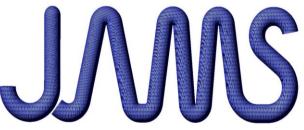
Effects of Liquid Disinfectants and Ultraviolet-C Germicidal Irradiation on Aircraft Cabin Interior Materials

Presented by:


Akhil Bhasin Rebeka Khajehpour NIAR-WSU

JAMS Technical Review April 19, 2023

Federal Aviation Administration

Joint Centers of Excellence for Advanced Materials

- Research Team
- Motivation and Approach
- Project Overview
- Phase-I: Chemical Disinfectants of Aircraft Seating Materials
- Phase-II: Chemical Disinfectants of Cabin Interior Materials
- Phase-III: UV-C Disinfectants of Cabin Interior Materials
- Phase-IV: Chemical Disinfectants and UV-C on Cockpit Interior Materials
- Summary & Conclusions

Research Team (Phase I – Phase III)

• Project Participants (NIAR AVET)

- PI: Gerardo Olivares
- Primary Researchers: Akhil Bhasin, Luis Gomez, Aswini Kona Ravi, Luis Daniel Castillo, Tanat Maichan
- Additional Researchers: Clayton Ehrstein, Javier Martinez, Irene DeGiacomi, Tareq Siddiqui, Hoolooman Ramdial, Anoushka Raju, Carlos Gatti, Hunter Griffith, Garret McClain

FAA Technical Monitor:

- Dave Stanley
- FAA Sponsor:
 - Jeff Gardlin, Cindy Ashforth
- Other FAA Personnel: Ahmet Oztekin
- Industry Partnerships/Other Collaborations:
 - SAE Seat Committee, SAE Cabin Interior Committee, Jamco America, Boeing, Aviation Consulting and Engineering Solutions (ACES), Collins Aerospace, AmSafe, SABIC, Lantal Textiles, Schneller, Aero HygenX, Honeywell Aerospace.

Motivation and Approach

• Motivation & Key Issues

- Covid-19 pandemic outbreak.
- Increased aircraft disinfection procedures enforced by regulatory bodies.

Objective & Scope

- Evaluate and understand the long-term effects of use of disinfectants on aircraft interiors.
- Scope of the project extends to liquid and ultraviolet-c disinfection on seating, aircraft cabin and cockpit interior materials.

Approach

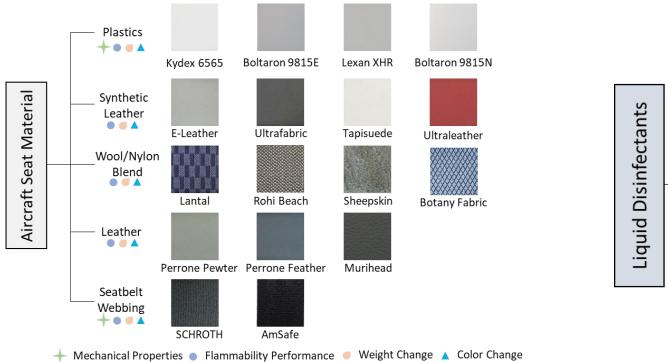
- Identify the commonly used disinfectants for aircraft interior cleaning.
- Subject the materials to accelerated disinfection tests.
- Evaluate the effects on mechanical properties, flammability, weight and color.

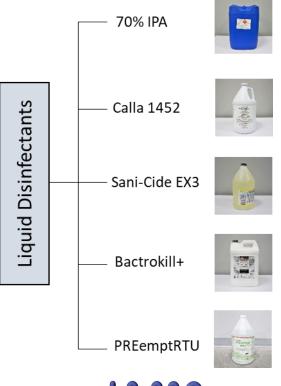
Project Overview

PHASE-I: Effects of Liquid Disinfectants on Aircraft Seating Materials

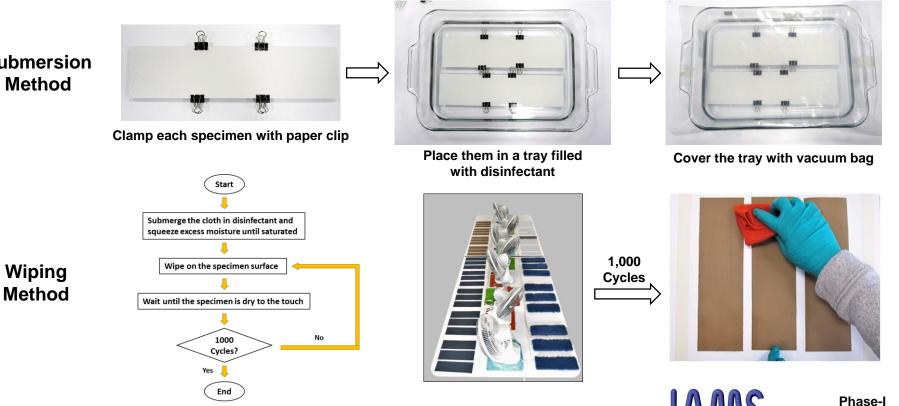
- 5 Liquid Disinfectants
- 17 Seating Materials
- Properties:
 - Flammability &
 - Mechanical

 Cabin Materials: Decorative laminates, floor carpets & honeycomb sandwich panels




- 3 Wavelength configurations
- 8 different material types
- Properties:
 - Mechanical

