

Crashworthiness of Composites – Material Dynamic Properties

2011 Technical Review Suresh Keshavanarayana Wichita State University

Crashworthiness of Composite Fuselage Structures – Material Dynamic Properties

Motivation and Key Issues

Hull D (1991) Comp. Sci Tech, 40. Bannerman & Kindervater (1984) in Structural Impact and Crashworthiness Bolukbasi & Laananen (1995) Composites, 26. Carruthers, Kettle & Robinson (1998) Appl Mech Rev, 51.

Crashworthiness

- maintain survivable volume
- dissipate kinetic energy → alleviate occupant loads
- Energy absorption
 - Composite structures /energy absorption (EA) devices
 - Controlled failure modes
 - Maximize damage volume
 - Provision for sustained stability
 - Influencing factors
 - EA device geometry
 - Material
 - Rate sensitivity (?)

Approach

WICHITA STATE UNIVERSITY

JANKED ANTERNAL ANTERNAL

Crashworthiness of Composites – Material

Dynamic Properties

- Principal Investigators & Researchers
 - Suresh Keshavanarayana (PI)
 - Gerardo Olivares (PI)
 - J. Acosta, T. Siddiqui, K.Y. Tan
- FAA Technical Monitor
 - Allan Abramowitz
- Other FAA Personnel Involved
 - Curtis Davies
- Industry Participation
 - CMH17 Crashworthiness Working Group
 - NIS (State of Kansas)

Program Overview...

Background..Rate Sensitivity

• Material Systems

NEWPORT material systems

- NB321/3k70 Plain Weave Carbon Fabric (PWCF)
- NB321/7781 Fiberglass
- TORAY material systems
 - T800S/3900-2B[P2352W-19] BMS8-276 Rev-H- Unitape
 - T700G-12K-50C/3900-2 Plain Weave Carbon Fabric (PWCF)
- Rate Sensitivity
 - Dependent on material
 - Dependent on loading type (tension, compression, shear)
 - Fracture toughness exhibits trend opposite to that of in-plane properties

Background..rate sensitivity

- NB321/7781 material; [0]₄ & [±45]₄
 - Crush loads decrease at higher speeds
 - Splaying mode accompanied by tearing of plies observed in [0]₄ specimens.
 - Delaminations
 - Shear cracking observed in [±45]₄ specimens
 - Splaying mode /tearing not established
 - Separation of laminate fragments from specimen

Recently Completed & Ongoing Work..

- Scaling Studies
 - Tension
 - Observed rate sensitivity in sub-scale coupons applicable at larger scales?*
- Characterization of CMH-17 material
 - Tension, Compression & Shear
- CMH-17 Round-Robin exercise for Dynamic tensile testing

* K.E. Jackson et. al, J.Comp. Matls., Vol.26, 1992

J.G. Carillo & Cantwell, Comp.Sci.Tech. Vol.67, 2007.

Scaling Issues.

- Specimen size
 - Reduced specimen size to maximize strain rates
 - Reduced specimens size to minimize failure loads to within testing machine capability

Geometric Scaling..

<u>References:</u> Morton, (1988) AIAA J. Vol. 26, No.8 Wisnom (1999), Comp. Sc. Tech. Vol.59

Geometric Scaling..

Weibull model

$$\frac{\sigma}{\sigma_o} = \left(\frac{V}{V_o}\right)^{-\frac{1}{m}}$$

 $\sigma_{_{o}}$ ~ characteristic(reference) strength

- $V_o \sim$ characteristic(reference) Volume
- $m \sim$ Weibull modulus

References: Weibull (1951), J. App. Mech., Vol.18 Jackson,Kellas & Morton (1992), J. Comp. Mat. Vol.26 Wisnom (1999), Comp. Sc. Tech., Vol.59

 $rac{V}{V_o}$

- Investigate the geometric scaling effects on the tensile properties of composite materials at different strain rates
 - Are the scaling effects functions of strain rates?
 - Quantify effects in terms of Weibull modulus 'm'

Scaling Experiments

- Material Systems
 - Newport NB321/7781 fiberglass
 - Toray T800/3900-2B Unitape
- Scaling type
 - Fabrics : 2D (planar) scaling
 - Unitape : 1D (length) scaling
 - Reduced loading capability

MATERIAL	STACKING SEQUENCE	SCALE λ	L (mm)	W (mm)
NB321/7781 fiberglass, T700G-12K-50C/3900-2 PWCF		1/4*	50.8	12.7
	$[0]_4$ [+45/-45] ₂	1/2	101.6	25.4
	[++J/++J]S	1	203.2	50.8
		1/4*	50.8	12.7
	[0]4	1/2	101.6	12.7
Toray T800S/3900-2B unitape		1	203.2	12.7
		1/4*	50.8	12.7
	[+45/-45] _S	1/2	101.6	25.4
	1	1	1203.	50.8
TATES pecimen size used in phase-I		JOINT ADVANCED MATE	RIALS & STRUCTURES	

W

λL

-λw

Tension Test Apparatus...

