#### Effects of Defects in Composite Materials at Elevated Strain Rates



Akhil Bhasin NIAR-AVET



JAMS Technical Review April 20, 2023



### Federal Aviation Administration



Joint Centers of Excellence for Advanced Materials





#### Agenda

- Research Team
- Project Motivation
- Project Breakdown and Approach
- Task II
  - Laminate Fabrication
  - In-Service Damage Introduction
  - Compression Test Results at 1 in/s
- Task III Overview
- Task IV Overview
- Current Project Status Summary
- Ongoing Work





#### **Research Team**



- Project Participants (NIAR AVET/WSU)
  - PI: Gerardo Olivares, Suresh Raju Keshavanarayana
  - Primary Researchers: Akhil Bhasin, Luis Gomez, Tanat Maichan
  - Additional Researchers: Parth Sejpal, Alejandro Fernandez
- FAA Technical Monitor:
  - Dave Stanley
- FAA Sponsors:
  - Cindy Ashforth, Joseph Pellettiere
- Industry Partnerships/Other Collaborations:
  - Hexcel, CMH-17 Crashworthiness group



#### **Project Motivation**



#### Motivation & Key Issues

- Composite energy absorbers improve the crashworthiness performance of modern commercial aircraft by dissipating energy through failure. The load carrying capabilities of these targeted energy absorbers could be undermined due to the presence of defects. During a survivable crash event, these energy absorbers would experience elevated strain rates and loading rates. Thus, there is a need to investigate the performance of these crash absorbers with presence of defects at dynamic loading rates.
- For aircraft seats, manufacturing defects and in-service damage are substantiated only during static test but not included in dynamic test. During the definition of SAE ARP 6337 [1], there were concerns that these defects/damage might improve or enhance the behavior of the seats in a dynamic test. Thus, to balance the lack of Category 1 damage in dynamic test, Category 1 and some extension into Category 2 damage in the static test has been defined. The rationale is that with adequate margins in the static test, robustness of the seat system can be demonstrated for both static and dynamic tests. However, there is a need to assess the effect of defects on the performance of different seat components. Current investigation will benefit the development of guidance material in support of ARP 6337.

[1] SAE ARP 6337, Design, Manufacturing and Performance standard for Composite Materials used on Aircraft Seat Structures



#### JAMS Technical Review – April 20th, 2023

5

#### **Project Task Breakdown & Approach**

Task I: Literature Research

Task II: Energy Absorber Test

Task III: Sub-Component Impact Test

Task IV: Full scale vertical rigid seat test

- **Task II:** Introduce prefabricated manufacturing defects and in-service damage on composite energy absorbers. Evaluate their crush performance and damage modes at multiple loading rates and compare them against their pristine counterparts.
- **Task III:** Introduce prefabricated manufacturing defect and in-service damage on representative flat composite seat pans. Conduct sub-component level impact tests at multiple loading rates and compare them against their pristine counterparts.
- Task IV: Introduce in-service damage on representative flat composite seat pans. Conduct fullscale vertical (rigid seat) tests to compare the performance of seat pans with damage against their pristine counterpart.





### **Task II: Workflow**

- •2 Material Systems •2 Stacking Sequences •2 Geometries
- 4 Manufacturing Defects
- •168 Laminates Fabricated
- •24 Autoclave Cure Cycles

Laminate Fabrication with Manufacturing Defects

#### Specimen Machining

- NDI to track defect location
   Wateriet
- •Surface grinding
- •Chamfer for failure initiation
- •~800 specimens machined

- Damage introduced by low velocity impact
- Energy survey conducted to quantify damage levels
- •3 different energy levels selected •Multiple NDI techniques used

In-Service Damage on Pristine Specimens

#### Energy Absorber Compression Tests

- Compression test
- •64 different configurations
- •3 different stroke rates
- •3 repetitions per configuration
- DIC to evaluate strains and damage evolution

Crashworthiness parameters using standard test data
Damage evolution and failure modes comparison

