

2013 Technical Review Matt Opliger National Institute for Aviation Research, Wichita State University

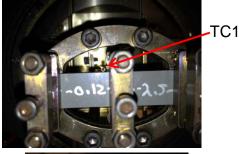
- Motivation and Key Issues
 - Determining the glass transition temperature (Tg) by DMA is critical for characterizing polymeric materials
 - Material service temperature determination
 - Quality control tool to validate curing process
 - Lack of well defined calibration and testing procedures
 - ASTM D7028 and SACMA SRM 18R refer to the equipment manufacturer's recommendations in many cases.
 - Thermocouple location
 - Temperature calibration standards
 - Leads to poor lab-to-lab and equipment-to-equipment reproducibility
 - Round robin testing of ASTM D7028 (report number D30-1004 dated December 15th, 2007) provides a poor reproducibility standard deviation of 13.36° F.
 - Significant reproducibility issues with several material qualification programs for FAA aircraft certification.
 - Accurate and reproducible Tg determination is critical to safety wherever polymer matrix composites are utilized.

- Principal Investigators & Researchers
 - John Tomblin, PhD, NIAR/WSU
 - Matthew Opliger, NIAR/WSU
 - Yeow Ng, NIAR/WSU
- Technician & Research Engineer
 - Ping Teoh
- FAA Technical Monitor
 - David Westlund
- Industry Participation
 - Joy Wu, Hexcel
 - Chuck Olson, Cytec
 - Grant Pomering, Intec
 - George Parker, Boeing
 - John Moylan, Delsen

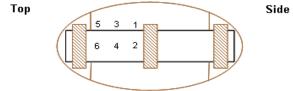
- Objective
 - Reduce the lab-to-lab and equipment-to-equipment variability of Tg measurements by developing universal guidelines for temperature calibration and testing procedures for DMA equipment to enhance pre-existing testing standards.
 - Improve industry applications and safety
 - Material service temperature definition
 - Quality control

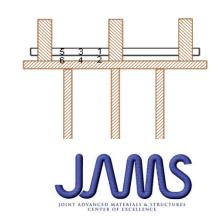
- Approach
 - Research areas that potentially influence Tg determination and reproducibility.
 - Thermocouple location
 - Specimen dimensions
 - Temperature calibration
 - Calibration materials
 - Application of calibration materials
 - Develop universal guidelines for temperature calibration and testing procedures for DMA equipment.
 - Evaluate developed guidelines for lab-to-lab and equipment-toequipment reproducibility through round robin testing.
 - Further evaluate developed guidelines by comparing to DSC and TMA test results.

- Thermocouple (TC) Location Evaluation
 - ASTM D7028 section 11.9 remarks, "Follow the manufacturer's manual or recommendations to position the thermocouple.
 Typically the thermocouple should be as close to the sample as possible."
 - Manufacturers recommend that the thermocouple proximity should be close to the sample, as well, but do not provide any specifics.
 - The fixture acts has a heat sink, affecting heat transfer to the sample.
 - Evaluate TC location, respective of location to fixture
 - Evaluate TC location, respective of location to sample



