Effects of Alternative Jet Fuel Blends on Aerospace-Grade Carbon/Epoxy Composites

Naoufal Harich^b, Matthew W. Priddy^b, Thomas E. Lacy Jr.^c, Charles U. Pittman Jr.^d, Santanu Kundu^a

^a Dave C. Swalm School of Chemical Engineering, Mississippi State University, Mississippi State, MS 39762

^b Department of Mechanical Engineering, Mississippi State University, Mississippi State, MS 39762

^c Department of Mechanical Engineering, Texas A&M University, College Station, TX 77843-3123

^d Department of Chemistry, Mississippi State University, Mississippi State, MS 39762

Dave Stanley, FAA Technical Monitor Cindy Ashforth, FAA Sponsor Other FAA Personnel: Larry Ilcewicz, PhD; Ahmet Oztekin, PhD

Background

- Motivation and Key Issues
 - The matrix phase of composites can absorb various fluids, including fuel leading to matrix swelling and matrix cracking
 - Fuel absorption can lead to the degradation of the thermal and mechanical properties of composites
 - Alternative fuels can have similar effects as typical Jet fuels, but not been reported in the literature extensively
- Objectives and Scope
 - Determine whether the use of alternative fuels poses more risk on aerospace structural composites than the use of Jet A
 - Investigate the effects of alternative fuels on carbon/epoxy composites
 - Fuel uptake
 - Thermal and mechanical properties
 - Develop a modeling framework based on the experimental data that can be used for complex, real-life geometries
- Approach
 - Experimental investigation of conventional and alternative fuels absorption of carbon/epoxy composites
 - Track the weight gain with time to determine the amount of fuel absorbed
 - Investigate the changes in the dynamic properties after absorption
 - Modeling the diffusion process using Finite Element Method

(STATE)

0.2 1 AS4/3501-6: carbon fiber with ▼ epoxy resin Weight Gain (%) 0 2000 0 2000 IM7/8551-7A: carbon fiber with Weight Gain (%) 0.8 epoxy resin IM7/977-2: carbon fiber with epoxy resin 0.6 IM7/5250-4: carbon fiber with bismaleimide resin AS4/PEEK(APC-2): carbon fiber 0.4 with polyetheretherketone resin IM8/APC (HTA): carbon fiber AS4/PEEK(APC-2) AS4/3501-6 0.2 with aromatic polymer -0.05 IM7/8551-7A IM8/APC(HTA) IM7/977-2 composite (high temperature IM7/5250-4 amorphous) -0.1 20 30 40 10 20 50 0 10 50 30 40 **Graphs reproduced** time^{1/2} (hour)^{1/2} time1/2 (hour)1/2 from Ref 1 % weight gain for composites with % weight gain for composites with [±45]_{2s} layup and thermoset matrix [±45]_{2s} layup and thermoplastic matrix

Literature Study: Effects of JP4 Fuel Uptake on Composites

- Composites with a thermoset (cross-linked) matrix absorb less fuel than composites with a thermoplastic matrix
- The type of matrix and layup affect the fuel uptake

[1] Curliss, D.B., and Carlin, D., 1990, "Effect of jet-fuel exposure on advanced aerospace composites, II: Mechanical properties," Final Report, no. WRDC-TR-90-4064, Air Force Wright Research and Development Center, OH, USA.

Material Systems: Composites

• Three aerospace-grade carbon/epoxy composites were considered:

Material system	Fiber type	Fabrication method	Layup
Hexcel SGP370-8H/8552	Eight harness woven carbon fabric	Autoclave cured	Cross-ply [0/90/90/0]
Hexcel SGP370-8H/8552	Eight harness woven carbon fabric	Autoclave cured	Quasi-isotropic [0/-45/45/90]
DMS2436/API-1078	Warp/knit carbon fabric	Resin-infused	[45/-45/0/90/0/-45/45]

• Specimens were cut from these composite panels into 2 (L) x 0.5 (W) in² dimensions