•Strains, displacement, strain rates to be evaluated from DIC

Data Evaluation



### **Laminate Fabrication Overview**

| Panel Type               | Configuration                  | Laminates Fabricated |
|--------------------------|--------------------------------|----------------------|
| Pristine                 |                                | 64                   |
| Wire placed at OML       | C-Channel Stanchion            | 16                   |
| Wire placed at IML       |                                | 16                   |
| Delamination Location I  |                                | 16                   |
| Delamination Location II |                                | 16                   |
| Pristine                 |                                | 8                    |
| Wire placed at OML       |                                | 12                   |
| Wire placed at IML       | Corrugated Beam<br>(Semi-Sine) | 12                   |
| Delamination Location I  |                                | 4                    |
| Delamination Location II |                                | 4                    |



•Material Systems: IM7/8552 (Tape); AS4 PW/8552 (Fabric)

•Stacking Sequence: [90°/0°]<sub>2s</sub> (Cross-Ply); [45°/90°/-45°/0°]s (Quasi-Isotropic)

•Out-of-plane fiber waviness introduced by placing a flexible stainless-steel wire of diameter 0.051" at two different locations:

•Delamination introduced by placing PTFE tape of thickness 0.0005" between plies

•168 laminates were manufactured using 24 autoclave cure cycles



### **Corrugated Beam: Bagging Scheme**





### Laminate Bagging Scheme





### Manufactured Laminate: IM7/8552



Configuration: C-Channel; Material System: IM7/8552; Pristine



Configuration: C-Channel; Material System: IM7/8552; Delamn. A



Configuration: C-Channel; Material System: IM7/8552; Wire x IML

T

Configuration: C-Channel; Material System: IM7/8552; Delamn. B



Configuration: C-Channel; Material System: IM7/8552; Wire x OML



Configuration: Semi-Sine; Material System: IM7/8552; Pristine



Configuration: Semi-Sine; Material System: IM7/8552; Delamn. A



Configuration: Semi-Sine; Material System: IM7/8552; Wire x IML



Configuration: Semi-Sine; Material System: IM7/8552; Delamn. B



Configuration: Semi-Sine; Material System: IM7/8552; Wire x OML



### Manufactured Laminate: AS4 PW/8552







Configuration: C-Channel; Material System: AS4 PW/8552; Pristine Configuration: C-Channel; Material System: AS4 PW/8552; Wire x IML Configuration: C-Channel; Material System: AS4 PW/8552; Wire x OML

. . .



Configuration: C-Channel; Material System: AS4 PW/8552; Delamn. A Configuration: C-Channel; Material System: AS4 PW/8552; Delamn. B





Configuration: Semi-Sine; Material System: AS4 PW/8552; Wire x IML Configuration: Semi-Sine; Material System: AS4 PW/8552; Wire x OML



Configuration: Semi-Sine; Material System: AS4 PW/8552; Delamn. A



Configuration: Semi-Sine; Material System: AS4 PW/8552; Delamn. B



### **Non-Destructive Inspection**

- Equipment Details:
  - Manufacturer: TecScan
  - Nozzle diameter: 0.25"
  - Scan speed: 6 in/s
  - Transducer Type: Flat
- For each cure cycle, atleast 2 laminates were inspected







## **Specimen Machining**

- Post laminate fabrication and NDI inspection, specimens were extracted from the laminates.
  - 3 from c-channel laminate and 10 from corrugated beam laminate
- Specimens were first cut using waterjet and then surface grinded to achieve nominal length and width
- One edge of the specimen was chamfered 45° to initiate failure during compression loading