Thermocouple Location – Test Configurations

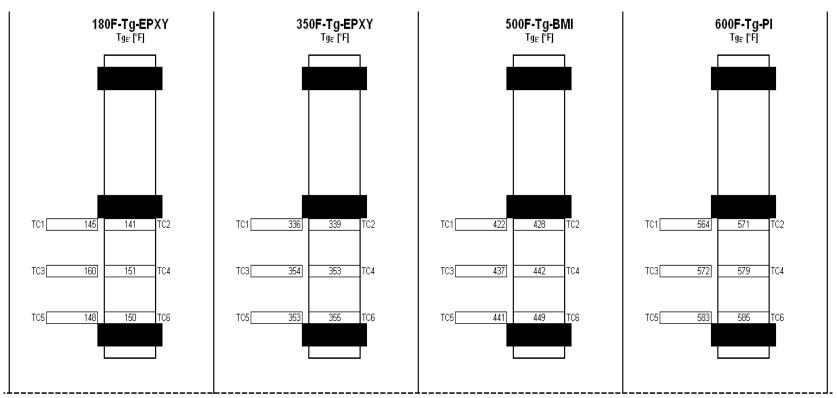

		Specimens per Materia	al (Number of Materials)	
TC Location	Test Method	50mm 3-pt Bend Fixture	35mm Dual Cantilever Fixture	Material ID
1		1 × (4)	1 × (4)	180F-Tg-EPXY 350F-Tg-EPXY 500F-Tg-BMI 600F-Tg-PI
2		1 × (4)	1 × (4)	180F-Tg-EPXY 350F-Tg-EPXY 500F-Tg-BMI 600F-Tg-PI
з	ASTM D7028 &	1 × (4)	1 × (4)	180F-Tg-EPXY 350F-Tg-EPXY 500F-Tg-BMI 600F-Tg-PI
4	Figure 1	1 × (4)	1 × (4)	180F-Tg-EPXY 350F-Tg-EPXY 500F-Tg-BMI 600F-Tg-PI
5		1 × (4)	1 × (4)	180F-Tg-EPXY 350F-Tg-EPXY 500F-Tg-BMI 600F-Tg-PI
6		1 x (4)	1 x (4)	180F-Tg-EPXY 350F-Tg-EPXY 500F-Tg-BMI 600F-Tg-PI



TC3

7

CECAM


TC6

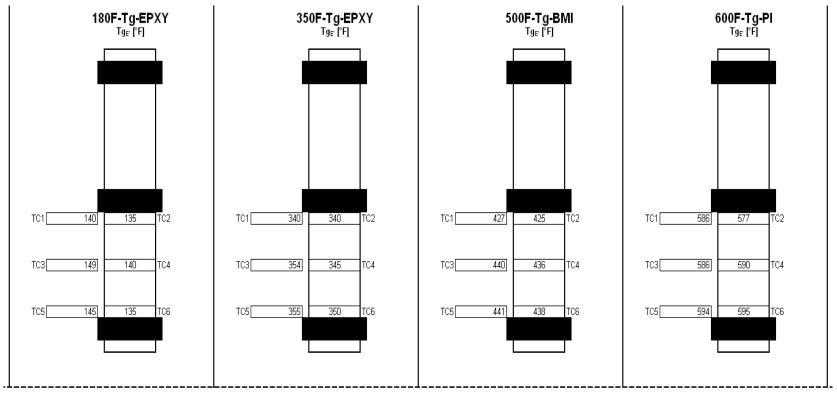
Advanced Materials in

Transport Aircraft Structure

Thermocouple Location – Test Results

35mm Dual Cantilever Fixture

Approximate Location of Furnace Wall



Thermocouple Location – Test Results

50mm 3-Point Bend Fixture

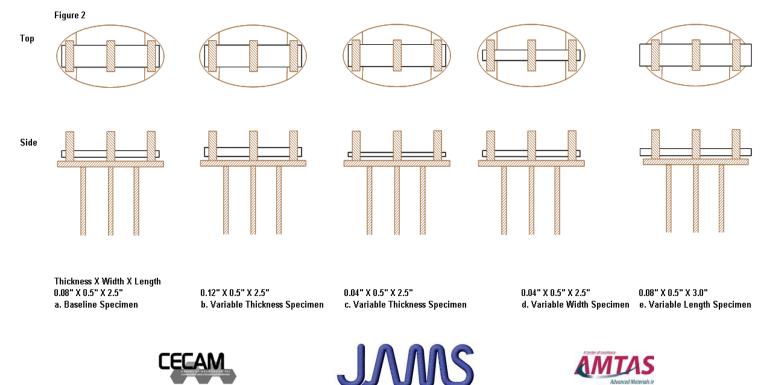
Approximate Location of Furnace Wall

Thermocouple Location – Conclusion

- Thermocouple (TC) Location Evaluation
 - Significant differences between TC locations
 - The fixture acts has a heat sink, affecting heat transfer to the sample. This is evident by low Tg values observed at TC1 and TC2.
 - The proximity of the test specimen to the furnace becomes more critical at higher temperatures
- Recommend TC3 Location
 - LocationsTC2, TC4, and TC6 can result in a damaged TC if a highly deformable material is tested.
 - Location TC3 is least affected by the fixture heat sink and furnace proximity.
 - Tg values obtained at TC3 were in the top half of all TC locations