Red: carbon fibers Blue: Epoxy

Fuels used

- Conventional jet fuel Jet A was used
- The alternative fuels (AF) used in this work were:

AF blend used	Process used	Blending ratio with Jet A	Aromatic content (AF only)
ATJ/Jet A	ATJ/SPK	50/50	0%
SPK/Jet A	HEFA/SPK	50/50	0-0.4%
Farnesane/Jet A	HFS/SIP	10/90	0%
S8/Jet A	FT/SPK	50/50	<0.2%

ATJ/SPK: Alcohol-to-Jet to Synthetic Paraffinic Kerosene

HEFA/SPK: Hydroprocessing Esters and Fatty Acids to Synthetic Paraffinic Kerosene

HFS/SIP: Hydroprocessed Fermented Sugars to Synthetic Isoparaffins

FT/SPK: Fischer-Tropsch to Synthetic Paraffinic Kerosene

Fuels used

ATJ/SPK: Alcohol-to-Jet to Synthetic Paraffinic Kerosene

HEFA/SPK: Hydroprocessing Esters and Fatty Acids to Synthetic Paraffinic Kerosene

HFS/SIP: Hydroprocessed Fermented Sugars to Synthetic Isoparaffins

FT/SPK: Fischer-Tropsch to Synthetic Paraffinic Kerosene

Weight Gain with Time for Autoclave Quasi-Isotropic Hexcel SGP370-8H/8552 Carbon/Epoxy immersed in Jet A fuel

The *average fuel uptake* and a Bezier trendline. Error bars represent the standard deviation.

- Faster **absorption** in the **early stages** of the fuel immersion
- The equilibrium weight gain was of $\approx 0.27\%$ and the range [L-H] of [0.18 0.35] %

Summary of Average Weight Gain for All Specimens and Fuels Used

0.7

- Total fuel uptakes were low for all three composite types ^{2, 3}
- No notable difference was measured in fuel absorption for specimens immersed in Jet A fuel versus the alternative fuel blends
- Composites fabricated using woven fabric plies absorbed more fuel than composites fabricated using warpknitted unidirectional plies

[2] Harich, Naoufal, et al. *Effects of New Jet Fuel Exposure on Aerospace Composites–Phase 1 Final Report*. No. DOT/FAA/TC-21/53. United States. Department of Transportation. Federal Aviation Administration. William J. Hughes Technical Center, 2022.

[3] Harich, Naoufal, et al. "Effects of alternative jet fuel blends on aerospace-grade carbon/epoxy composites." Materials & Design 221 (2022): 110993.

Dynamic Mechanical Analysis (DMA)

- The effects of fuel absorption on the thermomechanical properties of composites are studied using Dynamic Mechanical Analysis (DMA).
- DMA was performed on neat and fuel-immersed specimens using an RSA-G2 Solids Analyzer with the three-point bending mode.
- The analysis was performed following the ASTM D7028-07.

DMA parameters used

Test method	Frequency	Heating Rate
Three-point bending	1 Hz	5 °C/min

Dynamic Mechanical Analysis (DMA)

- **Thermomechanical properties** of interest:
 - Storage modulus E' measures the elastic response
 - Loss modulus *E*" measures the viscous response (dissipation in the system)
 - tan(δ) is the ratio of E"/E'
- The ASTM D7028-07^[3] define two temperatures of interest for the glass transition temperature:
 - The intersection of the two tangent lines from the storage modulus gives DMA T_g
 - The maxima in the tan(δ) curves is the glass transition temperature, T_t

[2] Sperling, L. H. (2005). *Introduction to physical polymer science*. John Wiley & Sons.
[3] ASTM International. (2007). ASTM D7028-07-Standard Test Method for Glass Transition Temperature (DMA Tg) of Polymer Matrix Composites by Dynamic Mechanical Analysis (DMA).