JAMS Technical Review – April 20th, 2023

1.750

### **Microscopic Analysis: Fiber Waviness**

#### IM7/8552; [90°/0°]<sub>2s</sub>



Waviness due to the wire placed at IML IM7/8552; [90°/0°]<sub>25</sub>



Waviness due to the wire placed at OML



Potted specimen in clear epoxy

#### IM7/8552; [90°/0°]<sub>2s</sub>



Waviness due to the wire placed at IML

IM7/8552; [90°/0°]<sub>2s</sub>



Waviness due to the wire placed at OML



# **In-Service Impact Damage: LVI**

# High Speed Camera

First Surface Mirror

**Corrugated Beam** 





C-Channel

| Test Setup Information |                |  |  |  |  |
|------------------------|----------------|--|--|--|--|
| Test Frame             | Dynatup 8250   |  |  |  |  |
| Impactor Diameter      | 0.5"           |  |  |  |  |
| Drop weight            | 6 lbs.         |  |  |  |  |
| Drop Height            | ~ Energy Level |  |  |  |  |

| High Speed Camera Information    |                   |  |  |  |
|----------------------------------|-------------------|--|--|--|
| Camera Type Photron Fastcam SA-2 |                   |  |  |  |
| Resolution                       | 1024 x 840 pixels |  |  |  |
| Frame Rate                       | 25,000 fps        |  |  |  |
| Lens Focal Length                | 105 mm            |  |  |  |



#### Akhil Bhasin – NIAR AVET

External Lights

# **Damage Level – Corrugated Beam**

#### Impacted Face (OML) Non Impacted Face (IML) Energy Level: 15 in-lb. Energy Level: 45 in-lb. Energy Level: 75 in-lb. Energy Level: 15 in-lb. Energy Level: 45 in-lb. Energy Level: 75 in-lb. IM7/8552 [90°/0°]<sub>25</sub> IM7/8552 [45°/90°/-45°/0°]s AS4 PW/8552 [90°/0°]<sub>25</sub> AS4 PW/8552 [45°/90°/-45°/0°]s



JAMS Technical Review – April 20th, 2023

# Damage Level – C-Channel

#### Impacted Face (OML)

#### Non Impacted Face (IML)





### **TTU C-Scan and Pulse Echo Details**

#### TTU C-Scan Setup for Corrugated Beam



| Equipment Information |                                     |          |       |               |            |              |        |       |                |
|-----------------------|-------------------------------------|----------|-------|---------------|------------|--------------|--------|-------|----------------|
| UT Instrument Manufac | UT Instrument Manufacturer: TecScar |          | an    | Flaw Detector |            | TecScan      | Nozzle |       | 0.25 in Dia.   |
|                       |                                     |          |       | Manu          | Ifacturer: |              | Size:  |       |                |
| UT Instrument Model:  |                                     | TecSo    | an    | Flaw          | Detector   | UTPR-50      | Coup   | lant: | Clean Water    |
|                       |                                     | Side A   | Arm   | Mode          | el:        |              |        |       |                |
|                       |                                     | Squir    | ter   |               |            |              |        |       |                |
|                       |                                     | Syste    | m     |               |            |              |        |       |                |
|                       | Scan Parameters                     |          |       |               |            |              |        |       |                |
| Scan Speed:           | 4 in/s                              | ;        | Scan  |               | 0.02 in    | Scan Mode:   |        | TOF C | C-Scan         |
|                       |                                     |          | Index | :             |            |              |        |       |                |
|                       |                                     |          |       | UT Pa         | rameters   |              |        |       |                |
| Gain:                 | 7.0 d                               | В        | Soun  | d             | 0.102      | Gate Type:   |        | Back  | wall Interface |
|                       |                                     |          | Veloc | ity:          | in/us      |              |        |       |                |
| Frequency:            | 5 MH                                | Z        | Damp  | oing          | 33 Ohm     | Gate Width:  |        | 2.571 | us             |
|                       |                                     |          | Low F | Pass:         | Broadband  | Gate Mode:   |        | Highe | est Peak       |
|                       |                                     | High Pas |       | Pass:         | 300 KHz    |              |        |       |                |
| Transducer:           | Flat                                |          | Volta | ge:           | 50 V       | Gate Level:  |        | 5%    |                |
| Range:                | 20 us                               |          | Delay | :             | 90 us      | Gate Positio | n:     | 0.415 | sus            |

