

Composite Thermal Damage Measurement with Handheld FTIR

April 9, 2013 Brian D. Flinn, Ashley Tracey, and Tucker Howie University of Washington

Composite Thermal Damage Measurement with Handheld FTIR

- Motivation and Key Issues
 - Damage detection in composites requires different techniques than metals
 - Incipient thermal damage occurs below traditional NDE detection limits
- Objective
 - Determine if handheld FTIR can detect thermal damage and guide repair
- Approach
 - Characterize panels with controlled thermal damage and perform repair based on FTIR inspection

FAA Sponsored Project Information

- Principal Investigators & Researchers
 - Brian Flinn (PI)
 - Ashley Tracey (PhD student, UW-MSE)
 - Tucker Howie (PhD student, UW-MSE
- FAA Technical Monitor
 - David Galella (year 3)
 - Paul Swindell (year 1 & 2)
- Industry Participation
 - The Boeing Company (Paul Shelley, Paul Vahey)
 - Sandia National Lab (Dennis Roach)
 - Agilent (formerly A2 Technologies)

Background

Continuation of existing project (year 3 of 3)

- ✓ Years 1 and 2 (A2 Technologies, Boeing and U of DE)
 - Characterization of homogeneous thermal damage
 - Ultrasound
 - Short beam shear (SBS)
 - Microscopy
 - Handheld FTIR (ExoScan)
 - Calibration curve for FTIR detection of thermal damage (SBS data)
 - Mapped surface of localized thermal damage
- Year 3 (UW and Boeing)
 - 3-D characterization of localized thermal damage
 - Include contact angle and fluorescence spectroscopy
 - FTIR guided repair of thermal damage
 - Test repair

Thermal Damage vs. Detection Method

- SBS, ultrasound, and microscopic analysis of composites with thermal damage
 - Properties degrade before detection possible → need method to detect incipient thermal damage (ITD)

Short Beam Shear Strength Retention vs. Temp./Time – Epoxy 1

Experimental Overview

Investigate ITD of composites with various inspection techniques

- Characterize composite samples and panels with controlled thermal damage using various methods:
 - Contact angle (CA)
 - Fluorescence
 - FTIR
- Can results be related to SBS values and detect thermal damage?

Materials and Process

- Toray 3900/T800 composites with various levels of thermal damage
 - Provided from Year 1 & 2 research
 - SBS samples thermally exposed in air
 - Panels with localized thermal damage in vacuum
- Characterize toolside (resin rich) and sanded (resin poor) surfaces
 - Sand surfaces with random orbital sander using 120 grit $3M AI_2O_3$ sanding pads
- Measurement techniques: CA, fluorescence, FTIR

Materials and Process – Contact Angle

- Measure CAs of 1 µL sessile drops from side view
 5 drops (10 CAs) per fluid
- Fluids: DI water, diiodomethane (DIM)

Camera

• Measure at 0 degrees with respect to fiber orientation

Side-view of drop as viewed from goniometer camera

Fiber Direction

Materials and Process – Fluorescence

Sample

- Sample absorbs excitation light and emits light at longer wavelength than the absorbed light (fluorescence).
- Measure changes in intensity and wavelength at max intensity (λ_{MAX}) of fluorescence emission

Materials and Process – FTIR

- Mid-IR data region: 4000 cm⁻¹ to 650 cm⁻¹
- Diffuse reflectance sampling interface
- Data collection: 120 coadded scans with 8 cm⁻¹ resolution for background and specimen

An infrared beam path for diffuse reflectance

Year 3 Results: CA Measurements on SBS Samples

- CA on sanded surface lower than toolside surface
- No significant correlation between SBS values and CA measurement – 415, 445, 475, 505 °F

Year 3 Results: Fluorescence of SBS Samples

- λ_{MAX} red-shifts and intensity decreases with increasing exposure
 - λ_{MAX} does not monotonically relate to SBS retention
- No fluorescence measurable on sanded surface

Year 3 Results: FTIR Verification

• FTIR measurements on resin rich surface of SBS consistent with previous results

- Oxidation peaks increase with damage

Year 3 Results: FTIR on Sanded Surfaces

- Damage is not as clear as on toolside surface
 - Oxidation removed by sanding
 - Need multivariate analysis to determine differences in spectra and correlate to SBS data

Year 3 Results: FTIR Orientation

- Signal varies based on sample orientation
 - FTIR needs to be rotated during repair to match fiber orientation

Year 1 & 2 Results: Localized Damage

- Hot spots created
- 3 temperatures
 440, 465, 490 °F
- 2 panels each

Year 1 & 2 Results: Map of Localized Damage

- FTIR Map of Surface Damage
 - Blue is low damage
 - Brown is high damage

Low (440 °F for 1 hr) Medium (465 °F for 1 hr) High (490 °F for 1 hr)

Year 3 Results: Panel Mapping

- Preliminary measurements performed
- FTIR spectra different than resin rich surface of SBS samples
 - Panels heated in vacuum \rightarrow less oxidation
 - Changes in oxidation peaks at 1720 cm⁻¹ still observed
 - Oxidation peak decreases as distance from center increases

Summary

- Preliminary results generated
 - No clear correlation of ITD with contact angle
 - No clear correlation of ITD with fluorescence
 - Oxidation detected on resin rich surfaces
 - Resin poor surfaces require advanced analysis techniques
- Ready to proceed to next stage
 - Multivariate analysis of resin poor surfaces
 - 3-D panel mapping

Future Work

- Apply multivariate analysis
- Surface map thermal damage (all panels)
- 1st set of panels- mechanical testing (SBS, Tg)
- 2nd set of panels scarf repair guided by FTIR
 - Map damage ply by ply during scarfing FTIR
 - Correlate FTIR measurements to mechanical tests to guide repair
 - Bonded repair followed by NDE
 - Mechanical testing of repaired panel

Looking Forward

- Benefit to Aviation
 - Improved damage detection
 - Greater confidence in repairs
- Future needs
 - Application to other composite systems
 - Other applications of handheld FTIR
 - Chemical damage
 - Surface prep for bonding

End of Presentation.

Thank you.

Active of Excellence Advanced Materials in Transport Aircraft Structures

JOINT ADVANCED MATERIALS & STRUCTURES CENTER OF EXCELLENCE