Specimen Dimensions

- Specimen Dimensions Evaluation
 - Determine if specimen dimensions affect Tg
 - Evaluate changes in thickness
 - Evaluate changes in width
 - Evaluate changes in length
 - Possible effects include
 - Thermal lag
 - Specimen stiffness



Specimen Dimensions – Test Configurations

			Support Dimensions		Specimens per Mater		
Property	Test Method	Thickness (in.)	Thickness (in.) Width (in.) Length (in.		50mm 3-pt Bend Fixture 35mm Dual Cantilever Fixture		Material ID
		0.08	0.5	2.5	1 x (1)	1 x (1)	350F-Tg-EPXY
		0.12		2.5	1 x (1)	1 x (1)	350F-Tg-EPXY
Glass Transition Temperature (Tg), Dry, by DMA	ASTM D7028 & Figure 2	0.04	0.5	2.5	1 x (1)	1 x (1)	350F-Tg-EPXY
D13, 03 DMA		0.08	0.25	2.5	1 x (1)	1 x (1)	350F-Tg-EPXY
		0.08	0.5	2.25	1 x (1)	1 × (1)	350F-Tg-EPXY

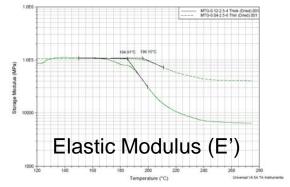
IOINT ADVANCE

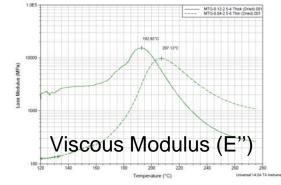
Transport Aircraft Structure:

Specimen Dimensions – Test Results

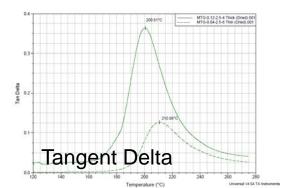
			Support Dimensions		Tg		
Property	Test Method	Thickness (in.)	Width (in.)	Length (in.)	50mm 3-pt Bend Fixture	35mm Dual Cantilever Fixture	Material ID
		0.08	0.5	2.5	371	374	350F-Tg-EPXY
	0.12		2.5	365	375	350F-Tg-EPXY	
Glass Transition Temperature (Tg), Dry, by DMA	ASTM D7028 & Figure 2	0.04	0.5	2.5	385	384	350F-Tg-EPXY
013, 03 0111		0.08	0.25	2.5	381	385	350F-Tg-EPXY
		0.08	0.5	2.25	372	373	350F-Tg-EPXY

IOINT ADVANCED

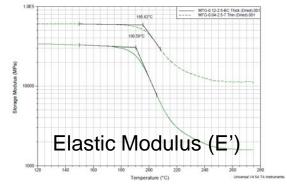

13

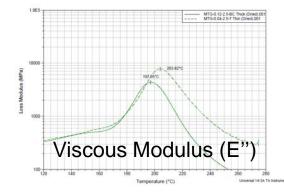

Transport Aircraft Structure:

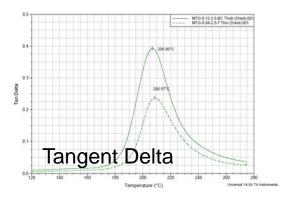
Specimen Dimensions – Conclusion


Thickness dependent material behavior

50mm 3-Pt Bend Fixture

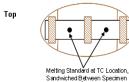




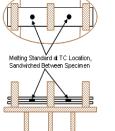


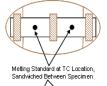
35mm Dual Cantilever Fixture

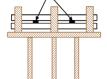
- Temperature Calibration Evaluation
 - ASTM D7028, section 9.1 states, "The DMA equipment shall be calibrated in accordance with Test Method E 1867 for temperature signals and in accordance with the equipment manufacturer's recommendation for the storage modulus."
 - ASTM E1867 lists NIST traceable temperature calibration standards
 - Indium, Tm = 156.6 ° C
 - Tin, Tm = 231.9 ° C
 - Lead, Tm = 327.5 ° C
 - Zinc, Tm = 419.5 ° C
 - ASTM E 1867 does not address the need for a rigid span support to hold the calibration standard.
 - Evaluate calibration support beam dimensions/configuration
 - Evaluate calibration support beam materials