#### Squirter Nozzle

X-axis tower, Y-axis carriages and Z-Axis Swivel assembly Specimen

JAMS Technical Review – April 20th, 2023



Akhil Bhasin – NIAR AVET

# **Damage Area: Corrugated Beam**





# **Damage Area: C-Channel**







#### NSI X3000



- X-Ray Source

Specimen

| X-Ray Source       |                      |       |             |    |                          |       |         |                       |    |               |        |
|--------------------|----------------------|-------|-------------|----|--------------------------|-------|---------|-----------------------|----|---------------|--------|
| Name               | >                    | XRay\ | RayWorX Vo  |    | ltage                    | 90 kV |         | Current:              |    | 280µA         |        |
|                    | [                    | [P20- | 775]        |    |                          |       |         |                       |    |               |        |
| Focal Spot Mode    | ſ                    | Micro | ofocus      | Fo | cal Size                 | 25.2  | 2 mic   | rons                  |    |               |        |
|                    | Detector Information |       |             |    |                          |       |         |                       |    |               |        |
| Name               | VarianL0             | 08    | Pixel Pitcl | h  | 127 x 127 microns Resolu |       | Resolut | ion 1920 x 1536 pixle |    | x 1536 pixles |        |
|                    |                      |       |             | D  | istances                 |       |         |                       |    |               |        |
| Source to detector | 423.224              | 1     | Source to   | )  | 154.794 n                | nm    | Effe    | ctive pix             | el | 0.023         | 323 mm |
| mm object          |                      |       | object      |    | pitch                    |       |         |                       |    |               |        |
| CT Scan            |                      |       |             |    |                          |       |         |                       |    |               |        |
| # Projections      | 2800                 |       | Duration    |    | 2h53s                    |       |         |                       |    |               |        |

Turntable



Flat Panel

# X-Ray Ct: Corrugated Beam

Nominal Impact Energy: 75 in-lb.



AS4 PW/8552; [90°/0°]<sub>2S</sub>

#### Akhil Bhasin - NIAR AVET

IM7/8552; [90º/0º]<sub>25</sub>

# X-Ray Ct: C-Channel

Nominal Impact Energy: 30 in-lb.



IM7/8552; [45°/90°/-45°/0°]<sub>S</sub>

AS4 PW/8552; [45°/90°/-45°/0°]<sub>S</sub>



### **High Speed DIC: Corrugated Beam**

IM7/8552; [90º/0º]<sub>2S</sub>





### **High Speed DIC: C-Channel**

#### IM7/8552; [90º/0º]<sub>2S</sub>





# **Specimen Traceability**





# **Specimen Nomenclature**

| Test<br>Method ID | Material<br>Type | Stacking<br>Sequence | Energy<br>Absorber<br>Type | Defect<br>Type | Stroke<br>Rate | Specimen<br>ID |
|-------------------|------------------|----------------------|----------------------------|----------------|----------------|----------------|
|                   | FAA-EA           | -PW-SS               | 52-A-D1                    | -1-02          |                |                |

| Specimen Nomenclature |                         |      |  |  |  |
|-----------------------|-------------------------|------|--|--|--|
| Client ID             | FAA                     | FAA  |  |  |  |
| Test Method ID        | Energy Absorber         | EA   |  |  |  |
| Material Type         | Hexcel IM7/8552         | UD   |  |  |  |
|                       | Hexcel AS4 PW/8552      | PW   |  |  |  |
| Stacking Seguence     | [90º/0º] <sub>25</sub>  | SS1  |  |  |  |
| Stacking Sequence     | [45º/90º/-45º/0º]s      | SS2  |  |  |  |
|                       | Pristine                | D0   |  |  |  |
|                       | Fiber Waviness: OML     | D1   |  |  |  |
|                       | Fiber Waviness: IML     | D2   |  |  |  |
| Defect Type           | Delamination: Flange    | D3   |  |  |  |
|                       | Delamination: Web       | D4   |  |  |  |
|                       | Impact Energy Level I   | D5   |  |  |  |
|                       | Impact Energy Level II  | D6   |  |  |  |
|                       | Impact Energy Level III | D7   |  |  |  |
| Eporgy Absorbor Typo  | Corrugated Beam         | A    |  |  |  |
| Ellergy Absorber Type | C-Channel Stanchion     | В    |  |  |  |
|                       | 0.01 in/s               | 0.01 |  |  |  |
| Stroke Rate           | 1 in/s                  | 1    |  |  |  |
|                       | 100 in/s                | 100  |  |  |  |



