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Crashworthiness of Composites - Certification by Analysis 

• Motivation and Key Issues  
– The introduction of composite airframes warrants an assessment to evaluate that their 

crashworthiness dynamic structural response provides an equivalent or improved level 

of safety compared to conventional metallic structures. This assessment includes the 

evaluation of the survivable volume, retention of items of mass, deceleration loads 

experienced by the occupants, and occupant emergency egress paths.  

• Objective 
– In order to design, evaluate and optimize the crashworthiness behavior of composite 

structures it is necessary to develop an evaluation methodology (experimental and 

numerical) and predictable computational tools.  

• Approach 
– Building Block Methodology Development 
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Aerospace Structural Crashworthiness 

• Crashworthiness performance of 

composite structures to be equivalent or 

better than traditional metallic structures 

• Crashworthiness design requirements: 

– Maintain survivable volume 

– Maintain deceleration loads to occupants 

– Retention items of mass 

– Maintain egress paths 

 

• Currently there are two approaches that 

can be applied to analyze this special 

condition: 

– Method I: Large Test Article Approach 

 Experimental: 

– Large Test Articles (Barrel Sections) 

– Component Level Testing of Energy 

Absorbing Devices 

 Simulation follows testing – Numerical 

models are “tuned” to match large test 

article/EA sub-assemblies results. 

Computational models are only predictable 

for the specific configurations that were 

tested during the experimental phase. For 

example if there are changes to the loading 

conditions (i.e. impact location, velocity, 

..etc.) and/or to the geometry, the model 

may or may not predict the 

crashworthiness behavior of the structure. 

– Method II: Building Block Approach  

 



Technical Approach – Aerospace Crashworthiness CBA 
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Technical Approach – Airframe Crashworthiness 
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Technical Approach – Airframe Crashworthiness 
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Phase III – Aerospace Crashworthiness Structural 

Requirements 

The following working packages were defined to develop 

NIAR Building Block Approach Methodology: 

 
• WP 1. Aerospace Crashworthiness Structural Requirements Scope:  

– Develop Detailed FE models of metallic narrow-body transport aircraft to 
study the crashworthiness behavior of typical metallic aircraft structures 

during survivable impacts on hard surfaces, soft soil, and water.  

– Study dynamic response and energy absorbing capabilities of the 

individual structural members (i.e. stanchions, frames, stringers, skin) 

– Effect on the structural response of various cargo (empty to full cargo 
configurations) and impact surfaces (rigid, soil, & water) configurations. 

– Results defined range of typical energy absorbing requirements, 

loading, and strain rates for the various airframe structural components.  

– Quantify Boundary Condition effects on the crashworthiness response 

from full aircraft models to half barrel type vertical drop test 
configurations. 

 

• WP 2. Coupon Level R&D:  

– Designers require dynamic material properties that take into account the 

material response at strain rates higher than quasi-static. 

– Dynamic material properties are generated from coupon level testing.  

Not from component level testing. 

– Coupon-level tests were conducted over a range of strain rates for which 
testing techniques have not yet been standardized.  

– Round Robin Exercise to develop High Rate Tension Testing. 
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Phase III – Aerospace Crashworthiness Structural 

Requirements 

Working packages for NIAR Building Block 

Approach Methodology: 

 

• WP 3. Component Level R&D: 

– Used to validate the coupon level material data generated 

in WP2 

– Study the strain rate sensitivity of these composite 

material systems at the component level.  

– Pin-Bearing, C-Section Beams, and Sine Wave Beams. 

– Results obtained in WP0 defined component level testing 

protocols (loading rates, strain rates, energy absorbing 

requirements and component level test configurations). 

 

 

• WP 4. Joints and Connections R&D:  

– Understand limitations of different modelling techniques 

that can be used to join the various airframe structural 

members. 

– Evaluate single and multiple point load transfer 

mechanisms between airframe structural members. 

– Characterize the effect of loading rates.  