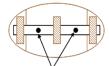


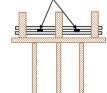
Temperature Calibration – Support Dimensions & Configurations

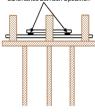

			Support Dimensions		Specimens per Mate	rial (Number of Materials)	
Property	Test Method	Thickness (in.)	Width (in.)	Length (in.)	50mm 3-pt Bend Fixture	35mm Dual Cantilever Fixture	Material ID
		0.04	0.5	Bottom, 2.5 Top, 2.5	1 x (1)	1 x (1)	500F-Tg-BMI
		0.02	0.5	Bottom, 2.5 Top, 2.5	1 × (1)	1 x (1)	500F-Tg-BMI
Indium Melting Temperature		0.06	0.5	Bottom, 2.5 Top, 2.5	1 × (1)	1 x (1)	500F-Tg-BMI
		0.04	0.25	Bottom, 2.5 Top, 2.5	1 x (1)	1 x (1)	500F-Tg-BMI
	ASTM E1867 &	0.04	0.5	Bottom, 2.5 Top, 1.5	1 × (1)	1 x (1)	500F-Tg-BMI
	Figure 3	0.04	0.5	Bottom, 2.5 Top, 2.5	1 x (1)	1 x (1)	500F-Tg-BMI
		0.02	0.5	Bottom, 2.5 Top, 2.5	1 × (1)	1 x (1)	500F-Tg-BMI
Tin Melting Temperature		0.06	0.5	Bottom, 2.5 Top, 2.5	1 x (1)	1 x (1)	500F-Tg-BMI
		0.04	0.25	Bottom, 2.5 Top, 2.5	1 × (1)	1 x (1)	500F-Tg-BMI
		0.04	0.5	Bottom, 2.5 Top, 1.5	1 x (1)	1 x (1)	500F-Tg-BMI


Figure 3




Side





Melting Standard at TC Location, Sandwiched Between Specimen

 Bottom Thickness, Top Thickness X Bottom Width, Top Width X Bottom Length, Top Length

 0.04",0.04" X 0.5",0.5" X 2.5",2.5"

 0.02",0.02" X 0.5",0.5" X 2.5",2.5"

 o.02",0.02" X 0.5",0.5" X 2.5",2.5"

 o.02",0.02" X 0.5",0.5" X 2.5",2.5"

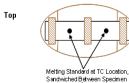
 o.02",0.04",0.04" X 0.5",0.5" X 2.5",2.5"

 o.02",0.02" X 0.5",0.5" X 2.5",2.5"

 o.04",0.06" X 0.5",0.5" X 2.5",2.5"

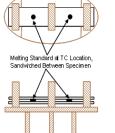
 o.02",0.02" X 0.5",0.5" X 2.5",2.5"

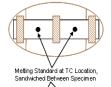
 o.04",0.06" X 0.5",0.5" X 2.5",2.5"

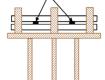

0.04",0.04" X 0.25",0.25" X 2.5",2.5" d. Variable Width Specimen 0.04",0.04" X 0.5",0.5" X 2.5",1.5" e. Variable Length Specimen

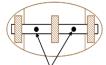
Temperature Calibration – Support Dimensions & Configurations, Test Results