Materials and Disinfectants



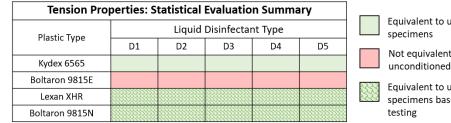
Phase-I

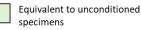
Conditioning Methods

Submersion Method

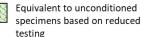
Joint Centers of Excellence

Plastics: Tension Results Summary

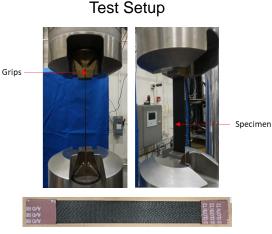

Tensile Test Setup

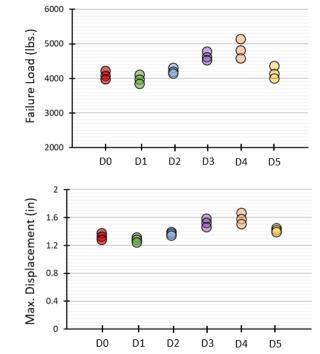


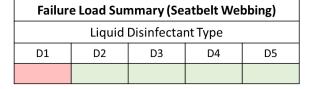
12.000 12,000 Fensile Strength (psi) Yield Stress (psi) 000'9 (psi) 0 0 10.000 8,000 0 0 0 00 0 00 0 0 0 0 0 0 0 6,000 0 0 0 0 0 0 00 0 0 ŏ 0 4.000 4.000 D0 D1 D2 D3 D0 D1 D2 D3 D4 D5 D4 D5 Kvdex 6565 Boltaron 9815E Boltaron 9815N Boltaron 9815E Lexan XHR Lexan XHR Kvdex 6565 Boltaron 9815N


D0: Pristine, D1: 70% IPA; D2: Calla 1452; D3: Sani-Cide EX3; D4: Bactrokill+; D5: PREempt RTU

- Mechanical Test Method: Uniaxial tension ٠ experiments.
- Test Standard: ASTM D638. ٠
- Test specimens: 4 types of plastic materials; ٠ 6 configurations (x120 specimens).


Not equivalent to unconditioned specimens


Seat Belt Webbing Results: Summary


SCHROTH Webbing

- Test Reference: DOT/FAA/TC-15/29.
- Test Specimens: Schroth webbing; 6 configurations (x18 specimens).

D0: Pristine, D1: 70% IPA; D2: Calla 1452; D3: Sani-Cide EX3; D4: Bactrokill+; D5: PREempt RTU

No Reduction in failure load

Reduction in failure load less than 5%

Flammability Results: Submersion

Test Setup

Video provided by ACES (speed scaled for presentation)

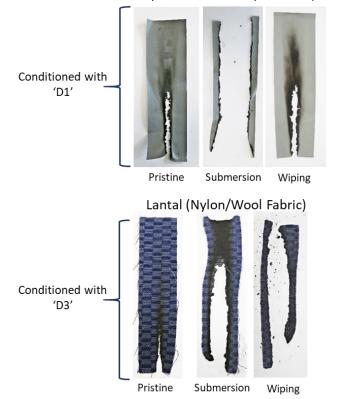
- Vertical Bunsen burn tests were conducted per Title 14, Code of Federal Regulations (14 CFR) 25.853 Appendix F.
- For seatbelt webbing, 12-second test was conducted;
- For plastics, leather, and fabric materials 60-second test were conducted.

	Flammability Result	s: Subme	rsion Cond	litioning		
Material Type	Material Name	Material Name Liquid Disinfectant				
Wateria Type		D1	D2	D3	D4	D5
	Kydex 6565					
Plastic	Boltaron 9815E					
Plastic	Lexan XHR					
	Boltaron 9815N					
	E-Leather CL820					
Synthetic	Ultrafabric 492-6579FR12					
Leather	TapiSuede TSFRC0961					
	Ultraleather ULFRB971-1363					
	Lantal					
Wool/Nylon	Rohi Beach					
Blend	Sheep Skin					
	Botany Fabric					
Leather	Pewter BC (Perrone)					
Leather	Perrone Feather Weight					
Mahhing	SCHROTH					
Webbing	AmSafe Polyester			SSESSES		

Increase in avg. burn length less than 50% in comparison to unconditioned specimens

Increase in avg. burn length greater than 50% in comparison to unconditioned specimens

Increase in avg. burn length less is less than 6" in comparison to unconditioned specimens



Phase-I

Flammability Results: Wiping

Synthetic Leather (E-leather)

Flammability Results: Wiping Conditioning							
Material Type	Material Name	Liquid Disinfectant Type					
	indeend rune	D1	D2	D3	D4	D5	
Synthetic	E-Leather CL820						
	Ultrafabric 492-6579FR12						
Leather	Ultraleather ULFRB971-1363						
	Lantal						
Wool/Nylon	Rohi Beach						
Blend	Sheep Skin						
	Botany Fabric						
L a a tha an	Pewter BC (Perrone)						
Leather	Perrone Feather Weight						

Increase in avg. burn length less than 50% in comparison to unconditioned specimens

Inc

Increase in avg. burn length greater than 50% in comparison to unconditioned specimens

Normally equivalent results obtained when conditioned using submersion method

Phase-I

Color Change: Summary

D4

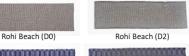
Change in color and texture

D5

Qualitative Color Change: Submersion Conditioning							
Material Type	Material Name	Liquid Disinfectant Type					
Material type		D1	D2	D3	D4	D5	
	Kydex 6565						
Plastic	Boltaron 9815E						
Plastic	Lexan XHR						
1	Boltaron 9815N						
	E-Leather CL820						
Synthetic	Ultrafabric 492-6579FR12						
Leather	TapiSuede TSFRC0961						
	Ultraleather ULFRB971-1363						
	Lantal						
Wool/Nylon	Rohi Beach						
Blend	Sheep Skin						
	Botany Fabric						
Loothor	Pewter BC (Perrone)						
Leather	Perrone Feather Weight						
Webbing	SCHROTH						

		📃 🔲 No change in color/texture 📃 Change in color 🚦

Material Type


Synthetic

Leather

Wool/Nylon

Blend

Leather

D2

Liquid Disinfectant Type

D3

Lantal (D0)

Change in Weight: Wiping Conditioning

D1

Material Name

E-Leather CL820

Ultrafabric 492-6579FR12

Ultraleather ULFRB971-1363 Lantal

> Rohi Beach Sheep Skin

Botany Fabric Pewter BC (Perrone)