– Evaluate various modeling techniques and validate them 

with test data.  
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Experimental Testing – Bolt Preload 

Clearance Fit Interference Fit 

Load Cell Verification and Signal Conditioner Calibtarion 

• Experimental Testing – Bolt Preload 
 
 Test Procedure 

 Load Cell Verification and Signal Conditioner Calibration 
 Mounting of Test Article on Vise 
 Bolt Installation using Torque Wrench 
 Record Torque at Shear off and Voltage on Voltmeter 

 

 Test Matrix 
 3 Specimen (5 Holes on Each) for Interference Fit 
 3 Specimen (5 Holes on Each) for Clearance Fit 

 
 
 
 

y = 0.000927x + 0.168241 

0

2

4

6

8

10

12

0 5000 10000 15000

V
o

lt
a
g

e
 -

 V
 

Applied Load - N 

Linear Average
Load Cycle 1
Load Cycle 2
Load Cycle 3

y = 164.39x + 3139.3 

0

1000

2000

3000

4000

5000

2.40 2.60 2.80 3.00 3.20

C
la

m
p
 F

o
rc

e 
- 

N
 

Torque - N*m 

Clearance Fit Hole
Linear (Clearance Fit Hole)

y = 1230.4x - 902.69 

0

1000

2000

3000

4000

5000

2.40 2.60 2.80 3.00 3.20

C
la

m
p
 F

o
rc

e 
- 

N
 

Torque - N*m 

Interference Fit Hole
Linear (Interference Fit Hole)



Experimental Testing – Material Characterization 

Youngs 

Modulus 
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Gage) 
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Mpa Mpa Mpa Mpa Mpa Mm/mm 

FJM_QS_1 69019.27 329.76 61347.23 334.00 464.17 0.2122 
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FJM_QS_3 72866.73 331.97 55837.36 333.57 464.87 0.2066 

FJM_QS_4 69010.77 331.29 50307.26 335.98 464.42 0.2255 
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• Experimental Testing – Material Characterization 
 
 Test Procedure 

 Method – In-plane Tension 
 Rate – Quasi-static (0.0008 in/s) 
 Mount Specimen, Set-up Laser Extensometer, Load 

until  failure 



Testing – Load Transfer Tests – Setup 

• Experimental Testing – Load Transfer Tests 
 
 Test Article 

 One-Half Dog Bone Specimen 
 Hi-Lok Fastener - HL18 Pin/ HL70 Nut 
 

 Test Apparatus 
 MTS High Stroke Servo-Hydraulic Machine 
 Slack Inducer System 
 Anti-Buckling Fixture (ABF) 
 Arm to constrain ABF 

 

 Data Acquisition 
 11 Kip Strain Gage Based LoadCell 
 3 Axial Strain Gages – CAE-06-250UN-350 
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Testing – Load Transfer Tests - Results 
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FE Model – Solid and Spot-weld Beam Models  



FE Model – Validation of Modeling Methods 
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Solid vs. Beam Spot Weld 
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Single Point Load Transfer – Energy Balance 

• Solid vs. Simplified 



Section Level – Drop Test Model Update 
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Model Updates: 

• Coupon Level R&D: 

Updated Material 

Models for Structural 

Members 

• Joint Level R&D: 

Updated Joint Types, 

Contacts, Friction and 

Material Type 

Definitions 

• Updated vATD 

Occupant and Seat 

Models 



Section Level – Kinematics and Stress Distribution 
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Section Level –Stress Distribution (MPa) 

• Time Max. Compression – 117 ms 

• Yield Stress 310 Mpa 



Effective Plastic Strain – Post Damage Eval 

21 



30 ft/s -  Full Cargo Symmetric Configuration 
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Cargo Configuration – Energy Distribution 
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30 ft/s -  no Cargo Symmetric Configuration 
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30 ft/s -  no Cargo Configuration 
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Modeling Fastener Joints – Observations 

• Solid Model 

– Shows good correlation to Test Data 

• Simplified Techniques  

– Rigid Body Element (RBE) – Load Transfer shows good correlation to Solid Model 

– Mesh Independent Spotweld Beam – Some configurations show good correlation of Load 

transfer to Solid Model while others deviate. The location of the beam model with respect to 

element is difficult to control in large models where parts are meshed independently 

– Mesh Independent Spotweld Beam with Patch - Some configurations show good correlation 

of Load transfer to Solid Model while others deviate 

– Note that although the load transfer may agree with the solid model, for some of the 

simplified techniques the absence of fastener hole means that Stress Concentrations around 

hole are not present. This alters the stress distribution and profile of the joint and will also 

affect the failure mode 

– It was also noted that Simplified techniques failed at different locations (not necessarily in the 

vicinity of the hole) and at a later time (since no hole allows more load to be transferred) 

