

Development and Evaluation of Fracture Mechanics Test Methods for Sandwich Composites

2013 Technical Review Dan Adams, Zack Bluth, Ryan Braegger University of Utah

FAA Sponsored Project Information

- Principal Investigator: Dr. Dan Adams
- Graduate Student Researchers: Ryan Braegger Zach Bluth
- FAA Technical Monitor
 Curt Davies David Westlund
- Collaborators:

NASA Langley Boeing Airbus NIAR Learjet UTC Aerospace Systems

RESEARCH OBJECTIVES:

Fracture Mechanics Test Methods for Sandwich Composites

- Focus on facesheet-core debonding
- Mode I and Mode II
 - Identification and initial assessment of candidate test methodologies
 - Selection and optimization of best suited Mode I and Mode II test methods
 - Development of draft ASTM standards

3

MODE I TEST CONFIGURATION: Candidate Configurations Investigated

MODE I TEST CONFIGURATION: Single Cantilever Beam (SCB)

- Elimination of bending of sandwich specimen
- Minimal crack "kinking" observed
- Mode I dominant independent of crack length
- Appears to be suitable for standardization

5

PARAMETERS INVESTIGATED: Single Cantilever Beam (SCB) Test

- Specimen geometry
 - Length
 - Width
 - Initial crack length
- Facesheet properties
 - Thickness
 - Flexural stiffness
 - Flexural strength
- Core properties
 - Thickness
 - Density
 - Stiffness
 - Strength

Mode mixity

- Variations across specimen width
- Variations with crack length
- Data reduction methods
- Thru-thickness crack placement
- Anticlastic curvature & curved crack front
- Large rotations of facesheet
- Use of facesheet doublers
- Facesheet curvature effects

₹გ

SCB TEST METHOD DEVELOPMENT: Sandwich Configurations with Thin Facesheets

Concern: Excessive facesheet rotation

- Not representative of disbond in actual sandwich structures
- Geometric nonlinearity causes errors when using conventional data reduction method

Possible Solution: Use of facesheet doublers

- Reduce facesheet rotation required for disbonding
- Allow use of compliance calibration method of data reduction

EFFECTS OF FACESHEET DOUBLER:

Results of SCB Testing With Nomex Honeycomb Core

Adding doubler changes delivered G_c values... ...and thru-thickness fracture locations!

NUMERICAL INVESTIGATION Facesheet Thickness Effects

- Load applied in each model to produce same G_T value
 - No doubler, "thin" doubler, "thick" doubler
- Considered crack growth at three through-the-thickness locations
- Investigate mode mixity (% G_I)
- Investigate orientation of max. principal stress for expected crack growth direction

UNIVERSITY ^{of} Utah

SUMMARY OF FINDINGS: Numerical Investigation

- SCB test appears to be Mode I dominant for all cases considered
- Small Mode II component produced by shear stresses in vicinity of crack tip
- Sign of shear stresses change as a function of:
 - Crack location in core
 - Thickness of facesheet
- Crack predicted to propagate closer to facesheet/core interface for thinner facesheets

Disbond near interface (in core)

Disbond 1 mm below interface (in core)

EFFECTS OF FACESHEET CURVATURE: Use of Climbing Drum Peel (CDP) Test

- Facesheet curvature during SCB testing is dependent on facesheet thickness
- High curvature produced with thin facesheets not representative of that seen in sandwich structures with disbonds
- Use of Climbing Drum Peel test permits testing with prescribed facesheet curvature

Ρ

DETERMINATION OF ENERGY RELEASE RATE, G_C: Climbing Drum Peel (CDP) Test

A.T. Nettles, E.D. Gregory and J.R. Jackson, "Using the Climbing Drum Peel (CDP) Test to Obtain a G_{IC} Value for Core/Face Sheet Bond," *Journal of Composite Materials*, Vol 41, 2007.

CLIMBING DRUM PEEL (CDP) TESTING: Investigating Facesheet Curvature Effects

CLIMBING DRUM PEEL (CDP) TESTING: Investigating Facesheet Curvature Effects

Standard CDP Fixture ASTM D 1781 r = 2 in.

Large CDP Fixture r = 6 in. *Very* Large CDP Fixture r = 12 in.