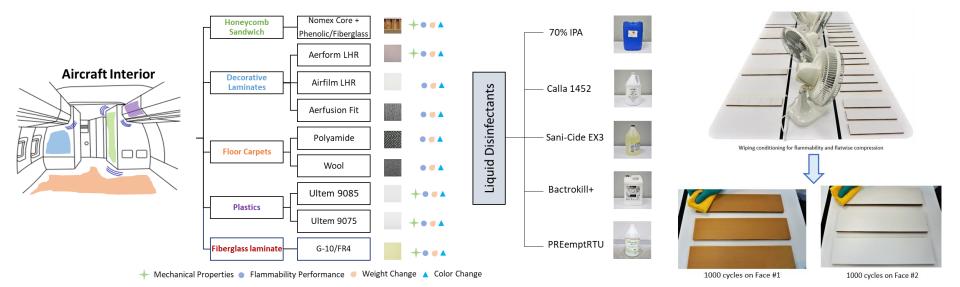
Perrone Feather Weight

Ultrafabric (D0)

Lantal (D3)

Phase-I

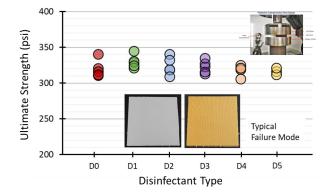
D0: Pristine, D1: 70% IPA; D2: Calla 1452; D3: Sani-Cide EX3; D4: Bactrokill+; D5: PREempt RTU

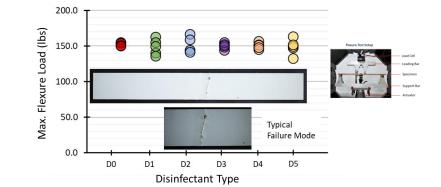

Akhil Bhasin – NIAR AVET

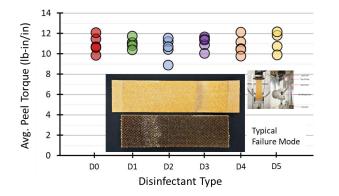
JAMS Technical Review – April 19th, 2023

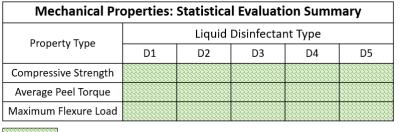
12

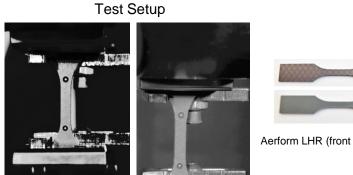
Materials and Disinfectants





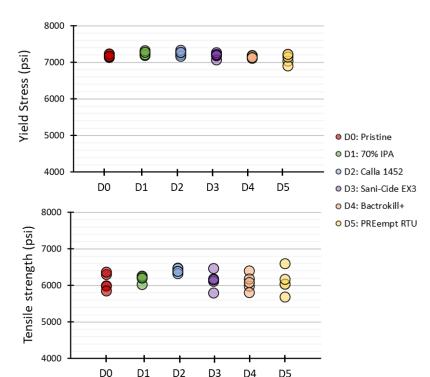

Phase-II

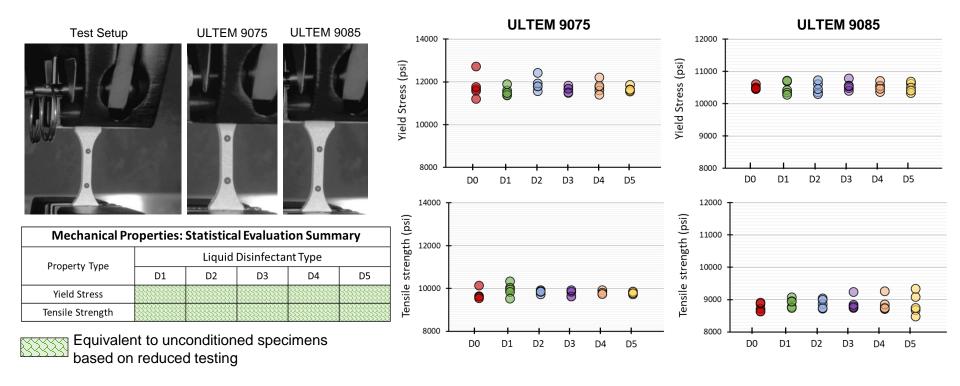

Honeycomb Sandwich Test Summary

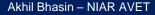

Equivalent to unconditioned specimens based on reduced testing

Akhil Bhasin – NIAR AVET

Decorative Laminate Test Summary

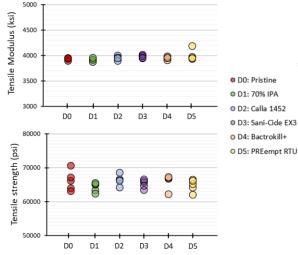



Aerform LHR (front and back view)

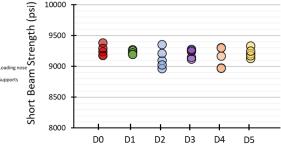

Mechanical Properties: Statistical Evaluation Summary Liquid Disinfectant Type					
Property Type	D1	D2	D3	D4	D5
Yield Stress					
Tensile Strength					

Joint Centers of Excel

ULTEM 9075 & ULTEM 9085 Test Summary


16

Phase-II


Fiberglass Laminate Results Summary

Mechanical Properties: Statistical Evaluation Summary

Property Type	Liquid Disinfectant Type					
Floperty Type	D1	D2	D3	D4	D5	
Tensile Modulus						
Tensile Strength						
SBS Strength						
Equivalent		tioned spe	cimons			

Equivalent to unconditioned specimens

Akhil Bhasin – NIAR AVET

Flammability Results

- Vertical Bunsen burn tests were conducted per Title 14, Code of Federal Regulations (14 CFR) 25.853 Appendix F.
- For all selected material types, 60-second test were conducted.