Client ID

# **Energy Absorbers: Test Matrix**

| Test Matrix            |                                           |                                        |                      |  |  |  |  |
|------------------------|-------------------------------------------|----------------------------------------|----------------------|--|--|--|--|
|                        | Material Systems: IM7/8552 ; AS4 PW/8552; |                                        |                      |  |  |  |  |
| Sta                    | cking Sequences: [90°                     | /0°] <sub>2s</sub> and [45°/90°/-45°/( | )º]s                 |  |  |  |  |
| Defect Type: Pristine, | Out-of-plane fiber wav                    | iness: IML, Out-of-plane               | fiber waviness: OML, |  |  |  |  |
| Delamir                | ation: Web, Delaminat                     | ion: Flange, In-Service [              | Damage               |  |  |  |  |
| Energy Absorber        |                                           | Stroke Rate                            |                      |  |  |  |  |
| Туре                   | 0.01 in/s                                 | 1 in/s                                 | 100 in/s             |  |  |  |  |
| Corrugated Beam        | x3 x3 x3                                  |                                        |                      |  |  |  |  |
| C-Channel Stanchion    | x3                                        | x3                                     | x3                   |  |  |  |  |

\*Minimum specimens to be tested: 576



# **Test Apparatus**





# **High Speed DIC: Test Schematic**







# **3D DIC Camera Setup Details**



| Digital Image Correlation Camera Setup |                    |                        |  |  |  |  |
|----------------------------------------|--------------------|------------------------|--|--|--|--|
| Parameter<br>Information               | Corrugated<br>Beam | C-Channel<br>Stanchion |  |  |  |  |
| Lenses Focal Length                    | 105mm              | 60mm                   |  |  |  |  |
| Camera Angle                           | 18.5°              | 20.5°                  |  |  |  |  |
| Working Distance                       | 36"                | 29.5″                  |  |  |  |  |
| Camera Separation                      | 12"                | 11"                    |  |  |  |  |
| Field of View                          | 6.3″ x 6.3″        | 9.3" x 9.3"            |  |  |  |  |



### **Crashworthiness Parameters**

- Peak Load (P<sub>max</sub>): Initial peak load recorded as crushing initiates
- Crush length (*l*): Length of the specimen crushed
- Energy Absorbed (EA): Area under the load-displacement graph;  $\int_{0}^{l} F(x) dx$
- Sustained load: Energy absorbed/crush length;  $\frac{\int_{0}^{l} F(x) dx}{l}$
- Specific Energy Absorber (SEA): Energy absorber per unit mass of crushed length;  $\frac{\int_0^\infty F(x)}{\partial x}$
- Crush force Efficiency (CFE): Sustained load/Peak Load





#### **Corrugated Beam (Pristine)**

**Defect Type:** Pristine **Material System:** IM7/8552; **Stacking Sequence:** [90°/0°]<sub>2s</sub>; **Stroke Rate**: 1 in/s









| Specimen<br># | Peak Load<br>[lbs.] | Sustained<br>Load [lbs.] | Total SEA<br>[in-lb/lb] | Total<br>CFE |
|---------------|---------------------|--------------------------|-------------------------|--------------|
| 01            | 5,488.19            | 2,974.20                 | 208,107.90              | 0.5419       |
| 02            | 6,070.71            | 2,749.10                 | 192,357.44              | 0.4528       |
| 03            | 5,226.68            | 2,643.58                 | 184,974.41              | 0.5058       |
| COV           | 7.72%               | 6.06%                    | 6.06%                   | 8.96%        |