DMA Results for Autoclaved Cross-ply Hexcel SGP370-8H/8552 Carbon/Epoxy Specimens: Neat and Immersed in ATJ/Jet A Blend

- Both DMA T_g and T_t decreased after fuel absorption: Δ DMA $T_g = 11.3^{\circ}$ C and $\Delta T_t = 13.7^{\circ}$ C
 - DMA T_g and T_t for specimens saturated with four alternative fuel/Jet A blends were impacted to the same extent as those saturated with 100% Jet A fuel.

- DMA T_g and T_t for specimens saturated with the four alternative fuel blends were impacted to the same extent as those saturated with Jet A fuel.
- Both DMA T_g and T_t decreased after fuel uptake in the range of 3.1-19°C for DMA T_g and 1.8-20.6°C for T_t .
- The DMA T_g and T_t for woven fabric composites degraded more than for composite specimens with warp-knitted unidirectional plies.

Motivation for Considering Alternative Fuels and Cyclic Absorption/Desorption Cycles

- The <u>pure alternative fuels</u> are comprised <u>mostly of paraffins and olefins</u> and have almost <u>no aromatics</u>
 - MSU has limited access to alternative fluids, particularly unblended ones
 - Investigate model fluids with similar chemical structures as the pure alternative fuels
- **Cyclic fuel absorption-desorption** experiments were performed:
 - Composites' **encounter with fluids** is a **cyclic** and **not continuous** process

Model Fluids Used

• Model fluids to be used:

[4] Sustainable bio-derived synthetic paraffinic kerosene (Bio-SPK) jet fuel flights and engine tests program results. 9th AIAA aviation technology, integration, and operations conference (ATIO) and aircraft noise and emissions reduction symposium (ANERS), (p. 7002).

Material Systems/Composites Used

• Two aerospace-grade carbon/epoxy composites were used:

Material system	Fiber type	Fabrication method	Layup
Hexcel SGP370-8H/8552	Eight-harness woven carbon fabric	Autoclave cured	Cross-ply [0/90/90/0]

- Hexcel SGP370-8H/8552 is an eight-harness woven fabric made from IM7 fibers
- Specimens were cut from these composite panels into 2 (L) x 0.5 (W) in² dimensions

Red: carbon fibers Blue: epoxy

Experimental Details

• Maximum three fuel absorption-desorption cycles were performed:

- DMA was performed once saturation was reached
- Vacuum drying was used to accelerate desorption
- Each set consists of three replicas for each model fluid

Weight Gain with Time for Autoclave Cross-Ply Hexcel SGP370-8H/8552 Carbon/Epoxy Immersed in Dodecane - 1st Absorption Cycle

The *average fuel uptake* with error bars representing the standard deviation

- Faster **absorption** in the **early stages** of the fuel immersion
- The equilibrium weight gain was of $\approx 0.69\%$

Weight Gain with Time for Autoclave Cross-Ply Hexcel SGP370-8H/8552 Carbon/Epoxy Immersed in All Fluids - 1st Absorption Cycle

- Faster absorption in the early stages of the fuel immersion
- The equilibrium weight gain for all specimens was in the range of 0.3 0.7%

Weight Gain with Time for Autoclave Cross-Ply Hexcel SGP370-8H/8552 Carbon/Epoxy Immersed in Dodecane - All Cycles

- Faster **absorption** in the **early stages** of the fuel immersion
- The equilibrium weight gain *slightly* decreases after each cycle

Weight Gain Comparison for Autoclave Cross-Ply Hexcel SGP370-8H/8552 Carbon/Epoxy Immersed in All 5 Fluids - All Cycles

- The equilibrium weight gain slightly decreases after each cycle for all fluids
- **Dodecane** and **Jet A** have the **highest** equilibrium weight gain for all 3 cycles
- Octane has the lowest equilibrium weight gain for all 3 cycles

Number of Moles Absorbed of Each Model Fuel

- The number of moles absorbed was calculated using the mass absorbed
- Xylene had the highest moles absorbed
- Octane had the lowest moles absorbed