Flammability Results for Cabin Materials: Summary							
Material Type	Material Name	Liquid Disinfectant Type					
Waterial Type		D1	D2	D3	D4	D5	
Honeycomb Sandwich	Nomex Core + fiberglass/phenolic						
	Aerform LHR						
Decorative Laminate	Aerfilm LHR						
	Aerfusion fit						
Floor Cornet	Polyamide						
Floor Carpet	Wool						
	ULTEM 9075						
ULTEM	ULTEM 9085						
Fiberglass	G-10/FR4						

Increase in avg. burn length less than 50% in comparison to unconditioned specimens

Materials and UV-C Disinfection

Aircraft Cabin & Seating Interiors

Plastics –

- Kydex 6565
- Boltaron 9815N
- Boltaron 9815E Ultem 9075
- Lexan XHR
- Ultem 9085

Honeycomb-

Nomex core with fiberglass/phenolic resin

Composite -

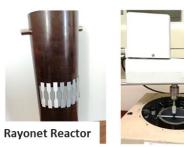
Fiberglass (G-10/FR4)

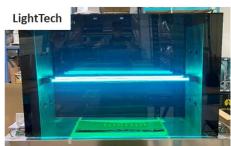
Accelerated UV-C Disinfection

Wavelength Configurations

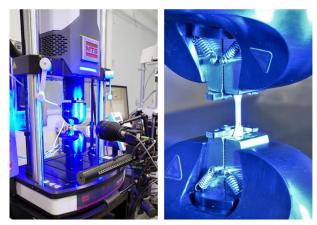
- 222 nm
- 253.4 nm &
- 280 nm

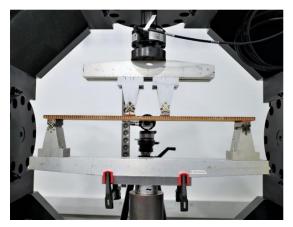
UV-C Conditioning Setup


222 nm


280 nm

253.4 nm


UV-C Accelerated Aging Test Parameters							
Marcalan ath	Baseline	Average	Cumulative	Cumulative	Exposure		
Wavelength	Dose	Intensity	Time	Dosage	Duration		
Configuration	(mJ/cm²)	(mW/cm²)	(Years)	(mJ/cm²)	(minutes)		
			One	1095	23.5		
222 nm	3	0.78	Four	4380	94		
			Eight	8760	188		
			One	14600	18.4		
		13.2	Four	58400	73.6		
252.4	10		Eight	116800	147.2		
253.4 nm	40		One	14600	46		
		5.28	Four	58400	184		
			Eight	116800	368		
			One	13687.5	22.5		
280 nm	37.5	10.14	Four	54750	90		
			Eight	109500	180		


Phase-III

Mechanical Tests

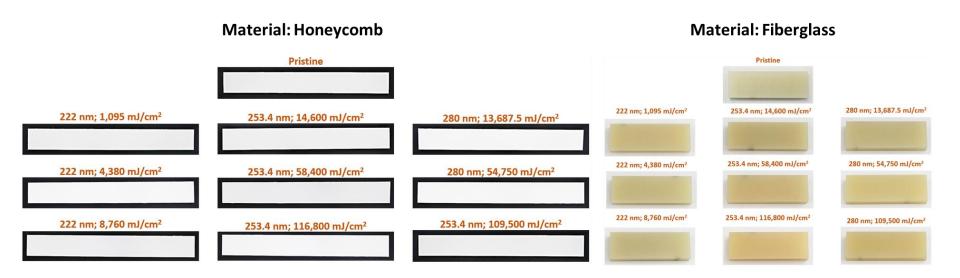
Tensile Test Setup

Test Method: Uniaxial tensile experiments Test Standard: ASTM D638 Test specimens: 6 types of plastic materials (x120 specimens) **Flexure Test Setup**

Test Method: Long-beam flexure experiments Test Standard: ASTM D7249 Test specimens: 1 honeycomb type (x27 specimens)

Short Beam Shear Test Setup

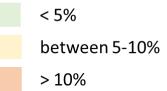
Test Method: Short beam shear Test Standard: ASTM D2344 Test specimens: 1 fiberglass type (x27 specimens)


Phase-III

Color Change – Plastics

UV-C Dosage	Kydex 6565	Boltaron 9815E	Lexan XHR	Boltaron 9815N	Ultem [™] 9075	Ultem [™] 9085
Pristine						
222 nm 4,380 mJ/cm ²		> <		~		
8,760 mJ/cm ²	>	> <	>			
253.4 nm 14,600 mJ/cm ²					N/A	N/A
58,400 mJ/cm ²						
116,800 mJ/cm ²						
280 nm 14,600 mJ/cm ²	7	>	> 4			
58,400 mJ/cm ²	> <	A T	> 4	Ø Ø		

Color Change – Honeycomb & Fiberglass



Phase-III

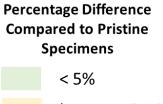
Plastic: Yield Stress Summary

Percent	Percentage Difference Compared to Pristine Specimens – Yield Stress (Avg.)						
Wavelength Configuration	Dosage (mJ/cm²)	Kydex 6565	Boltaron 9815E	Lexan XHR	Boltaron 9815N	Ultem 9075	Ultem 9085
Avg. Pristine (psi)	N/A	7548.1	5521.3	10328.4	6636.3	11776.0	10496.1
222 mm	4,380	-4.12	2.16	-4.24	-8.39	4.59	3.69
222 nm	8,760	-10.39	1.88	1.25	-9.61	3.87	3.62
	14,600	-2.61	2.45	2.10	-3.97	N/A	N/A
253.4 nm	58,400	-5.53	4.06	0.80	3.46	4.65	3.29
	116,800	-5.04	5.54	1.52	-2.15	4.27	6.01
200	54,750	-3.90	2.63	1.72	-1.71	4.12	4.39
280 nm	109,500	-4.51	3.26	-1.09	-1.90	4.05	4.37



