

Delamination/Disbond Arrest Features in Aircraft Composite Structures

Luke Richard and Kuen Y. Lin University of Washington JAMS Technical Review March 31-April 1, 2015

Sponsored Project Information

- Principal Investigator:
 - Dr. Kuen Y. Lin, Aeronautics and Astronautics, UW
- **Research Assistant:** Luke Richard UW
- FAA Technical Monitor: Lynn Pham
- Other FAA Personnel: Curtis Davies, Larry Ilcewicz
- Industry Participants:
 - Boeing: Marc Piehl, Gerald Mabson, Eric Cregger, Matthew Dilligan, Caihua Cao, Eric Sager
 - Toray: Kenichi Yoshioka, Dongyeon Lee, Masahiro Hashimoto, Felix Nguyen
- Industry Sponsors: Toray and Boeing

Background

- Motivation and Key Issues
 - Delamination is a critical damage type for laminated and bonded composite structures
 - Bolted joint and point testing design is inefficient
- Objectives
 - Understand the arrest process of a delamination/disbond
 - Develop analysis tools/techniques for design and optimization
 - Verify general applicability of design tools/techniques
- Approach
 - Perform FEM analyses in ABAQUS with VCCT
 - Develop custom models for design and optimization
 - Conduct coupon-level experiments

Crack Arrest Mechanism by Fastener

Advanced Materials in Transport Aircraft Structure

Research Objectives

- Accurately predict crack arrest capability for varying laminate and fastener configurations
 - Understand driving parameters of crack propagation and arrest by multiple fasteners under static and fatigue loading
 - Develop modeling techniques which can be employed for design, certification and optimization

Two Fastener Experimental Work

- T800S/3900-2B unidirectional pre-preg tape
- BMS 9-17 surplus unidirectional pre-preg tape
- 0.25 Inch titanium fasteners
- (0/45/90/-45)_{3S} and 50% 0
- Load rate 0.1 mm/min
- Crack tip tracked visually
- 0.1 in Scale

2-Plate Two-Fastener Finite Element Model

- Fastener flexibility (H. Huth, 1986) $C = \left(\frac{t_1 + t_2}{2d}\right)^a \frac{b}{n} \left(\frac{1}{t_1 E_1} + \frac{1}{n t_2 E_2} + \frac{1}{2t_1 E_3} + \frac{1}{2n t_2 E_3}\right)$
 - Thickness $t_1=t_2=0.18$ in., diameter d=0.25 in., $E_x=$ laminate stiffness
 - Single Lap, bolted graphite/epoxy joint, constants taken as; a=2/3, b=4.2, n=1
- Fastener joint stiffness $k_{slide} = \frac{1}{C}$, Fastener tensile stiffness $k_{clamp} = \frac{AE}{(t_1 + t_2)}$
- Fracture parameters, G_{IC}=1.6 lb/in, Nominal G_{IIC}=G_{IIIC}=14 lb/in Measured: 12 lb/in (BMS 8-276) 10 BMS 9-17)

• Power Law fracture criterion
$$\left(\frac{G_I}{G_{IC}}\right)^{\alpha} + \left(\frac{G_{II}}{G_{IIC}}\right)^{\beta} + \left(\frac{G_{III}}{G_{IIIC}}\right)^{\delta} \le 1$$

- Fixed boundary condition similar to test; grips not modeled
- Friction coefficient assumed to be fixed value or zero

JOINT ADVANCED MATERIALS & STRUCTURES CENTER OF EXCELLENCE

Mode I Suppression

- First fastener effectively suppresses Mode I
 - Mode I suppression regardless of clearance value
 - Propagation load increases as $G_{IIC} > G_{IC}$
 - Fastener size excessive for Mode I suppression
 - 6-32 fasteners (D=0.1380) found to suppress mode I

0 Clearance Results

- Fastener Flexibility is major driver of Mode II arrest
 - Slope of load vs. crack length curve driven by fastener flexibility
 - Mode II shear propagation is resisted primarily through load transfer via the fastener in shear

Clearance and Fracture Toughness

- Typical ¹/₄ inch bolt clearance 0.007-0.016 in.
 - Previous single and multiple fastener research utilized zero clearance (tight fitting hole)
- Bolt clearance and fracture toughness varied
 - Fastener stiffness set as zero over ±0.0035-0.008inch span
 - Fracture toughness varied from 5 to 14 lb/in