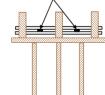
			Support Dimensions			ſ _m [°F]	
Property	Test Method	Thickness (in.)	Width (in.)	Length (in.)	50mm 3-pt Bend Fixture	35mm Dual Cantilever Fixture	Material ID
		0.04	0.5	Bottom, 2.5 Top, 2.5	323	335	500F-Tg-BMI
		0.02	0.5	Bottom, 2.5 Top, 2.5	321	333	500F-Tg-BMI
Indium Melting Temperature (313.88°F)	ASTM E1867 & Figure 3	0.06	0.5	Bottom, 2.5 Top, 2.5	323	334	500F-Tg-BMI
(313.001)		0.04	0.25	Bottom, 2.5 Top, 2.5	326	344	500F-Tg-BMI
		0.04	0.5	Bottom, 2.5 Top, 1.5	321	334	500F-Tg-BMI
		0.04	0.5	Bottom, 2.5 Top, 2.5	458	471	500F-Tg-BMI
		0.02	0.5	Bottom, 2.5 Top, 2.5	455	467	500F-Tg-BMI
Tin Melting Temperature (449.38°F)	ASTM E1867 & Figure 3	0.06	0.5	Bottom, 2.5 Top, 2.5	458	467	500F-Tg-BMI
(440.001)		0.04	0.25	Bottom, 2.5 Top, 2.5	458	472	500F-Tg-BMI
		0.04	0.5	Bottom, 2.5 Top, 1.5	456	470	500F-Tg-BMI

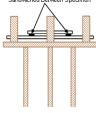

Figure 3






2106





Metting Standard at TC Location, Sandwiched Between Specimen

 Bottom Thickness, Top Thickness X Bottom Width, Top Width X Bottom Length, Top Length

 0.04",0.04" X 0.5",0.5" X 2.5",2.5"
 0.02",0.02" X 0.5",0.5" X 2.5",2.5"
 0.06",0.06" X 0.5",0.5" X 2.5",2.5"

 a. Baseline Specimen
 b. Variable Thickness Specimen
 c. Variable Thickness Specimen

0.04",0.04" X 0.25",0.25" X 2.5",2.5" d. Variable Width Specimen 0.04",0.04" X 0.5",0.5" X 2.5",1.5" e. Variable Length Specimen

Temperature Calibration – Support Material

Polymer Matrix Material for Comparison to Evaluation of Support Materials

		Specimens per Materia		
Property	Test Method	50mm 3-pt Bend Fixture	35mm Dual Cantilever Fixture	Material ID
Indium Melting Temperature	ASTM E1867	3 x (3)	3 x (3)	350F-Tg-EPXY 500F-Tg-BMI 600F-Tg-PI
Tin Melting Temperature	ASTM E1007	3 x (2)	3 x (2)	500F-Tg-BMI 600F-Tg-PI
Specific Heat Capacity, Thermal Conductivity, and Thermal Diffusivity	ASTM E1461	1 x	(4)	180F-Tg-EPXY 350F-Tg-EPXY 500F-Tg-BMI 600F-Tg-PI

Support Material Evaluation

		Specimens per Materia		
Property	Test Method	50mm 3-pt Bend Fixture	35mm Dual Cantilever Fixture	Material ID
Indium Melting Temperature		3 x (4)	3 x (4)	Macor Alumina Silicate Silica Glass Steel
ASTM E1867 - Tin Melting Temperature		3 × (4)	3 x (4)	Macor Alumina Silicate Silica Glass Steel
Specific Heat Capacity, Thermal Conductivity, and Thermal Diffusivity	ASTM E1461	1 ×	(4)	Macor Alumina Silicate Silica Glass Steel

Temperature Calibration – Support Material, Test Results

Indium Tm = 313.88°F, Tin Tm = 449.38°F

50mm 3-pt Bend Fixture									
Material ID	Indium Tmavg [°F]	Tin Tmavg [°F]							
350F-Tg-EPXY	319.77	-							
500F-Tg-BMI	320.06	454.42							
600F-Tg-PI	317.72	453.16							
Polymer Matrix Avg	319.18	453.79							
Alumina Silicate	322.84	455.74							
Macor	316.74	453.01							
Silica Glass	317.61	453.72							
Steel	330.83	461.62							

35mm Dual Cantilever Fixture									
Material ID	Indium Tmavg [°F]	Tin Tmavg [°F]							
350F-Tg-EPXY	330.27	-							
500F-Tg-BMI	330.41	463.80							
600F-Tg-PI	327.84	462.52							
Polymer Matrix Avg	329.51	463.16							
Alumina Silicate	330.34	463.79							
Macor	328.50	460.49							
Silica Glass	328.16	460.80							
Steel	336.60	467.14							