Plastic: Tensile Strength Summary

Percentag	Percentage Difference Compared to Pristine Specimens – Tensile Strength (Avg.)						
Wavelength Configuration	Dosage (mJ/cm²)	Kydex 6565	Boltaron 9815E	Lexan XHR	Boltaron 9815N	Ultem 9075	Ultem 9085
Avg. Pristine (psi)	N/A	6680.5	5180.4	10147.8	5263.5	9722.5	8748.4
222 nm	4,380	-16.49	-9.25	-10.47	-9.66	9.27	4.59
222 nm	8,760	-16.55	-6.24	0.04	-12.33	12.22	9.79
	14,600	-4.36	-3.14	-3.72	-2.49	N/A	N/A
253.4 nm	58,400	-13.28	-6.79	0.70	-2.07	-1.65	5.42
	116,800	-19.20	-6.67	-2.18	-7.16	11.11	8.74
380 mm	54,750	-9.12	0.26	-5.21	-6.42	7.78	4.26
280 nm	109,500	-9.40	-0.37	-7.09	-6.18	12.89	8.62


between 5-10%

> 10%

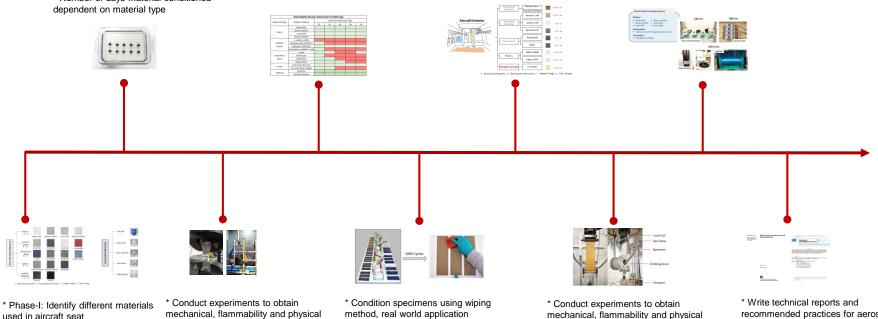
Honeycomb & Composite: Test Results

Percentage Difference Compared to Pristine Specimens						
Wavelength Configuration	Dosage (mJ/cm²)	Honeycomb— Maximum Load	Fiberglass – Short Beam Strength			
Avg. Pristine (psi)	N/A	152.4	9250.1			
	1,095	-2.45	-0.91			
222 nm	4,380	-2.75	-0.16			
	8,760	-0.22	-0.75			
	14,600	-9.66	-0.56			
253.4 nm	58,400	-1.28	-0.80			
	116,800	-0.24	-0.23			
	13,687.5	5.52	-2.21			
280 nm	54,750	-3.47	-0.91			
	109,500	-0.74	-0.26			

between 5-10%

> 10%

Project Highlights (Phase I to Phase III)


* Condition the specimens with conservative submersion method

* Number of days material conditioned

* Evaluate the change in flammability and mechanical properties based on defined criterion

*Phase-II: Continue the research effort for materials used in cabin

* Phase-III: Evaluate the effects of UV-C irradiation on aircraft interiors.

* Identify different liquid disinfectants being used

mechanical, flammability and physical properties of conditioned specimens and unconditioned specimens

method, real world application

*Revaluate change in the flammability properties

mechanical, flammability and physical properties of cabin materials

recommended practices for aerospace community

Conclusions: Phase I

Effect of Liquid Disinfectants on Aircraft Seat Material								
Material Type	Material Name	Property Type						
Waterial Type		Mechanical	Flammability	Color				
	Kydex 6565							
Plastic	Boltaron 9815E							
Plastic	Lexan XHR							
	Boltaron 9815N							
	E-Leather CL820	N/A						
Synthetic	Ultrafabric 492-6579FR12	N/A						
Leather	TapiSuede TSFRC0961	N/A						
	Ultraleather ULFRB971-1363	N/A						
	Lantal	N/A						
Wool/Nylon	Rohi Beach	N/A						
Blend	Sheep Skin	N/A						
	Botany Fabric	N/A						
Leether	Pewter BC (Perrone)	N/A						
Leather	Perrone Feather Weight	N/A						
Webbing	SCHROTH							

Equivalency between conditioned and unconditioned specimen for all liquid disinfectants

Equivalency not obtained between conditioned and unconditioned specimen for some liquid disinfectants

Equivalency not obtained between conditioned and unconditioned specimen for all liquid disinfectants

Conclusions: Phase II

Effect of Liquid Disinfectants on Aircraft Cabin Material					Equivalency between conditioned and
Material Type	Material Name	Property Type			unconditioned specimen for all liquid
		Mechanical	Flammability	Color	disinfectants
Honeycomb Sandwich	Nomex Core/phenolic				
	Aerform LHR				Equivalency not obtained between
Decorative Laminate	Aerfilm LHR	N/A			conditioned and unconditioned specime
	Aerfusion fit	N/A			for some liquid disinfectants
	Polyamide	N/A			
Floor Carpet	Wool	N/A			
	ULTEM 9075				Equivalency not obtained between
ULTEM	ULTEM 9085				conditioned and unconditioned specime
Fiberglass	G-10/FR4				for all liquid disinfectants

Conclusions: Phase III

Effect of UV-C on Aircraft Seat and Cabin Interior Materials							
Material Type	Material Name	Property Type					
		Mechanical	Color				
	Kydex 6565						
	Boltaron 9815E						
Plastic	Lexan XHR						
	Boltaron 9815N						
	ULTEM 9075						
ULTEM	ULTEM 9085						
Honeycomb Sandwich	Nomex Core/phenolic						
Fiberglass	G-10/FR4						

No significant changes between conditioned and unconditioned specimen for UV-C wavelength & exposure levels

Significant changes between conditioned and unconditioned specimen for some UV-C wavelength & exposure levels