#### **Corrugated Beam (Waviness OML)**

**Defect Type:** Waviness/Wrinkle (wire at OML) **Material System:** IM7/8552; **Stacking Sequence:** [90°/0°]<sub>2s</sub>; **Stroke Rate**: 1 in/s









| Specimen<br># | Peak Load<br>[lbs.] | Sustained<br>Load [lbs.] | Total SEA<br>[in-lb/lb] | Total<br>CFE |
|---------------|---------------------|--------------------------|-------------------------|--------------|
| 01            | 6,269.39            | 2,714.05                 | 189,905.29              | 0.4329       |
| 02            | 5,523.62            | 2,918.13                 | 204,184.98              | 0.5283       |
| 03            | 6,470.32            | 2,622.94                 | 183,530.13              | 0.4054       |
| COV           | 8.19%               | 5.49%                    | 5.49%                   | 14.16%       |



#### **Corrugated Beam (Waviness IML)**

**Defect Type:** Waviness/Wrinkle (wire at IML) **Material System:** IM7/8552; **Stacking Sequence:** [90°/0°]<sub>2s</sub>; **Stroke Rate**: 1 in/s









| Specimen<br># | Peak Load<br>[lbs.] | Sustained<br>Load [lbs.] | Total SEA<br>[in-lb/lb] | Total<br>CFE |
|---------------|---------------------|--------------------------|-------------------------|--------------|
| 01            | 2,944.70            | 455.20                   | 31,851.16               | 0.1546       |
| 02            | 3,284.10            | 377.49                   | 26,413.45               | 0.1149       |
| 03            | 2,851.00            | 423.78                   | 29,652.48               | 0.1486       |
| COV           | 7.53%               | 9.33%                    | 9.33%                   | 15.34%       |



#### **Corrugated Beam (Delam. Flange)**

Defect Type: Delamination (PTFE at Flange) Material System: IM7/8552; Stroke Rate: 1 in/s Stacking Sequence: [90° /0°/Delamn/90°/0°/0°/90°/0°/90°]









| Specimen<br># | Peak Load<br>[lbs.] | Sustained<br>Load [lbs.] | Total SEA<br>[in-lb/lb] | Total<br>CFE |
|---------------|---------------------|--------------------------|-------------------------|--------------|
| 01            | 6,047.53            | 2,591.82                 | 181,352.18              | 0.4286       |
| 02            | 5,373.25            | 2,765.89                 | 193,532.14              | 0.5148       |
| 03            | 5,016.90            | 2,885.73                 | 201,917.60              | 0.5752       |
| COV           | 9.55%               | 5.38%                    | 5.38%                   | 14.56%       |



#### **Corrugated Beam (Delam. Web)**

Defect Type: Delamination (PTFE at Web) Material System: IM7/8552; Stroke Rate: 1 in/s Stacking Sequence: [90° /0°/Delamn/90°/0°/0°/90°/0°/90°]









| Specimen<br># | Peak Load<br>[lbs.] | Sustained<br>Load [lbs.] | Total SEA<br>[in-lb/lb] | Total<br>CFE |
|---------------|---------------------|--------------------------|-------------------------|--------------|
| 01            | 5,874.24            | 2,907.16                 | 203,416.85              | 0.4949       |
| 02            | 5,657.58            | 2,874.41                 | 201,125.48              | 0.5081       |
| 03            | 5,347.13            | 3,004.81                 | 210,249.50              | 0.5619       |
| COV           | 4.71%               | 2.32%                    | 2.32%                   | 6.81%        |



# Comparison: Corrugated Beam IM7/8552; [90°/0°]<sub>2s</sub>





#### **Comparison: Corrugated Beam All Configurations**







# **Strain Path Plot: DIC**

Section length along the length of the specimen at center (in) Material System: AS4 PW/8552 ;Stacking Sequence: [90°/0°]<sub>2</sub> 0.2 0.4 12 1.8 path -0.002-0.004along the -0.006 -0.008 ω<sup>χ</sup> -0.01 Clamped region and Defect location Compressive -0.012 shadow from the fastener -0.014 -0.016 Approaching crush front V A -0.018  $\mathcal{E}_{vv}$  from the center at D0 D1 D2 OD3D4 Х peak load



