzyna)

$$\dot{\varepsilon}^{vp} = \dot{\lambda}m = \eta \langle \phi(f) \rangle \frac{\partial f}{\partial \sigma_{ij}} = \eta \langle \left(\frac{f}{\sigma_y^0}\right)^n \rangle \frac{\partial f}{\partial \sigma_{ij}}$$

Yield function

Drucker-Prager Yield+ Nonlinear Kinematic Hardening

$$f = AI_1 + \sqrt{\frac{1}{2} \left(S_{ij} - \alpha_{ij} \right) \left(S_{ij} - \alpha_{ij} \right)} - (1 - \mathbf{D}^{\mathbf{vp}})B$$

Reversed cyclic response

 $D^{\nu p} = 1/t_D$

Numerical Implementation

- First assume viscoelasticity only.
- Viscoplasticity is activated when load is beyond yield surface.
- Damage factors are activated under reversed cyclic loading.

WASHINGTON STATE

Finite Element Model

Mesh & Boundary Conditions (Plane Strain)

Model Calibration

Model	Component	Parameters	Test	Stress level	Loading/Recover time
L-VE	Prony Series	$ar{g}_i$, $ au^G_i$	Creep	20% USS	10,000 s/ 80,000 s
CRP	Viscous	A, m, n	Creep	20% & 50% USS	10,000 s/80,000 s
TL-VP	Plastic	σ _у , С, к	monotonic		
	Elastic & Viscous	R, A, m, n	Creep	20% & 50% USS	10,000 s/80,000 s
PRF	Hyperelastic	C ₁₀ , D ₁	monotonic		
	Plastic	σ _у , С, к	monotonic		
	Viscous	$\Upsilon_k, A_k, m_k, n_k$	Creep	20% & 50% USS	10,000 s/80,000 s
	Prony series	$D_{i},\lambda_{i},J_{0},B_{0}$	Creep	20% USS	10,000 s/80,000 s
	Nonlinear VE	g ₁ , g ₂ , a	Creep	50% USS	10,000 s/80,000 s
		9 ₀	monotonic		Varying rates
VE-VP	Plastic	Α, Β, Ϲ, κ	monotonic	Tension & compression	Varying rates
	Viscoplastic	η, Ν	Creep	50% USS	
			Tensile cyclic	50% USS	Varying load durations
	Damage	D ^{ve} , t _D	Reversed cyclic	50% USS	0.5 Hz

Lloyd Smith/Yi Chen- WSU

JAMS Technical Review – Apr. 20, 2023

Joint Centers of Excellence for Advanced Materials

VE-VP Effect of Hydrostatic Stress

> Nonlinear Viscoelastic-Viscoplastic (VE-VP)

$$\varepsilon^{ve}(t) = \frac{1}{1 - D^{ve}} g_0 D_0 \sigma^t + g_1 \int_0^t \Delta D^{(\psi^t - \psi^\tau)} \frac{d(g_2 \sigma^\tau)}{d\tau} d\tau$$

Effect of hydrostatic stress

$$g_0 = \beta_1^j (\sigma_e)^{\beta_2^j} + \beta_3^j$$

where j = +(tension) or - (compression)

WASHINGTON STATE

- The effect of hydrostatic stress on VE response can be different int tension and compression.
- ↔ The effect can be reflected in the elastic response (g_0) .

VE-VP Modulus Degradation

> Nonlinear Viscoelastic-Viscoplastic (VE-VP) $\varepsilon^{ve}(t) = \frac{1}{1 - D^{ve}} g_0 D_0 \sigma^t + g_1 \int_0^t \Delta D^{(\psi^t - \psi^\tau)} \frac{d(g_2 \sigma^\tau)}{d\tau} d\tau$

Reversed cyclic response

Joint Centers of Excellence for

Outline

- Background
- Experiment Introduction
- Model Introduction
- Model Comparison
- Summary

Scarf Joint- Ratcheting with R=0.1, 50% USS

Lloyd Smith/Yi Chen- WSU

JAMS Technical Review - Apr. 20, 2023

Joint Centers of Excellence for Advanced Materials

Scarf Joint- Ratcheting with R=-1, 50% USS

•0.5 Hz

Scarf Joint- Ratcheting with R=-1, 50% USS

•PRF Model

•VE-VP Model

Scarf Joint- Ratcheting with R=-1, 50% USS

Lloyd Smith/Yi Chen- WSU

28

WASHINGTON STATE

1000

Joint Centers of Excellence for Advanced

INIVERSITY

Recover

Extensive permanent strain comparable to 0.5 Hz

Temperature effect?

Outline

- Background
- Experiment Introduction
- Model Introduction
- Model Comparison
- Summary

Summary & Future Work

- Parameter calibration is highly dependent on model complexity.
- Creep-recovery behavior is well described by the models involving both nonlinear viscoelasticity and plasticity/viscoplasticity.
- Nonlinear viscoelastic-plastic/viscoplastic models (PRF & VE-VP)could describe response to tensile cyclic load.
 - Viscoplasticity is recommended for plastic prediction under varying frequencies and load durations.
- VE-VP model showed good agreement with reversed cyclic test.
 - Pressure-dependent yield criterion results in accumulative plastic deformation.
 - Hydrostatic stress affects viscoelastic response in tension and compression.
 - Damage factors are required for extensive permanent deformation.
- Future Work
 - Investigate reversed cyclic response at higher frequencies and longer load durations (ratcheting and permanent deformation).
 - Modify and validate constitutive model.

THANK YOU

Questions?

Contacts:

- Lloyd V. Smith (Ivsmith@wsu.edu)
- Yi Chen (yi.chen6@wsu.edu)

Lloyd Smith/Yi Chen- WSU