Signif and u

Significant changes between conditioned and unconditioned specimen for all UV-C wavelength & exposure levels

Technical Reports

- "Effects of Disinfectants on Aircraft Seating Materials" DOT/FAA/TC-21/18
 - <u>https://www.tc.faa.gov/its/worldpac/techrpt/tc21-18.pdf</u>
- "Effects of Disinfectants on Aircraft Cabin Interior Materials" DOT/FAA/TC-22/37
 - <u>https://www.tc.faa.gov/its/worldpac/techrpt/tc22-37.pdf</u>
- "Effects of Ultraviolet-C Germicidal Irradiation on Aircraft Cabin Interior Materials" DOT/FAA/TC-23/5
 - <u>https://www.tc.faa.gov/its/worldpac/techrpt/tc23-5.pdf</u>

Future Work: Effects of UV-C on Kydex 6565

Proposed Materials To Test & Aging Test Conditions								
Material Description	Expected Findings							
Kydex 6565*	Spare Material from Phase-III	IUVA test parameters & conditions	To identify if the discrepancy rises from the exposure duration or the Kydex material configuration					
Kydex 6565*	IUVA (Boeing)	NIAR test parameters & conditions	To identify if the discrepancy rises from the exposure duration or the Kydex material configuration					

*Different Kydex 6565 material grades were used by NIAR and IUVA teams.

Research Team (Phase IV)

- Effects of the use of cleaning and disinfectant chemicals/processes in the mechanical, optical, plastic, and flammability characteristics of aircraft flight deck materials.
- Project Participants
 - PI: Gerardo Olivares Ph.D.
 - Researchers NIAR-WSU: Rebeka Khajehpour, Alyssa Gonzalez, Beth Dalton
 - Students: Austin Mills, Joe Woodard, Michael Self, Hunter Griffith, Anica Tang, Max Chastain, Trey Young, Emily Dalton, Faizen Khan
- FAA Technical Monitor Cindy Ashforth
- Other FAA Personnel Jeff Gardlin, Ahmet Oztekin
- Industry Partnerships/Other Collaborators Airbus, Boeing, Collins Aerospace, De Havilland, Embraer, Garmin, Honeywell, Aero HygenX, Element Labs
- Matching contribution is a mix of funding between Industry and NIAR-WSU

Project Status (Phase IV)

- Phase III (b): Effect of liquid disinfectants and UV-C on cockpit materials (Finished)
 - Anonymize data and compile a summary report of OEM provided test data (Finished)
 - Create test matrix for flight deck materials testing at NIAR ETL (Finished)
 - Make a test plan for flight deck materials testing at NIAR ETL (Finished)
- Phase IV: Cockpit Interiors Technical Approach (Finished)
 - Execution of conditioning and testing at NIAR ETL (Finished)
 - Analysis of test data from the conditioned specimens at NIAR ETL (Finished)
 - Write technical FAA report (Finished)

Materials Selected for Flight Deck

 Materials and disinfectants were selected from EPA List N, FAA Operator Survey, and feedback from industry partners.

Plastics:

- Lexan™ 9600
- Poly II acrylic

Coatings:

- C1: Antireflective/ antiglare/ oleophobic coating A
- C2: Oleophobic coating B
- C3: Oleophobic coating C
- C4: Oleophobic coating D
- C5: Antireflective/ antiglare/ conductive/ oleophobic coating A
- C6: Antireflective/ conductive coating

LRUs:

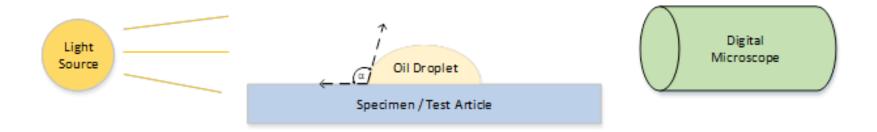
- A1: Air conditioning panel
- A2: Forward panel assy
- A3: Stall warning panel
- A4: Instrument switching

Chemical Disinfectants:

- 70% isopropyl alcohol
- Calla® 1452
- Sani-Side EX3
- PREempt™ RTU
- · Bactrokill+
- Pheno D

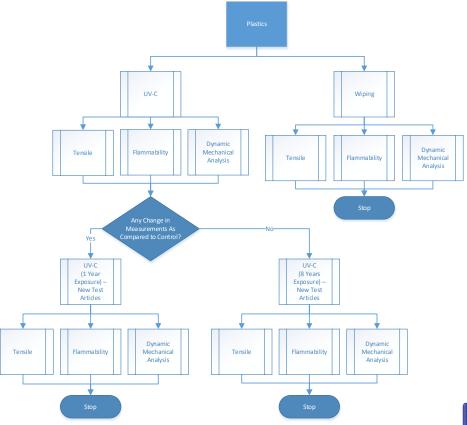
UV-C:

- 222 nm: 4 years (Round 1), and 1 or 8 years (Round 2)
- 254 nm: 4 years (Round 1), and 1 or 8 years (Round 2)
- 280 nm: 4 years (Round 1), and 1 or 8 years (Round 2)


Test Matrix

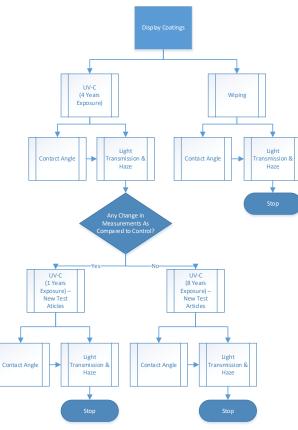
- In contact angle, a significant change is defined as either a change of 10° in angle compared to the control, or a change from oleophobic ($60^\circ \le \alpha \le 90^\circ$) to oleophilic ($90^\circ \le \alpha$).
- For all other test parameters, a significant change is defined as a change of at least 15% as compared to the control specimen.