### **C-Channel (Pristine)**

Defect Type: Pristine Material System: IM7/8552; Stacking Sequence: [90°/0°]<sub>2s</sub>; Stroke Rate: 1 in/s











ISO VIEW: OML

### **C-Channel (Waviness OML)**

Defect Type: Waviness/Wrinkle (wire at OML) Material System: IM7/8552; Stacking Sequence: [90°/0°]<sub>2s</sub>; Stroke Rate: 1 in/s







| specimen<br># | Peak Load<br>[lbs.] | Sustained<br>Load [lbs.] | Total SEA<br>[in-lb/lb] | Total<br>CFE |
|---------------|---------------------|--------------------------|-------------------------|--------------|
| 01            | 3,287.96            | 1,595.05                 | 144,945.01              | 0.4851       |
| 02            | 3,296.32            | 1,469.06                 | 133,495.92              | 0.4457       |
| 03            | 5,426.51            | 1,563.85                 | 142,109.25              | 0.2882       |
| COV           | 30.78%              | 4.25%                    | 4.25%                   | 25.64%       |







Front View

### **C-Channel (Waviness OML)**

Defect Type: Waviness/Wrinkle (wire at OML) Material System: IM7/8552; Stacking Sequence: [90°/0°]<sub>2s</sub>; Stroke Rate: 1 in/s





FAA-EA-UD-SS1-B-D1-1-01

#### FAA-EA-UD-SS1-B-D1-1-02

FAA-EA-UD-SS1-B-D1-1-03



#### Akhil Bhasin – NIAR AVET

JAMS Technical Review – April 20th, 2023

### **C-Channel (Waviness IML)**

Defect Type: Waviness/Wrinkle (wire at IML) Material System: IM7/8552; Stacking Sequence: [90°/0°]<sub>25</sub>; Stroke Rate: 1 in/s







| pecimen<br># | Peak Load<br>[lbs.] | Sustained<br>Load [lbs.] | Total SEA<br>[in-lb/lb] | Total<br>CFE |
|--------------|---------------------|--------------------------|-------------------------|--------------|
| 01           | 2,735.72            | 380.49                   | 34,575.94               | 0.1391       |
| 02           | 2,701.59            | 427.22                   | 38,822.21               | 0.1581       |
| 03           | 2,527.71            | 350.07                   | 31,811.21               | 0.1385       |
| COV          | 4.20%               | 10.07%                   | 10.07%                  | 7.69%        |



Front View





### **C-Channel (Delamination Flange)**

Defect Type: Waviness/Wrinkle (PTFE at Flange) Material System: IM7/8552; Stacking Sequence: [90° /0°/Delamn/90°/0°/0°/90°/0°/90°] Stroke Rate: 1 in/s







| Specimen<br># | Peak Load<br>[lbs.] | Sustained<br>Load [lbs.] | Total SEA<br>[in-lb/lb] | Total<br>CFE |
|---------------|---------------------|--------------------------|-------------------------|--------------|
| 01            | 3,205.84            | 1,456.07                 | 132,315.52              | 0.4635       |
| 02            | 3,002.99            | 1,270.85                 | 115,484.33              | 0.4306       |
| 03            | 3,346.24            | 1,698.79                 | 154,371.47              | 0.5143       |
| COV           | 5.42%               | 14.55%                   | 14.55%                  | 8.98%        |





ISO View: OML Side View

### **C-Channel (Delamination Web)**

Defect Type: Waviness/Wrinkle (PTFE at Web) Material System: IM7/8552; Stacking Sequence: [90° /0°/Delamn/90°/0°/0°/90°/0°/90°] Stroke Rate: 1 in/s







| Specimen<br># | Peak Load<br>[lbs.] | Sustained<br>Load [lbs.] | Total SEA<br>[in-lb/lb] | Total<br>CFE |
|---------------|---------------------|--------------------------|-------------------------|--------------|
| 01            | 3,027.76            | 1,581.26                 | 143,691.93              | 0.5087       |
| 02            | 3,001.62            | 1,531.86                 | 139,202.09              | 0.4829       |
| 03            | 3,039.58            | 1,441.16                 | 130,960.76              | 0.4661       |
| COV           | 0.64%               | 4.68%                    | 4.68%                   | 4.42%        |