Fracture Toughness

- Fracture toughness varied from 0-14 lb/in
 - Mode II fracture toughness found to have linear relationship with propagation loads
 - Increasing mode I had little affect due to fastener eliminating this mode

Clearance

- Bolt clearance varied
 - Increasing clearance reduced arrest capability
 - Fastener engagement in shear is delayed by clearance
 - Maximum crack length then determines clearance

Friction and Crack Curvature

- 0/0 interface has minimum coefficient of static friction: 0.25
- Load transfer through friction is small compared to through fastener
 - 1000 lb preload results in 250 lb load transfer
 - Load transfer may be non-negligible in fatigue loading
- Crack Curvature is extensive near fasteners but minimal outside the influenced zone

Co-Cured Vs. Secondary Bonded

- All Test results shown are for cocured structures
 - Delamination resistance is governed by matrix properties
 - Structural adhesives typically have higher fracture toughness
- Samples secondary bonded
 - Secondary bonded structures failed prior to crack propagation
 - Crack driven off bondline and into laminate
 - Crack propagation was minimized
 - Driving crack off of 0/0 interface can improve crack arrest effectiveness

Current Tasks

- Further Develop Analysis for Multiple Fasteners
 - Test modeling techniques on array
 - Does crack curvature change when propagating through an array
 - Improve methodology for modeling the system
 - Using beam/bar for optimization methods
 - Test novel configurations
 - Improve arrest effectiveness through non-traditional configurations
- Fatigue Studies
 - Establish hybrid bolted/bonded joint performance in fatigue
 - Develop predictive capability based on pristine fatigue properties

Fatigue Modeling

- Identical two and one dimensional models
 - Fatigue properties derived from initial testing and sourced from literature
 - Constant amplitude loading simulated
 - Zero and positive clearance simulated
 - Hole damage not currently modeled
- Dramatic fatigue life difference due to clearance
 - Consistent result both in tension-tension and tensioncompression loading
- Hole damage may be critical factor
 - Even 0.001 in clearance results in lower fatigue life

Fatigue Testing

- Fastener has no effect on high cycle fatigue
 - No crack propagation to suppress
- Fastener hole treatment has significant effect on low cycle fatigue
 - Crack arrest capability greatly reduced by the inclusion of clearance
- Loss of fastener clamping has arisen
- Hole damage may be critical factor
 - Not always visible on tested samples

Fatigue Results

- Fatigue model and test results agree reasonably well
 - Da/DN curves generated using (0/90/0/Crack)₃ mode II test specimen
- Fatigue testing not run to establish runout of arrested crack
 - Further testing will be extended to establish this

Fatigue Results

- Fatigue model and test results agree better when identical (quasi-isotropic) layup used for fatigue properties
 - Da/DN curves generated using $(0/45/90/-45/crack)_3$ mode II test specimen with matching ΔG_{max} and ΔG_{min}
- 1D modeling provided better agreement
 - Fastener modeling becomes increasingly important

Fatigue Results

- Distinct knee in zero-clearance hole
 - Fastener provides sufficient load alleviation so as to eliminate further crack propagation (below threshold)
 - Run out (10⁷+ cycles) did not occur
- Clearance drilled hole did not experience this, crack propagation is only slowed

2015-2016 Work Plan

- Evaluate fatigue performance
 - Determine variation in Da/Dn curves of unfastened structure due to layup; quasi-isotropic vs. 67% 0
 - Relate unfastened and fastened performance
 - R-ratio effects
 - Fully reversed load may result in greater hole damage
- Predict fatigue performance
 - Use un-fastened fatigue properties to predict fastened performance of different laminate/fastener configurations
 - Spectrum loading
- Establish boundaries of arrest capability
 - Asymmetric and harder laminates experience greater crack growth
 - Can non-standard configurations be more efficient

Looking Forward

- Benefit to Aviation
 - Tackle a crucial weakness of laminate composite structures
 - Improve analysis to prevent changes in schedule/cost due to a re-design associated with the delamination/disbond mode of failure in large integrated structures
 - Enhance structural safety by building a methodology for designing fail-safe co-cured/bonded structures
- Future needs
 - Further fatigue testing to establish parameters
 - Testing to establish fastener flexibility for delamination configuration
 - Initiate investigation of crack propagation through fastener arrays
 - Industry/regulatory agency inputs related to the application, design, and certification of this type of crack arrest feature

Question and comments are strongly encouraged.

Thank you.

JOINT ADVANCED MATERIALS & STRUCTURES CENTER OF EXCELLENCE