5 x 10 ⁻⁵
0 / 10
5 x 10 ⁻⁵
3 x 10 ⁻⁵
0 x 10 ⁻⁵
Ą
(

¹Jet A fuel is a mixture of different compounds, its molecular weight was not obtained

Solubility Parameters

- Solubility parameters: Hansen solubility parameters (HSP)
- Contains a dispersion δ_d , polarity δ_p and hydrogen bonding δ_h capability of each molecule and compare it to the polymer
 - Hansen Parameters

$$(R_a)^2 = 4(\delta_{d2} - \delta_{d1})^2 + (\delta_{p2} - \delta_{p1})^2 + (\delta_{h2} - \delta_{h1})^2$$

- R_a is the distance between the polymer and the molecule
- Relative energy difference RED is defined as:

RED = $\frac{R_a}{R_0}$ with R_0 is the interaction radius

- RED <1 the molecule will dissolve
- RED =1 the system will partially dissolve
- RED >1 the system will not dissolve

[5] Hansen CM. Hansen solubility parameters: a user's handbook. 2nd ed. Boca Raton: CRC Press; 2007.

Solubility Parameters (Cont.)

- Xylene is expected to be the most absorbed fluid
 - RED closest to 1
- Octane is expected to be the least absorbed fluid
 - RED farthest from 1

Summary of Absorption Results

	Weight gain %	Molecular weight (g/mol)	Moles absorbed (mol)	δ (MPa ^{1/2})
Ероху	N/A	N/A	N/A	23.2
Octane	0.32 ± 0.01	114.23	$4.20 \pm 0.15 \times 10^{-5}$	14.9
Decane	0.50 ± 0.01	142.29	$5.22 \pm 0.15 \times 10^{-5}$	15.7
Dodecane	0.67 ± 0.01	170.33	$5.91 \pm 0.03 \times 10^{-5}$	16
Xylene	0.53 ± 0.09	106.16	$7.44 \pm 1.30 \times 10^{-5}$	18.1
Jet A fuel	0.66 ± 0.02	N/A ¹	N/A	N/A

¹Jet A fuel is a mixture of different compounds, its molecular weight was not obtained
 Xylene is the fluid that was mostly absorbed but due to its low molecular weight it does not translate to the highest weight gain %

• Octane has the lowest # of moles absorbed and lowest weight gain %

Summary of Average Weight Gain for All Specimens and Model Fuels Used

- The small differences in fuel absorption were explained using solubility parameters.
- The equilibrium weight gain decreased after each absorption-desorption cycle
- The saturation %WG was in the range of 0.32-0.67% for the 1st cycle, 0.24-0.59% for the 2nd cycle and 0.17-0.40% for the 3rd cycle.
- Octane had the lowest %WG for all three cycles while Dodecane and Jet A had the highest.

DMA Results for Autoclaved Cross-ply Hexcel SGP370-8H/8552 Carbon/Epoxy Specimens: Immersed in Dodecane for the 1st absorption cycle

- DMA T_g decreased after the first cycle of fluids absorption: Δ DMA $T_t = 12.5$ °C and Δ DMA $T_g = 6.6$ °C
- DMA *T_g* and *T_t* for specimens saturated with four model fuels were impacted to the same extent as those saturated with Jet A fuel.

DMA Results for Autoclaved Cross-ply Hexcel SGP370-8H/8552 Carbon/Epoxy Specimens: Immersed in Dodecane for all absorption cycle

- DMA T_g decreased after the first cycle of absorption then increased after each absorption cycle
- DMA *T_g* for specimens saturated with four model fuels were impacted to the same extent as those saturated with Jet A fuel.