# Comparison: C-Channel IM7/8552; [90°/0°]<sub>2s</sub>



D0-Pristine D1-Waviness x OML D2-Waviness x IML D3-Delamination Flange D4-Delamination Web





#### **Comparison: C-Channel All Configurations**



D0 - Pristine D1 - Waviness x OML D2 - Waviness x IML D3 - Delamination Flange D4 - Delamination Web





#### **Task III: Overview**



Joint Centers of Exceller

#### **Task IV: Overview**

| <b>T</b> 10 <b>C</b> 11  | Defect Type (only includes In-Service Damage) |                 |                 |  |
|--------------------------|-----------------------------------------------|-----------------|-----------------|--|
| Test Configuration       | Pristine                                      | Impact Damage 1 | Impact Damage 2 |  |
| Full Scale Vertical Test | x1                                            | x1              | x1              |  |





### **Current Progress Summary**



- fabrication: \*2 material systems
- \*2 stacking sequences
- \*4 manufacturing defects
- \*168 laminates
- \*24 autoclave cure cycles

Specimen machining: \*Specimens waterjet \*Surface grinded \*One edge chamfered 45° \*~ 800 specimens machined

Test Setup: \*Compression loading condition \*Custom fixture \*High speed camera setup

\*DIC conducted on the OML side

Corrugated beam results: \*Significant reduction in SEA when waviness introduced due to wire at IML \*IM7/8552 cross-ply stacking sequence has lower SEA in comparison to other config. In-service damage introduction: \*Single LVI with custom fixture \*Survey to identify energy levels \*3 energies selected per config. \*Supported with DIC Sub-component test: \*Pristine flat laminates and laminates with waviness defect has been manufactured \*Picture frame fixture has been machined



#### Akhil Bhasin - NIAR AVET

# **Ongoing Work**

- Task II: Energy Absorber Test
  - Manufacturing defects testing: finished
  - In-service damage introduction: finished
  - In-service damage testing: finished
  - Data evaluation: ongoing

#### Task III: Sub-Component Impact Test

- Laminate fabrication: finished
- Fixture machining: finished
- Specimen machining: ongoing
- Testing: ongoing
- Task IV: Full Scale Vertical Rigid Seat Test
  - Laminate fabrication: finished
  - Rigid seat modification to install composite seat pan: ongoing
  - Testing: not started



### **Potential Future Work**

- Currently the defects were introduced away from the chamfered edge, at the center of specimen, to have stable crush initiation. Would the response vary if the defect location were to be changed along the length of the specimen?
- Effect of manufacturing defects could change based on energy absorber geometries. Effect of critical manufacturing defect/in-service impact damage, can be evaluated on tubes, tension joints etc.
- Current research effort focuses on composite seat pans and would help assess if in-service damage yields significant different results during a dynamic test in comparison to their pristine counterparts. Future work could focus aircraft seatbacks, cross tubes and seat legs. The research will help development of SAE ARP 6337 document.
- Full scale analysis supported by element level tests could be developed to further understand if the manufacturing defects/in-service damage changes the load-path in aircraft seats during emergency landing conditions



# **Published Technical Papers**

- "Low Velocity Impact on Composite Energy Absorbers: Experimental Analysis"
  - https://arc.aiaa.org/doi/10.2514/6.2023-1262
- "Effect Of Manufacturing Defects On Composite Energy Absorbers: Experimental Analysis"
  - <u>https://dpi-proceedings.com/index.php/asc37/article/view/36389</u>





### **Questions?**

#### **Contact Information for any questions:**

Akhil Bhasin: <u>Akhil.Bhasin@idp.wichita.edu</u> Luis Gomez: <u>Luis.GomezValbuena@idp.wichita.edu</u> Suresh Raju: <u>suresh.keshavanarayana@wichita.edu</u> Gerardo Olivares: <u>Gerardo.Olivares@idp.wichita.edu</u>