	Thermal Diffusivity [mm ² /s]						
Material	α at T = 77°F	α at T = 300°F	α at T = 450°F				
180F-TG-EPOXY	0.255						
350F-TG-EPOXY	0.407	0.331					
500F-TG-BMI	0.404	0.341	0.310				
600F-TG-PI	0.418	0.348	0.319				

		nal Diffusivity [n	nm²/s]	
Material	Description	α at T = 77°F	α at T = 300°F	α at T = 450°F
Macor	Glass-Ceramic	0.844	0.727	0.684
Lavastone	Alumina-Silicate	2.00	1.39	1.17
Soda Lime Glass	Silicate Glass	0.505	0.477	0.461

Temperature Calibration – Conclusion

- Calibration Support Beam Geometry
 - No significant differences seen with variable dimensions
 - Recommend using a similar size calibration support beam as the intended test specimen
- Calibration Support Beam Material
 - Macor, Lavastone and soda lime glass were all found to be good materials.
 - Comparable melting temperatures to melting temperatures found using polymer matrix composite calibration support beams
 - Similar thermal diffusivities to polymer matrix composites
 - Recommend using Macor
 - Relatively easy to obtain
 - Easily machineable
 - Consistent formulation

- Development of Calibration and Testing Procedures
 - Utilized data from the DMA evaluations
 - TC location
 - Specimen dimensions
 - Span support dimensions/configuration
 - Span support material
 - Distributed new calibration and testing procedures and materials to labs for round robin testing for evaluation of procedures.
 - Low-to-high Tg materials are being evaluated
 - Specimens are being tested after dry and wet environmental conditioning

Inter-Laboratory Testing – Test Matrix

			Specimens per Material (Number of Materials)											
			Laboratory, 50mm 3-pt Bend Fixture Laboratory, 35mm Dual Cantilever Fixture											
Property	Test Method	Lab 1	Lab 2	Lab 3	Lab 4	Lab 5	Lab 6	Lab 1	Lab 2	Lab 3	Lab 4	Lab 5	Lab 6	Material ID
DMA Temperature Calibration	ASTM E1867	1 x (2)	1 x (2)	1 x (2)	1 x (2)	1 x (2)	1 x (2)	1 x (2)	1 x (2)	1 x (2)	1 x (2)	1 x (2)	1 x (2)	Indium Zinc
DMA Temperature Verification	ASTM E1007	1 x (2)	1 x (2)	1 x (2)	1 x (2)	1 x (2)	1 x (2)	1 x (2)	1 x (2)	1 x (2)	1 x (2)	1 x (2)	1 x (2)	Indium Zinc
Glass Transition Temperature (Tg), Dry, by DMA	ASTM D7028	3 x (5)	3 x (5)	3 x (5)	3 x (5)	3 x (5)	3 x (5)	3 x (5)	3 x (5)	3 x (5)	3 x (5)	3 x (5)	3 x (5)	180F-Tg-EPXY 350F-Tg-EPXY 500F-Tg-BMI 600F-Tg-PI Polycarbonate
Glass Transition Temperature (Tg), Wet, by DMA		3 x (4)	3 x (4)	3 x (4)	3 x (4)	3 x (4)	3 x (4)	3 x (4)	3 x (4)	3 x (4)	3 x (4)	3 x (4)	3 x (4)	180F-Tg-EPXY 350F-Tg-EPXY 500F-Tg-BMI 600F-Tg-PI