	Wipe				UV-C (4 years)		UV-C (1 or 8 years)		Electrostatic Spray	Fog			
Material	70% Isopropyl alcohol	Calla® 1452	Sani-Cide EX3	PREempt™ RTU	Bactrokill+	222 nm	254 nm	280 nm	222 nm	254 nm	280 nm	Calla® 1452	Pheno D
Lexan™ 9600	Weight, Visual, DMA, Flammability, Tensile												
Poly II Acrylic	Weight, Visual, DMA, Flammability, Tensile												
Coating 1	Weight, Visual, Light Transmission & Haze, Contact Angle												
Coating 2	Weight, Visual, Light Transmission & Haze, Contact Angle									N/A			
Coating 3	Weight, Visual, Light Transmission & Haze, Contact Angle												
Coating 4	Weight, Visual, Light Transmission & Haze, Contact Angle												
Coating 5	Weight, Visual, Light Transmission & Haze, Contact Angle												
Coating 6	Weight, Visual, Light Transmission & Haze												
LRUs	Weight, Visual, Functional (mechanical and simulator) N/A									Weight, Visual, Functional (mechanical and simulator)			


Contact Angle Measurement

$$f(x) = \left\{ \begin{array}{ll} 60^{\circ} < \alpha & \text{Super Oleophobic} \\ 60^{\circ} \le \alpha \le 90^{\circ} & \text{Oleophobic} \\ 90^{\circ} \le \alpha & \text{Oleophillic} \end{array} \right\}$$

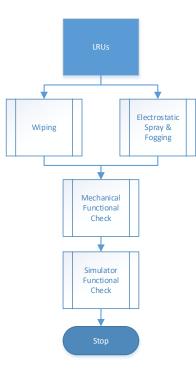
Test Procedure Flow Chart: Plastics



Rebeka Khajehpour – NIAR WSU

JAMS Technical Review – April 19th, 2023

Test Procedure Flow Chart: Coatings



Rebeka Khajehpour - NIAR WSU

JAMS Technical Review – April 19th, 2023

Test Procedure Flow Chart: LRUs

Results: LRUs

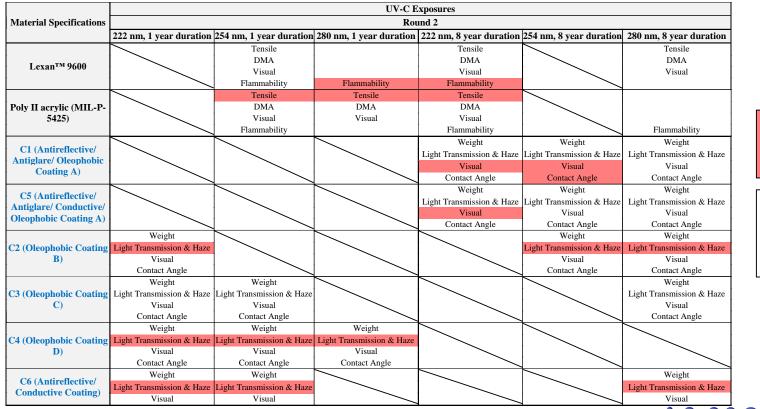
	Application Method & Disinfectant								
Test			Spray x120	Fog x120					
	70% IPA	Calla® 1452	Sani-Cide EX3	PREempt [™] RTU	Bactrokill+	Calla®1452	Pheno D		
Weight	No Significant	No Significant	No Significant	No Significant	No Significant	No Significant	No Significant		
weight	Change	Change	Change	Change	Change	Change	Change		
Visual	No Significant Change	Visible Residue; Local Discoloration and Oxidation; Label Damage	Visible Residue; Local Discoloration	No Significant Change	Local Discoloration and Oxidation	Visible Residue; Local Discoloration and Oxidation	Visible Residue		
Functional (Mechanical Switches)	No Significant Change	Increased Friction on Toggle Switch	Increased Friction on Toggle Switch	No Significant Change	No Significant Change	Increased Friction on DUs Knob	No Significant Change		
Functional (Simulator)	Failed Sim Check	Passed Sim Check	Failed Sim Check	Failed Sim Check	Failed Sim Check	Passed Sim Check	Failed Sim Check		

Significant Change Detected

No Significant Change Detected

Results: Wiping Coupons

Material Specifications						
Material Specifications	IPA (70%)	Calla® 1452	Sani-Cide EX3	PREempt [™] RTU	Bactrokill+	
	Tensile	Tensile	Tensile	Tensile	Tensile	
	DMA	DMA	DMA	DMA	DMA	
Lexan [™] 9600	Weight	Weight	Weight	Weight	Weight	
	Visual	Visual	Visual	Visual	Visual	
	Flammability	Flammability	Flammability	Flammability	Flammability	
	Tensile	Tensile	Tensile	Tensile	Tensile	
	DMA	DMA	DMA	DMA	DMA	
Poly II acrylic (MIL-P-5425)	Weight	Weight	Weight	Weight	Weight	
	Visual	Visual	Visual	Visual	Visual	
	Flammability	Flammability	Flammability	Flammability	Flammability	Significant
	Weight	Weight	Weight	Weight	Weight	
C1 (Antireflective/ Antiglare/	Light Transmission & Haze	Change				
Oleophobic Coating A)	Visual	Visual	Visual	Visual	Visual	Detected
	Contact Angle	Detteoted				
	Weight	Weight	Weight	Weight	Weight	
C5 (Antireflective/ Antiglare/	Light Transmission & Haze					
Conductive/ Oleophobic Coating A)	Visual	Visual	Visual	Visual	Visual	No
	Contact Angle	Significant				
	Weight	Weight	Weight	Weight	Weight	Significant
C2 (Oleophobic Coating B)	Light Transmission & Haze	Change				
C2 (Oleophobic Coating B)	Visual	Visual	Visual	Visual	Visual	
	Contact Angle	Detected				
	Weight	Weight	Weight	Weight	Weight	
C3 (Oleophobic Coating C)	Light Transmission & Haze					
C3 (Oleophobic Coating C)	Visual	Visual	Visual	Visual	Visual	
	Contact Angle					
	Weight	Weight	Weight	Weight	Weight	
C4 (Oleophobic Coating D)	Light Transmission & Haze					
	Visual	Visual	Visual	Visual	Visual	
	Contact Angle					
C6 (Antireflective/ Conductive	Weight	Weight	Weight	Weight	Weight	
Co (Antireffective/ Conductive Coating)	Light Transmission & Haze					
Coating)	Visual	Visual	Visual	Visual	Visual	



