

JOINT ADVANCED MATERIALS & STRUCTURES CENTER OF EXCELLENCE

Correlation of ULTEM 9085 Physical, Chemical, and Mechanical Properties

Seth O'Brien, John Parmigiani Oregon State University

Motivation, Objective, and Approach

- Motivation and Key Issues
 - Obtain a better understanding of how the physical and chemical properities of AM ULTEM 9085 effect the mechanical performance
- Objective
 - Identify abnormal performance of AM ULTEM 9085 samples and develop theories for mechanical testing
- Approach
 - Review intial statistical analysis and further explore the data set
 - Development of theories for abnormal ULTEM 9085 performance
 - Print and test AM ULTEM 9085 coupons to explore theories

Correlation of ULTEM 9085 Physical, Chemical, and Mechanical Properties

- Principal Investigator & Researchers
 - John Parmigiani (PI); OSU faculty
 - Seth O'Brien; OSU grad student
- FAA Technical Monitor: Danielle Stephens
- FAA Sponsor: Cindy Ashforth
- Other FAA Personnel Involved: Larry Ilcewicz
- NIAR/NCAMP Personnel Involved
 - Royal Lovingfoss
 - Elizabeth Clarkson
- Industry Participation
 - Charles Evans; Stratasys

Today's Topic

ULTEM 9085 Qualification and FDM Background Project Steps Literature Review **Abnormal Performance in Qualification** Further Analysis of Qualification **Abnormal Performance Theories** Intial Testing Plan

AM ULTEM 9085

- ULTEM 9085
 - Polyetherimide and polycarbonate amorphous thermoplastic
 - Strength-to-weight ratio (480.5lb-in/g)
 - ABS 379.3 lb-in/g
 - PLA 378.3 lb-in/g
 - Nylon 610.9 lb-in/g
 - Flame, smoke, and toxicity (FST) characteristics
 - Currently used in aerospace and transportation sectors

ULTEM 9085 Qualification Background

- Planned and tested between 2016-2019 for the first PBAM qualification
- Fabricated by RP+M
- Tested at NIAR
- Analyzed by NCAMP statistician

WICHITA STATE UNIVERSITY

AM FDM Background

Project Steps

- Identify abnormalities between orientations from intial analysis
- Analyze other sections of data
- Develop theories for abnormalities
- Test printed coupons to support theories

Literature Review

- X orientation has the lowest density of all orientations
 Attributed to the contour-to-raster ratio [3]
- Tensile strength: Y>X>Z45>Z
 - Layers parallel to load direction = higher strength [4]
- Inter/intra layer necking effects mechanical properities
 - Relates to layer temperature at time of deposition [5]

Time 0

[2]

Abnormal Performance in Qualification

Test	Test Condition	Results	Observation
Dogbone Tension, 0.2% Offset Yield Strength	CTD	X, Z, Z45 combined	Not expected, X>Z,Z45
	ETW	X, Z, Z45 combined	Not expected, X>Z,Z45
	RTD	X, Z combined	Not expected, X>Z
Filled-Hole Tension, Strength	RTD	X, Z combined	Not expected, X>Z

Yield Strength Literature Comparison

Source	Yield S	Replicates per		
	Y	X	Z	Orientation
NCAMP (RTD)	6.56	5.54	5.54	24
[4]	7.94	6.81	4.64	5
[5]	5.30	4.32	4.10	4

Other two studies showed that X>Z for yield strength

[4] Zaldivar, R. J., Witkin, D. B., McLouth, T., Patel, D. N., Schmitt, K., & Nokes, J. P. (2017). Influence of processing and orientation print effects on the mechanical and thermal behavior of 3D-Printed ULTEM® 9085 Material. Additive Manufacturing, 13, 71–80. https://doi.org/10.1016/J.ADDMA.2016.11.007

[5] Shelton, T. E., Willburn, Z. A., Hartsfield, C. R., Cobb, G. R., Cerri, J. T., & Kemnitz, R. A. (2020). Effects of thermal process parameters on mechanical interlayer strength for additively manufactured Ultem 9085. Polymer Testing, 81. <u>https://doi.org/10.1016/j.polymertesting.2019.106255</u>

Further Analysis-Moisture Loss

Moisture Loss by Specimen Orientation

X had higher moisture loss for all tests

■ X ■ Y ■ Z ■ Z45

Further Analysis-Specimen Density

- Lower density = higher porosity
- With print orientation shown, interesting that X, Y, and Z would be significantly different

X Orientation Theory

A combination of

- higher void percentage
- less fusion between intra-inter layers due to area of layers

leads lower performance of X orientation

Intial Testing Plan

Abnormality	Test/Analysis	Orientation	Condition	Samples per Orientation	Total
Difference in cube densities	Relative Density	X, Y, Z	RTD	5	15
Retesting for yield and ultimate strength	Dogbone Tension (D638)	X, Y, Z	RTD	5	15
Coalances of layers and void percentage	Microstructure/ Macrostructure	X, Y, Z	N/A	5 50% printed	15
X orientation angles leading to differing strengths	Dogbone Tension (D638)	X0, X45, X90	RTD	5	15
Coalances of layers and void percentage	Microstructure/ Macrostructure	X0, X45, X90	N/A	5 50% printed	15

- One sample for each test printed at one of the 5 locations in printer
 - Reduce thermal gradient effect on samples
 - Consistent time between layer deposition

Questions and comments are encouraged!

References

[1] Gebisa, A. W., & Lemu, H. G. (2019). Influence of 3D printing FDM process parameters on tensile property of ultem 9085. Procedia Manufacturing, 30, 331–338. <u>https://doi.org/10.1016/j.promfg.2019.02.047</u>

[2] Byberg, K. I., Gebisa, A. W., & Lemu, H. G. (2018). Mechanical properties of ultem 9085 material processed by fused deposition modeling. *Polymer Testing*, *72*, 335–347. <u>https://doi.org/10.1016/j.polymertesting.2018.10.040</u>

[3] Padovano, E., Galfione, M., Concialdi, P., Lucco, G., & Badini, C. (2020). Mechanical and thermal behavior of ultem® 9085 fabricated by fused-deposition modeling. Applied Sciences (Switzerland), 10(9). <u>https://doi.org/10.3390/app10093170</u>

[4] Zaldivar, R. J., Witkin, D. B., McLouth, T., Patel, D. N., Schmitt, K., & Nokes, J. P. (2017). Influence of processing and orientation print effects on the mechanical and thermal behavior of 3D-Printed ULTEM® 9085 Material. Additive Manufacturing, 13, 71–80. https://doi.org/10.1016/J.ADDMA.2016.11.007

[5] Shelton, T. E., Willburn, Z. A., Hartsfield, C. R., Cobb, G. R., Cerri, J. T., & Kemnitz, R. A. (2020). Effects of thermal process parameters on mechanical interlayer strength for additively manufactured Ultem 9085. Polymer Testing, 81. https://doi.org/10.1016/j.polymertesting.2019.106255