Inter-Laboratory Testing – Test Results

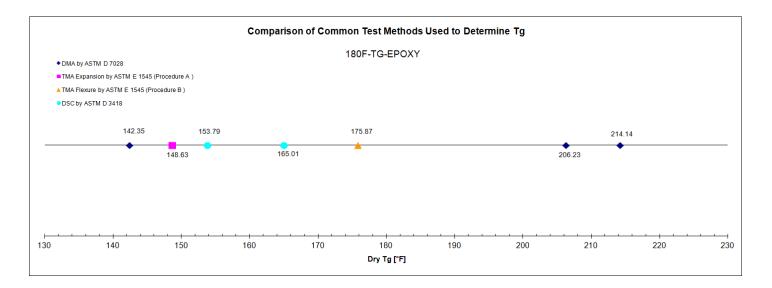
- Round Robin Test Results
 - Tests have been completed from three of the six labs
 - The standard deviation of the dry tested samples is much improved from the ASTM D 7028 round robin.
 - The standard deviation of the wet tested samples is worse than that obtained from the ASTM D 7028 round robin.
 - Two of the labs required relatively thin (0.06") samples and the third and remaining labs are using a relatively thick (0.12") sample.
 - There is reason to believe that the thin samples lost more moisture than the thick samples before the Tg was reached.
 - All round robin results will be reported in the FAA report.

	Standard Deviation of the Glass Transition Temperature							
	[°F]							
	Dry Tg _{E'}	Dry Tg _{E''}	Dry Tg _{tanð}	Wet Tg _{E'}	Wet Tg _{E''}	Wet $Tg_{tan\delta}$		
ASTM D 7028 Round Robin (2007)	18.628	18.753	16.259	13.254	12.544	13.281		
Current Round Robin w/ Calibration Procedures	6.640	6.568	5.325	15.476	17.129	21.750		

- Viability of New Calibration and Testing Procedures
 - Data from round robin testing will be analyzed to determine adequacy of the new procedures.
 - Additional thermal analysis techniques were used on a small scale to further characterize the capabilities of these procedures.
 - Differential Scanning Calorimetry (DSC) by ASTM D3418
 - Thermo-Mechanical Analysis (TMA) by expansion method ASTM E1545 (procedure A)
 - Thermo-Mechanical Analysis (TMA) by flexure method ASTM E1545 (modified procedure B)

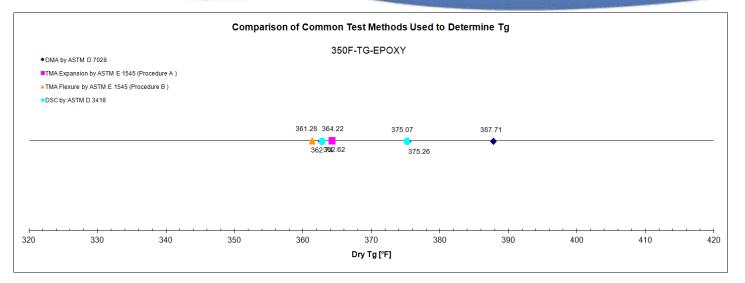
Comparison to DSC & TMA Techniques

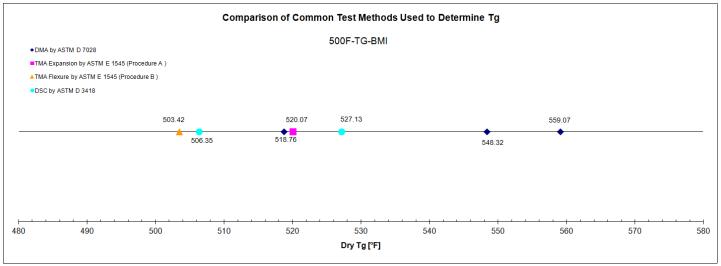
Property	Test Method	Specimens per Material (Number of Materials)	Material ID
Glass Transition Temperature (Tg), Dry, by DSC	ASTM D3418	3 x (5)	180F-Tg-EPXY 350F-Tg-EPXY 500F-Tg-BMI 600F-Tg-PI Polycarbonate
Glass Transition Temperature (Tg), Dry, by TMA Expansion	ASTM E1545, Procedure A	3 x (5)	180F-Tg-EPXY 350F-Tg-EPXY 500F-Tg-BMI 600F-Tg-PI Polycarbonate
Glass Transition Temperature (Tg), Dry, by TMA Flex	ASTM E1545, Modified Procedure B	3 x (5)	180F-Tg-EPXY 350F-Tg-EPXY 500F-Tg-BMI 600F-Tg-PI Polycarbonate



