

Damage Growth in Fluid-Ingressed Sandwich Structures

2013 Technical Review Waruna Seneviratne & John Tomblin Wichita State University/NIAR

Fluid Ingression & Ground-Air-Ground Effects

• Motivation and Key Issues

- Fluid ingression phenomenon and the progressive damage growth due to entrapped fluids in sandwich structures
- Thermo-mechanical loads during ground-air-ground (GAG) cycling result in localized mode I stresses that cause further delamination/disbond/core fracture growth creating more passageways for fluid migration.

• Objective

- The influence of sandwich parameters such as core size, density, and facesheet/core stiffness ratio on the onset and damage growth rate of sandwich composite
- Understand the Ground-air-ground effect on onset and damage growth

• Approach

- Damage growth in sandwich structures
 - Core types, core densities (24, 32 and 48kg/m³) & F/C thicknesses
- Mechanics of different damage sources
 - Fluid ingression (GAG effects)
 - Impact damages
 - Repairs (improper repairs and process deviations)

Fluid Ingression & Ground-Air-Ground Effects

- Principal Investigators & Researchers
 - John Tomblin, *PhD*, and Waruna Seneviratne, *PhD*
 - Shawn Denning
- FAA Technical Monitor
 - Curtis Davies and David Westlund
- Other FAA Personnel Involved
 - Larry Ilcewicz, PhD
- Industry Participation
 - Cessna, Bombardier and Spirit Aerosystems

Challnges

- Standardized test methods
 - Test procedures
 - Data reduction techniques
- Complex damage mechanics
 - Onset
 - Propagation
 - Multiple constituents
- Tools for stress analysis
 - Crack-tip mode mixity
- Publically available data
 - Service findings
 - Component-level test data

Overview Coupon Tests

Adhesis

- Double Cantilever Beam (DCB) [Modified ASTM D5528]
 - Laminate/adhesive Mode I fracture toughness
 - Test method and data reduction
 - Static
 - Fatigue
 - Static test summary
 - R-curves
 - Fatigue curves
- Flatwise Tension (FWT) [ASTM C297]
 - Static test summary

- Single Cantilever Beam (SCB)
 [Standards under development]
 - Sandwich Mode I fracture toughness (DOE)
 - Test method and data reduction
 - Static
 - Fatigue

- Static test summary
- R-curves
- Fatigue curves
- SKYDROL
 - Conditioning parameters
 - Procedures

Skydrol Conditioning

- Conditioning guidelines
 - Mix ratio
 - Temperature
 - Time

Mix	Ratio	Temparature						
Skydrol	Water	70 ⁰ F	120 ⁰ F	160 ⁰ F				
25%	75%	х	x	х				
50%	E0%	х	х	х				
	50%	х	х					
75%	25%	х	х	х				

Days @ Room Teperature Ambient after Precondition

Materials

- Core
 - Hexel HexWeb HRH -10 Aramid Fiber/Phenolic Honeycomb
 - Hexagonal
 - Over-expanded

- $\mathbf{T} = \mathsf{Thickness}, \, \mathsf{or} \, \mathsf{cell} \, \mathsf{depth}$
- L = Ribbon direction
- $\mathbf{W} = \mathbf{D}$ irection of Expansion, or direction perpendicular to the ribbon

- Facesheet material
 - Cytec AS4/E7K8 PW
 - Facesheet layups
 - 4 ply: [0°/45°]_S
 - 16 ply: [0°/45°]_{4S}

- Adhesive
 - Cytec FM 300 epoxy film adhesive

SCB Test Matrix

	Core Type	Core Thickness (in)	Facesheet (per F/C)	Cell Size (in)	Com	Static		Fatigue		
Material					Density	Deseline	Fluid	Deceline	Fluid	
						Daseinie	Ingressed	Daseille	Ingressed	
HRH-10	Hexagonal	0.5	4-ply	1/8	2.0					
			[0/45] _s		3.0	6	6	6	6	
					6.0					
				3/16	2.0	6	6	6	6	
					3.0	6	6	6	6	
					6.0	6	6	6	6	
				3/8	2.0					
					3.0	6	6	6	6	
					6.0					
			16-ply	1/8	2.0					
			[0/45] _{4S}		3.0	6	6	6	6	
					6.0					
				3/16	2.0	6	6	6	6	
					3.0	6	6	6	6	
					6.0	6	6	6	6	
				3/8	2.0					
					3.0	6	6	6	6	
					6.0					
	OX-Core	0.5	4-ply	3/16	2.0					
					3.0	6	6	6	6	
					6.0					
			16-ply	3/16	2.0					
					3.0	6	6	6	6	
					6.0					
Sub Totals					144 144			44		
Total Specimens						2	88			

SCB Method

- Static testing follows Modified ASTM D 5528-01
 - 2 X 10-inch specimen
 - Initial disbond length = 2.5-inch
 - Use SCB fixture instead of DCB fixture
 - Prevents asymmetric loading
 - Prevents mixed-mode mechanics
 - Prevents kinking