Results: UV-C Round 1

Material Specifications		Round 1		
	222 nm, 4 year duration	254 nm, 4 year duration	280 nm, 4 year duration	
	Tensile	Tensile	Tensile	1
Lexan™ 9600	DMA	DMA	DMA	
Lexan [®] 9000	Visual	Visual	Visual	
	Flammability	Flammability	Flammability	
	Tensile	Tensile	Tensile	
Poly II acrylic (MIL-P-5425)	DMA	DMA	DMA	
Poly II acrylic (IVIL-P-5425)	Visual	Visual	Visual	Significant
	flammability	Flammability	Flammability	Significant
	Weight	Weight	Weight	Change
1 (Antireflective/ Antiglare/	Light Transmission & Haze	Light Transmission & Haze	Light Transmission & Haze	
Oleophobic Coating A)	Visual	Visual	Visual	Detected
	Contact Angle	Contact Angle	Contact Angle	
	Weight	Weight	Weight	
5 (Antireflective/ Antiglare/	Light Transmission & Haze	Light Transmission & Haze	Light Transmission & Haze	No
Conductive/Oleophobic Coating A)	Visual	Visual	Visual	Significant
Coating AJ	Contact Angle	Contact Angle	Contact Angle	
	Weight	Weight	Weight	Change
	Light Transmission & Haze	Light Transmission & Haze	Light Transmission & Haze	Detected
C2 (Oleophobic Coating B)	Visual	Visual	Visual	Delected
	Contact Angle	Contact Angle	Contact Angle	
	Weight	Weight	Weight	
	Light Transmission & Haze	Light Transmission & Haze	Light Transmission & Haze	
C3 (Oleophobic Coating C)	Visual	Visual	Visual	
	Contact Angle	Contact Angle	Contact Angle	
	Weight	Weight	Weight	
	Light Transmission & Haze	Light Transmission & Haze	Light Transmission & Haze	
C4 (Oleophobic Coating D)	Visual	Visual	Visual	
	Contact Angle	Contact Angle	Contact Angle	
	Weight	Weight	Weight	1
C6 (Antireflective/ Conductive Coating)	Light Transmission & Haze	Light Transmission & Haze	Light Transmission & Haze	
conductive Coating)	Visual	Visual	Visual	

Results: UV-C Round 2

Significant Change Detected

No Significant Change Detected

Joint Centers of Excelle

Conclusions

<u>Overall</u>

- No change was observed in the weight or the glass transition temperature (T_a) of any conditioned material.
- While nearly all specimens failed flammability per FAR 25.853 Appendix F, these materials (as they are found in the flight deck) fall under a small part exemption and are not required to pass this standard.

UV-C Conditioning

- Lexan[™] 9600 had no change in tensile strength as a result of UV-C exposure for any wavelength or exposure duration. Poly II Acrylic had significant changes in tensile strength for all investigated UV-C wavelengths and exposure durations.
- UV-C disinfection of any wavelength or exposure duration did not significantly change the oleophobicity for any coating EXCEPT C1 when exposed to 254 nm for 8 years.
- Most coating configurations had a change in light transmittance and haze when exposed to any UV-C conditioning, EXCEPT C1 & C5 which had no significant change when conditioned at any UV-C wavelength for any exposure duration.
- Most of the UV-C disinfection configurations had no visual changes. Configurations that had visual changes were:
 - Both plastic materials when exposed to 254 nm for a 4 year duration,
 - C1 when exposed to either 222 nm or 254 nm for an 8 year duration, and
 - C5 when exposed to 222 nm for an 8 year duration.

Conclusions

Chemical Disinfectant Conditioning

- For mechanical switch functional checks on LRUs, Calla® 1452 (spray and wipe) and Sani-Cide EX3 (wipe) increased the friction in the switches. None of the other chemical disinfectants caused a change to mechanical functionality of switches.
- For tensile strength of plastics:
 - Calla® 1452 had no effect on the tensile strength of either Lexan™ 9600 or Poly II Acrylic,
 - Bactrokill+ and PREempt™ RTU did not significantly change the tensile strength of Lexan™ 9600, but did for Poly II Acrylic, and
 - 70% IPA and Sani-Cide EX3 caused significant changes in tensile strength for both plastic types.
- There were significant changes to most oleophobic coating configurations. Configurations with NO significant change in olephobicity were:
 - C3 conditioned with any chemical disinfectant,
 - C1 and C2 conditioned with Calla® 1452, C2 and C5 conditioned with PREempt™ RTU, and
 - C2 conditioned with Bactrokill+.
- All coating configurations had a change in light transmittance and haze EXCEPT:
 - C1 conditioned with 70% IPA,
 - C1 conditioned with Bactrokill+, and
 - C5 conditioned with Bactrokill+.
- Wiping with Sani-Cide EX3 and PREempt[™] RTU resulted in visual/tactile changes in all plastic and coating materials, while none of the other chemical disinfectants had an effect.

Questions?

Contact Information for any questions:

Akhil Bhasin: <u>Akhil.Bhasin@idp.wichita.edu</u> Luis Gomez: <u>Luis.GomezValbuena@idp.wichita.edu</u> Rebeka Khajehpour: <u>Rebeka.Khajehpour@idp.Wichita.edu</u> Gerardo Olivares: <u>Gerardo.Olivares@idp.wichita.edu</u>