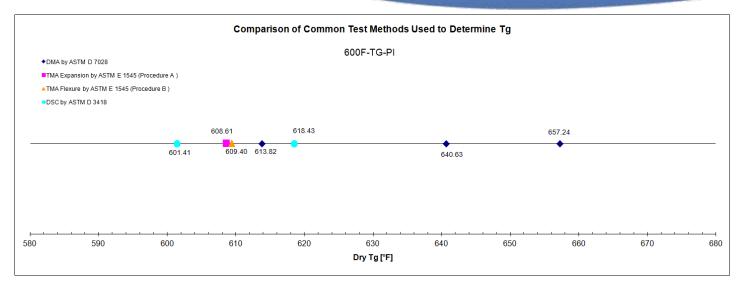
Comparison to DSC & TMA Techniques – Test Results

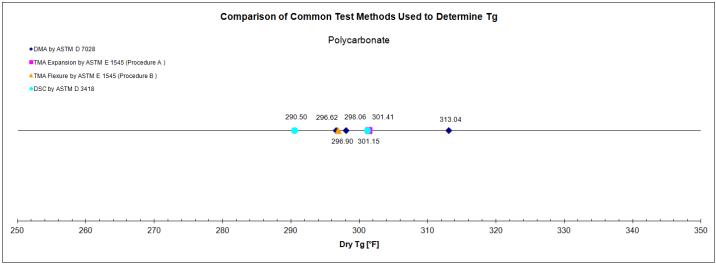
		Glass Transition Temperature [°F]						
		DMA by ASTM D 7028 (NIAR Calibration Procedures)			TMA Expansion by ASTM E 1545 (Procedure A)	TMA Flexure by ASTM E 1545 (Procedure B)	DSC by ASTM D 3418	
Material	Specimen Number	Dry $Tg_{E'}$	Dry Tg _{E''}	Dry $Tg_{tan\delta}$	Dry Tg_{Exp}	$\text{Dry } Tg_{Flex}$	Dry Tg_{eig}	Dry Tg_{mg}
180F-TG-EPOXY	Mean	142	206	214	149	176	154	165
350F-TG-EPOXY	Mean	363	375	388	364	361	363	375
500F-TG-BMI	Mean	519	548	559	520	503	506	527
600F-TG-PI	Mean	614	641	657	609	609	601	618
Polycarbonate	Mean	297	298	313	301	297	291	301



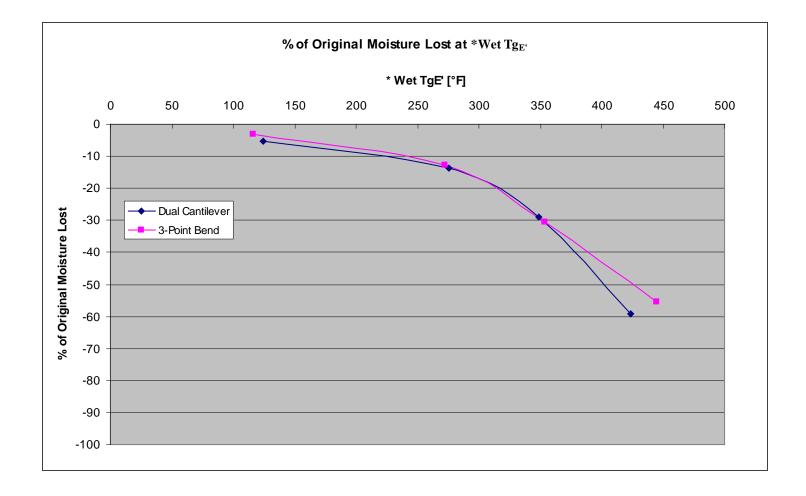


Comparison to DSC & TMA Techniques – Test Results





Comparison to DSC & TMA Techniques – Test Results


- Benefit to Aviation
 - Improvement in industry applications and safety
 - Material service temperature definition
 - Quality control
- Future needs
 - Further evaluate differences observed due to dimensional variation of specimens
 - Look at equations used to determine the elastic and viscous modulus
 - Look at potential thermal lag issues
 - Study methods to improve wet Tg reliability

Looking Forward – Moisture Loss During Heat Up

End of Presentation.

Thank you.

JOINT ADVANCED MATERIALS & STRUCTURES CENTER OF EXCELLENCE