SCB Static Master Summary

	Face- sheet	Cell	Cell Core Size Density	GIC [in-lb/in ²]											
Core Type		Size		Baseline		Fluid Ingressed			Extended Fluid Ingressed			Water Ingressed			
		[in]	[<u>lb</u> /ft ³]	NL	VIS	5%/max	NL	VIS	5%/max	NL	VIS	5%/max	NL	VIS	5%/max
НХ			2.0												
	-	1/8	3.0	0.622	1.538	2.086	-	-	-	-	-	-	-	-	-
			3.0*	1.149	3.437	3.644	1.004	4.710	4.407	0.422	-	3.725	-	-	-
			6.0												
			2.0	0.605	1.945	2.020	-	-	-	-	-	-	-	-	-
			2.0*	1.067	-	3.317	0.880	2.834	2.707	1.064	-	2.499	-	-	-
	4-ply	3/16	3.0	0.604	2.153	2.325	-	-	-	-	-	-	-	-	-
	[0/45]s	5/10	3.0*	1.362	3.058	3.740	0.979	3.590	3.491	<u>0.994</u>	-	4.393	-	-	-
			6.0	0.596	2.012	2.349	-	-	-	-	-	-	-	-	-
			6.0*	1.020	3.246	2.993	0.695	4.206	4.834	0.547	-	5.379	-	-	-
		3/8	2.0												
			3.0	0.788	3.149	3.030	-	-	-	-	-	-	-	-	-
			3.0*	0.868	2.028	2.533	0.552	3.685	4.022	1.044	-	4.578	-	-	-
			<u>6.0</u>												
			2.0												
	16-ply [0/45] ₄₅	1/8	3.0	1.912	4.603	5.475	1.201	6.226	6.393	1.950	-	6.809	3.740	-	7.633
			<u>6.0</u>												
		3/16	2.0	2.128	4.437	4.931	1.566	5.142	5.331	2.320	-	4.598	1.537	-	5.398
			3.0	2.305	4.961	4.842	2.501	5.713	6.151	2.475	-	8.602	3.093	-	6.050
			<u>6.0</u>	1.722	5.121	5.645	1.315	6.039	5.983	1.558	-	5.962	1.714	-	9.650
		3/8	2.0												
			3.0	1.567	2.813	2.877	2.052	5.263	6.816	2.298	-	5.906	2.178	-	6.366
			<u>6.0</u>												
OX			2.0												
	4-ply	3/16	3.0	0.583	1.712	2.195	-	-	-	-	-	-	-	-	-
			3.0*	1.088	-	3.131	0.850	3.262	3.211	0.797	-	3.433	-	-	-
			6.0												
	16-ply	3/16	2.0												
			3.0	1.541	5.483	6.017	1.206	4.973	5.074	1.149	-	5.022	1.849	-	4.743
			<mark>6.</mark> 0												

NOTE: * - ao = 1 inch

Primary Failure Modes

• Adhesive Interface Disbond (A)

• Adhesive Pullout (PO)

• Tensile Core Failure (S)

Failure Surface - HEX

Failure Surface - OX

SCB Static Summary

SCB Static Summary (5% Max)

Effects of Facesheet Thickness

1.6

1.4

1.2

0.0 [K1/m²] 6IC (5%/max) [K1/m²]

0.4

0.2

0.0

Propagation Curve of various Cell Types with respect to Facesheet Thickness

Effects of Environment

Core Type

IOINT ADVANCED

Effects of Cell Size

Effects of Core Density

3 Core Density [lb/ft³]

CECAM

4.0

2.0

0.0

2

3lb

2lb

6

0.6 0.4

0.2

0.0

6lb

Propagation Curve of various Cell Densities with respect to Facesheet Thickness

Effects of Precrack Length

SCB Static Test Data Scatter

SCB Fatigue Crack Growth Data

Summary

- Based on the preliminary DCB and SCB tests conducted on sandwich fracture toughness specimens, it was found that SCB specimens are most suitable for determining the Mode I fracture toughness of sandwich specimens.
- The failure modes are complex and often a mixture of the primary crack propagation modes identified in this presentation.
- This study was further extended to evaluate the damage growth rate under cyclic loading for similar parameters discussed in this presentation.
- Several other key parameters such as effects of ribbon direction, fabrication procedures, crack starter location, etc. are studied as a supplemental test matrix.
- FAA final reports
 - Damage Growth in Sandwich Structures (Vol. I)
 - Fatigue Damage Growth Rate in Sandwich Structures (Vol. II)

Looking Forward

Benefit to Aviation

- Guidelines for substantiating sandwich structures
 - Fluid ingression phenomenon
 - GAG effects on damage growth
 - Effects of geometry and sandwich parameters on fracture toughness and damage growth rates

• Future needs

- Field history data related to sandwich data growth phenomenon
- Analytical methods
- Standardized test procedures

End of Presentation.

Thank you.

JOINT ADVANCED MATERIALS & STRUCTURES CENTER OF EXCELLENCE