Tension Test...Instrumentation

Load Frames

- MTS electromechanical (slow rate)
- MTS high rate (~ 0.5 in/s to 500in/s)

Load measurement

- Slow speed tests ~Strain gage based load cell (5 kip capacity)
- Dynamic Tests ~Piezoelectric load cell
 - -PCB Piezotronics model 206C
 - -±10kip capacity
 - ~40kHz upper frequency limit

<u>Strain measurement</u>

- Strain gage CEA-06-250UW-120
- Vishay 2210 signal conditioner
 - Excitation voltage : 1V
 - DC to 50kHz (-0.5dB max)

Test Results

- Sensitivity to strain rate observed at all volumes
- Scaling effects consistent with literature
 - Reduction in strength with increase in volume
 - No significant change in modulus
- Range of volumes investigated to date is limited.

Failure modes..

Test Results..Weibull Modulus

- Based on Weibull modulus, the scaling effects tend to diminish with increasing strain rates
 - Increase in 'm' dependent on material system and stacking sequence

Material Characterization..Round Robin

- Characterization of *in-plane* stress-strain behavior of Toray T700/2510 Plain weave carbon/epoxy (F6273C-07M) under dynamic rates of loading (P.I :G.Olivares)
 - Tension (current activity)
 - [0]_n, [+/-45]_{ns}
 - Compression
 - Shear
- Strain Rates
 - Quasi-static to ~250s⁻¹

Original plans included Newport NB321/7781 fiberglass/epoxy material. Due to budget & time constraints, this material will not be used.

Participating Labs/Agencies (POCs)

- Co-ordination, Reporting
- Δ Specimen fab., fixturing, instrumentation (strain gage)

- 🛧 Testing
- FAA/NIAR/WSU (A. Abramowitz, G. Olivares, K.S. Raju) ▲ ★ ▲
- Boeing (M.Rassaian, ?)
- Ohio State University (A. Gilat)
- DLR (Alastair Johnson)
- University of Utah (Dan Adams)
- Oakridge National Labs (M. Starbuck)
- Toray America (Sam Tiam)

Round Robin Activity

- Primary Objective
 - Characterize strain rate sensitivity of Toray T700/2510 Plain weave carbon/epoxy (F6273C-07M) material at strain rates ranging between 0.01 to 250 s⁻¹.
- Secondary Objective

UNIVERSITY

- evaluate the test methods/apparatus, specifically load measurement methods, employed by the participating laboratories.
 - Use extended tab 2024-T3 aluminum specimens

Nominal Quasi-Static Properties...

Property	2024-T3 bare ⁽¹⁾	Toray ⁽²⁾	Newport ⁽³⁾ \bullet	Used for tabs
Thickness/ply thickness (in)	0.010 - 0.128	0.0084	0.009	
Young's Modulii (Msi)	E=10.5	E ₁ =8.12 E ₂ =7.97	E ₁ =4.19	
Shear Modulus (Msi)	G=4.0	G ₁₂ =0.58	G ₁₂ =0.61	
Poisson's Ratio	v=0.33	$v_{12}=0.042$	v ₁₂ =0.138	
Tensile Strength (ksi)	F _{TU} =65 (L)*	F _{1t} =132 F _{2t} =112	F _t =63.5	
Shear Strength (ksi)	$F_{SU} = 40^{\ast}$	$F_{12s}=22$	F _{12s} =19	
Data Source ⁽¹⁾ MMPDS (* B-basis valu ⁽²⁾ AGATE WP3.3-033051- ⁽³⁾ AGATE WP3.3-033051-	es) -134. Lamina propertie -097. Laminate proper	es (Oven cured) ties (Oven cured)		

Tension Test Apparatus...

Test Specimen Geometries..

instrumentation...

Instrumentation will be done by WSU/NIAR

Dimensions in INCHES

Test-matrix....

Material System	Nominal Strain rate (1/s)						
	0.01	1	100	250			
2024-T3 Aluminum	×3	×3	×3	×3			
TORAY T700/2510 pla							
[0]4	×3	×3	×3	×3			
[90] ₄ (TBD)	×3	×3	×3	×3			
[±45] ₄	×3	×3	×3	×3			
NEWPORT NB321/7781 fiberglass/epoxy							
[0]4	×3	×3	×3	×3			
[±45] ₄	~~~3	×3	×3	×3			

Total: 48 tests

- Document (draft) describing the round-robin activity mailed to participants
 - Ohio State (A. Gilat) requested a different specimen geometry and attachments for use with SHPB apparatus
- Aluminum Specimens
 - Machining has been completed
 - Instrumentation under progress
- Fabrication of Test panels completed
 - C-scan of fabricated panels completed
 - Tabbing and specimen machining under progress
- Machining of test fixtures completed

Load measurement..

Load Measurement..

Looking Forward

- Benefit to Aviation
 - Rate sensitive data for different material systems
 - Guidelines for conducting dynamic testing using servo machine
- Future needs
 - Round-Robin exercises for Compression, Shear
 - Evaluation of material models

End of Presentation.

33