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Composite Thermal Damage Measurement 
with Handheld FTIR 

• Motivation and Key Issues  
– Damage detection in composites requires different  

techniques than metals 
– Incipient thermal damage occurs below traditional 

NDE detection limits 
• Objective 

– Determine if handheld FTIR can detect thermal 
damage and guide repair 

• Approach 
–  Characterize panels with controlled thermal damage 

and perform repair based on FTIR inspection 
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FAA Sponsored Project Information 

• Principal Investigators & Researchers 
– Brian Flinn (PI) 
– Ashley Tracey (PhD student, UW-MSE) 
– Tucker Howie (PhD student, UW-MSE 

• FAA Technical Monitor 
– David Galella (year 3) 
– Paul Swindell (year 1 & 2) 

• Industry Participation 
– The Boeing Company (Paul Shelley, Paul Vahey) 
– Sandia National Lab (Dennis Roach) 
– Agilent (formerly A2 Technologies) 
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Background 
Continuation of existing project (year 3 of 3) 
 Years 1 and 2 (A2 Technologies, Boeing and U of DE) 

 Characterization of homogeneous thermal damage 
• Ultrasound 
• Short beam shear (SBS) 
• Microscopy 
• Handheld FTIR (ExoScan) 

 Calibration curve for FTIR detection of thermal damage (SBS data) 
 Mapped surface of localized thermal damage 

 Year 3 (UW and Boeing) 
 3-D characterization of localized thermal damage 
 Include contact angle and fluorescence spectroscopy 
 FTIR guided repair of thermal damage 
 Test repair 
 



Thermal Damage vs. Detection Method 
• SBS, ultrasound, and microscopic analysis of 

composites with thermal damage 
– Properties degrade before detection possible  need 

method to detect incipient thermal damage (ITD) 
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Experimental Overview 

• Characterize composite samples and panels 
with controlled thermal damage using various 
methods: 
– Contact angle (CA) 
– Fluorescence 
– FTIR 

• Can results be related to SBS values and detect 
thermal damage? 

Investigate ITD of composites with various 
inspection techniques 



Materials and Process 

• Toray 3900/T800 composites with various levels of 
thermal damage 
– Provided from Year 1 & 2 research 
– SBS samples thermally exposed in air 
– Panels with localized thermal damage in vacuum 

• Characterize toolside (resin rich) and sanded 
(resin poor) surfaces 
– Sand surfaces with random orbital sander using 120 grit 

3M Al2O3 sanding pads 
• Measurement techniques: CA, fluorescence, FTIR 
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Materials and Process – Contact Angle 

• Measure CAs of 1 μL sessile 
drops from side view 
– 5 drops (10 CAs) per fluid 

• Fluids: DI water, 
diiodomethane (DIM) 

• Measure at 0 degrees with 
respect to fiber orientation 
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Materials and Process – Fluorescence 

• Sample absorbs excitation light and emits light at longer 
wavelength than the absorbed light (fluorescence). 

• Measure changes in intensity and wavelength at max 
intensity (λMAX) of fluorescence emission 
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Materials and Process – FTIR 

• Mid-IR data region: 4000 
cm-1 to 650 cm-1  

• Diffuse reflectance 
sampling interface 

• Data collection: 120 
coadded scans with 8 cm-1 
resolution for background 
and specimen 
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Year 3 Results: CA Measurements on SBS 
Samples 

• CA on sanded surface lower than toolside surface 
• No significant correlation between SBS values and 

CA measurement – 415, 445, 475, 505 °F 
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Year 3 Results: Fluorescence of SBS Samples 
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• λMAX red-shifts and intensity decreases with 
increasing exposure 
– λMAX does not monotonically relate to SBS retention 

• No fluorescence measurable on sanded surface 
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Year 3 Results: FTIR Verification 
• FTIR measurements on resin rich surface of 

SBS consistent with previous results 
– Oxidation peaks increase with damage 
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Year 3 Results: FTIR on Sanded Surfaces 

• Damage is not as clear as on toolside surface 
– Oxidation removed by sanding 
Need multivariate analysis to determine differences in 

spectra and correlate to SBS data 
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Year 3 Results: FTIR Orientation 
• Signal varies based on sample orientation 

– FTIR needs to be rotated during repair to match fiber 
orientation 

15 

0 

0.05 

0.1 

0.15 

0.2 

0.25 

0.3 

500 1000 1500 2000 2500 3000 3500 4000 

A
bs

or
ba

nc
e 

Wavenumber (cm-1) 

0 º 

90 º 

0 º orientation 

90 º orientation 

Fi
be

r 
D

ire
ct

io
n 

Fiber 
Direction 

Top down schematic of scarfed 
surface showing how fiber 

orientation changes at each layer 



Year 1 & 2 Results: Localized Damage 

• Hot spots created 
• 3 temperatures  

– 440, 465, 490 °F 
• 2 panels each 
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Year 1 & 2 Results: Map of Localized Damage 

• FTIR Map of Surface Damage 
– Blue is low damage 
– Brown is high damage 
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Year 3 Results: Panel Mapping 
• Preliminary measurements performed 
• FTIR spectra different than resin rich surface of SBS samples 

– Panels heated in vacuum → less oxidation 
– Changes in oxidation peaks at 1720 cm-1 still observed 

 Oxidation peak decreases as distance from center increases 
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Summary 

• Preliminary results generated 
– No clear correlation of ITD with contact angle 
– No clear correlation of ITD with fluorescence 
– Oxidation detected on resin rich surfaces 
– Resin poor surfaces require advanced analysis 

techniques 
• Ready to proceed to next stage 

– Multivariate analysis of resin poor surfaces 
– 3-D panel mapping 
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Future Work 

• Apply multivariate analysis 
• Surface map thermal damage (all panels) 
• 1st set of panels- mechanical testing (SBS, Tg) 
• 2nd set of panels – scarf repair guided by FTIR 

– Map damage ply by ply during scarfing FTIR 
– Correlate FTIR measurements to mechanical tests to 

guide repair 
– Bonded repair followed by NDE 
– Mechanical testing of repaired panel 
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Looking Forward 

• Benefit to Aviation 
– Improved damage detection 
– Greater confidence in repairs 

• Future needs 
– Application to other composite systems 
– Other applications of handheld FTIR 

 Chemical damage 
 Surface prep for bonding 



End of Presentation. 
 

Thank you. 
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