• Preload 

– Solid Model – Shows 2.5% Drop in load transfer with no preload 

– Beam Model – Shows no drop in load transfer 
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JAMS 2014 Technical Review  

March 25-26, 2014 

Accident Reconstruction 737 

Flight TK 1951 

Full Scale Structural Evaluation 

JAMS 2015 Technical Review 

April 1, 2015 



Accident Reconstruction 737 Flight TK 

1951 
• Full Scale Structural Evaluation 

– Accident Reconstruction 

 Validate the full aircraft model response with 

the data available from the Turkish Airlines 

Flight that crashed during landing to 

Amsterdam Schiphol Airport, Netherlands, 

on February 25th, 2009 

– Structural Evaluation  

 Define a new CAD Model of Narrow Body -

800 configuration to represent as close as 

possible the actual geometry 

 Pending Work 

– Interface between the engine 

– Wing structure 

– Exit doors structure 

– Supporting structure for the landing gear 

system 

 Soil Model Validation and Evaluation - 

complete 

– V&V Accident Dataset: 
 Pending meeting with FAA, EASA, and 

Dutch Authorities after legal issues are clear 
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CAD Model Definition 
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Wing- Trailing Edge Fittings 



Horizontal Tail- Front Spar w/ Ribs 
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Vertical Tail- Rudder Hinge Fitting 



SEC 43- Door Surround Structure 
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SEC 47- Floor Structure 
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Meshing Process Status 



High End Visualization Accident Data Methods 
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Ongoing and Future Work 

• Coupon Level WP 2.1: Complete. Report under 

FAA Review 

• Round Robin WP2.2: Complete for Tension, data 

has been presented (ASC Paper 2014) 

– Future funding required for compression and shear 

– ASTM or SAE Standard should be developed 

– Report Ongoing – October 1st  

• Joint WP4: Pending High Strain Rate Tests 

– Future Funding required for multiple joints 

– Future Funding required for composite joints 

• Accident Reconstruction Phase IV: Ongoing  

– Present Preliminary results ASIDIC Conference 2015 November 

– Pending Accident Data Approval 

• Future Work: 

• Phase II WP 5. Section Level Experimental and Computational Best 

Practices: The objective of this working package will be to summarize the 

numerical and experimental best practices developed in WP0 through WP4 

in order to define a certification by analysis methodology that can be used in 

the future by the aerospace industry. 

• Phase V: Design and evaluate an equivalent composite structure (Narrow 

Body Section) 
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End of Presentation. 

 

Thank you. 
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Appendix - Bolt Modeling Techniques 

40 

Fastener – Connected at 

Element Center 

Fastener – Connected 

between 2 elements 

on center of edge 

Fastener – Connected 

on edge of four 

elements 

• 3D Solid Elements 

 

• Most accurate FE representation 

 

• Accurately captures bearing stresses and 

stress around fastener hole 

 

• Bolt shank modeled with beam element and 

connected to hole using rigid links 

 

• Fastener hole is modeled, therefore 

meshing of large assemblies will be 

complicated 

 

• Cannot capture bearing stress since forces 

are distributed circumferentially around the 

hole 

 

• Bolt shank modeled with beam element 

and rigid links used to distribute the forces 

 

• Fastener hole not modeled 

 

• Several variations as shown below are 

possible with this technique 

 

• Type 9 spotweld beam connection to 

represent the bolt 

 

• Fastener hole not modeled 

 

• Results vary due to both mesh size and 

location of weld relative to center of contact 

segment (LS DYNA Keyword Manual). Some 

variations shown below  

 

 



Bolt Modeling Techniques 
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Onset of Yielding 

% LOAD TRANSFER EVALUATION 

Solid Spotweld Beam 

Spider Connection 

Elastic Patch 

Beam with Rigid 

Links (no hole) 

Transfer Part Doubler 

Main Part 
HL18 Pin/ HL70 Nut 

Loading Bypass Load 

Load Transfer 
Doubler 

Transfer Part 

Load Bypass/ Load Transfer 