PRELIMINARY:

Effects of Facesheet Curvature on Apparent G_c

- [0/90/0]_{nT} IM7/8552 carbon/epoxy facesheets
- 3 lb/ft³ Nomex honeycomb core

OF UTAH

Effect of Facesheet Thickness: Single Cantilever Beam (SCB) Specimens

Change in fracture location with facesheet thickness

3 Ply Facesheet

<u>6 Ply Facesheet</u>

9 Ply Facesheet

Effect of Facesheet Thickness: 6 in. Radius Climbing Drum Peel (CDP) Specimens

Minimal change in fracture location with facesheet thickness

Effect of Facesheet Curvature 3 Ply Facesheet Specimens

Minimal change in fracture location with facesheet curvature

RESULTS FROM NUMERICAL INVESTIGATION: Predicted Depth of Crack Growth in Nomex Core

- Increasing depth of crack for increasing facesheet thickness
- Crack location independent of test method

Test	3 Ply	6 Ply	9 Ply
Method	Facesheets	Facesheets	Facesheets
SCB	0.25 mm	0.75 mm	1.0 mm
	(0.010 in.)	(0.030 in.)	(0.039 in.)
2 in. CDP	0.38 mm	0.75 mm	1.0 mm
	(0.015 in.)	(0.030 in.)	(0.039 in.)
6 in. CDP	0.38 mm	0.75 mm	1.0 mm
	(0.015 in.)	(0.030 in.)	(0.039 in.)
12 in. CDP	0.38 mm	0.75 mm	1.0 mm
	(0.015 in.)	(0.030 in.)	(0.039 in.)

SUMMARY OF PRELIMINARY FINDINGS: Facesheet Thickness Effects

- SCB test results show differences in apparent G_c values and through-thickness locations of crack growth as a function of facesheet thickness
- CDB test results to date do not indicate differences in apparent G_c or through-thickness locations of crack growth as a function of facesheet thickness
- Numerical simulations suggest through-thickness locations of crack growth is a function of facesheet thickness for all test methods investigated
- Additional testing to be performed using specimens from single sandwich panel

MODE II TEST METHOD DEVELOPMENT: Challenges in Developing a Suitable Test

- Maintaining Mode II dominated crack growth with increasing crack lengths
- Obtaining crack opening during loading
- Obtaining stable crack growth along facesheet/core interface

Mixed Mode Bend

Beam with Hinge

Mode II

SELECTED MODE II CONFIGURATION: End Notched Sandwich Test

- Modified three-point flexure fixture
- High percentage Mode II (>80%) for all materials investigated
- Semi-stable crack growth along facesheet/core interface
- Appears to be suitable for a standard Mode II test method

ADDRESSING CRACK GROWTH STABILITY: Specimen Span Length and Precrack Length

- Selection of proper precrack length/span length predicted to produce stable crack growth
- Test results have confirmed this prediction

END-NOTCHED TEST CONFIGURATIONS: Three-Point Flexure Vs. Cantilever Support

Sandwich Composites: End Notch Cantilever (ENC)

END-NOTCHED TEST CONFIGURATIONS: Three-Point Flexure Vs. Cantilever Support

End Notched Flexure

(Unsymmetric bending)

End Notched Cantilever

(Symmetric bending)

MODIFIED MODE II CONFIGURATION End Notched Cantilever (ENC) Test

- Cantilever beam configuration
- Upward or downward loading
- Performance meets or exceeds 3-point flexure configuration for all sandwich configurations considered to date
- Requires specialized fixturing
- Allows for reduced specimen length
- Currently under further examination

CURRENT STATUS:

Fracture Mechanics Test Methods for Sandwich Composites

- Completion of remaining testing and analysis
- Documentation of findings
 - FAA Reports
 - Journal publications
- Submission of Draft SCB Test Method to ASTM D30
- Summary of findings at European Honeycomb Sandwich Disbond Growth Workshop (EASA, Cologne, June 2013)

SUMMARY

Benefits to Aviation

- Standardized fracture mechanics test methods for sandwich composites
 - Mode I fracture toughness, G_{IC}
 - Mode II fracture toughness, G_{IIC}
- Test results used to predict disbond growth in composite sandwich structures