DMA Results for Autoclaved Cross-ply Hexcel SGP370-8H/8552 Carbon/Epoxy Specimens: Comparison of All Fuels and Cycles

- DMA T_t decreased after all cycles of absorption compared to neat specimen
- The DMA T_t drop for the 2nd and 3rd cycles was smaller compared to the 1st cycle
- This correlates well with the results from the weight gain
- *T_g* for specimens saturated with four model fuels were impacted to the same extent as those saturated with Jet A fuel.

- DMA T_g for specimens saturated with the model fuels were impacted to the same extent as those saturated with Jet A fuel.
- DMA T_g decreased for the 1st, 2nd and 3rd cycle by 11.9, 8.4 and 8.0, respectively, when compared with the neat specimens.
- The DMA T_g drop for the 2nd and 3rd cycles was smaller compared to the 1st cycle
- This correlates well with the results from the weight gain

- The effects of fiber packing and fiber arrangement on the diffusion behavior of fluids in composite materials were investigated:
 - Three types of fiber arrangements were used (Square, Hexagonal, and Random Arrays)
 - Fiber volume fraction was changed to investigate the fiber packing (10 % $\leq V_f \leq 50\%$)
- Finite Element Analysis via ABAQUS was used (mass diffusion process)

Weight Gain % vs Time for Square Array

- Weight gain $\% = \frac{Absorbed Amount}{Dry Weight of composite} x100\%$
- The weight gain % decreases with the increase in fiber volume fraction

Effective Diffusivity Results

- The effective diffusivities obtained correlates well with the weight gain % results
- It decreases with the increase in the volume fraction
- At low V_f , the effective diffusivities are similar
- At high V_f, the hexagonal array has higher effective diffusivity values

Explanation of Effective Diffusivity Results

- At low fiber volume fraction, the square and hexagonal have similar effective diffusivities
- At high volume fraction, the hexagonal array had higher diffusivities
 - Likely caused by the different nature of fuel diffusion in the confined space

- Alternative fuels blended with Jet A fuel within the ratios studied showed no different impact on composite materials than conventional fuel
- Model fuels used showed no differences in thermomechanical properties with Jet A
- Fiber packing impacted both the weight gain and thermomechanical properties
- From the research performed: The alternative fuels represent a safe substitute for conventional fuels (effects of fluid vapor pressure not investigated)

Publications

Technical reports

- Bassou, R., Harich, N., Priddy, M. W., Lacy Jr, T. E., Pittman Jr, C. U., Kundu, S. *Effect of Jet Fuels Exposure on Aerospace Composites Literature Review.* NO. DOT/FAA/TC-20/22. United States. Department of Transportation. Federal Aviation Administration. William J. Hughes Technical Center, 2021. (Published)
- Harich, N., Bassou, R., Priddy, M. W., Lacy Jr, T. E., Pittman Jr, C. U., Kundu, S. *Effects of New Jet Fuel Exposure on Aerospace Composites–Phase 1 Final Report*. No. DOT/FAA/TC-21/53. United States. Department of Transportation. Federal Aviation Administration. William J. Hughes Technical Center, 2022. (Published)
- Harich, N., Priddy, M. W., Lacy Jr, T. E., Pittman Jr, C. U., Kundu, S. Effects of New Jet Fuel Exposure on Aerospace Composites–Phase 2 Final Report. (In preparation)

Journal

- Harich, N., Bassou, R., Priddy, M. W., Lacy Jr, T. E., Pittman Jr, C. U., & Kundu, S. (2022). Effects of alternative jet fuel blends on aerospace-grade carbon/epoxy composites. *Materials & Design*, 221, 110993. (Published)
- Harich, N., Priddy, M. W., Lacy Jr, T. E., Pittman Jr, C. U., & Kundu, S. Effects of cyclic absorption-desorption of model fuels by aerospace-grade carbon/epoxy composites. (Submitted to Polymer Composite Journal)
- Harich, N., Priddy, M. W., Lacy Jr, T. E., Pittman Jr, C. U., & Kundu, S. Influence of fiber packing and arrangement on the diffusion behavior of jet fuels in composite materials. (In preparation)