TABLE OF CONTENTS

Introduction
Electrical 3D Design
Electrical 3D Design Toolbars
Electrical Manufacturing Preparation Toolbars
Electrical Harness Design
Defining Electrical Branch Geometry 15
Installing Electrical Branch Geometry
Defining Electrical Branch Geometry in Context
Orthogonal Routing
Routing on Surfaces
Defining Multi-Branches
Branch Manipulation
Branch Profiles
Segments on Curves
Modifying Multi-Branchables 121
Supports
Supports inside the Harness
Supports Outside the Harness144
Adding Supports
Multi-Position Supports 155
Arrange Segments in Supports
Local Slack
Protective Coverings
Modifying Protective Covering
Protective Covering with Supports
Electrical Harness Analysis
Link Review
Network Assistant
Clash Analysis
Electrical Manufacturing Preparation
Formboard Creation
Prepare Layout
Synchronize
Problems
Problem #7.0

Appendix A	233
App Preferences - 3D Modeling - Electrical and Electronic Systems -	
Electrical 3D Design - Import/Export	233
App Preferences - 3D Modeling - Electrical and Electronic Systems -	
Electrical 3D Design - Device	234
App Preferences - 3D Modeling - Electrical and Electronic Systems -	
Electrical 3D Design - Branch	235
App Preferences - 3D Modeling - Electrical and Electronic Systems -	
Electrical 3D Design - Protective Covering	240
App Preferences - 3D Modeling - Electrical and Electronic Systems -	
Electrical 3D Design - Flat Cable	241
App Preferences - 3D Modeling - Electrical and Electronic Systems -	
Electrical Manufacturing Preparation - General	242

Introduction

CATIA 3DEXPERIENCE Electrical 3D Design

Upon completion of this course the student should have a full understanding of the following topics:

- Define electrical geometry and branches
- Define complete harnesses with supports
- Develop harnesses within the context of a product
- Develop and utilize a harness in multiple products
- Create formboards for flattening and optimizing a harness for manufacturing

Electrical 3D Design

Defining an electrical harness requires two steps. You must first define the required connectors and connection points. Once you have these connections, you are ready to begin defining the geometric bundle that links the various connection points. These geometric bundles will behave as a space reservation for the wiring they will contain. In this section of the course, you will not be defining the actual wires within the geometric bundle, but rather just the overall size and shape of the geometric bundle that will contain the wiring.

There are two workbenches involved in electrical harness design. They are the Electrical 3D Design and the Electrical 3D Part Design workbenches. The Electrical 3D Design workbench will allow you to work with the geometric bundle as a whole. The Electrical 3D Part Design workbench will allow you to define the specific bundle segment and route the bundle. The two workbenches are used simultaneously to define the geometric bundle. Although the Electrical 3D Part Design workbench is a separate workbench, it is generally accessed through the Electrical 3D Design workbench when defining a specific bundle segment. This is a similar behavior to the Sketcher and Part Design workbenches. You generally do not access the sketcher workbench directly, but instead you access sketcher through the Part Design workbench. In our case, the Electrical 3D Design workbench works in the product environment, whereas the Electrical 3D Part Design workbench works with a specific branchable part in the product.

In this course, you will not be defining the specific wires within the geometric bundle. Instead, you will be defining the bundle as a whole for space reservation and connectivity information and not to define pin to pin connectivity. To define pin to pin connectivity, you will need to study the Electrical Wire Routing workbench. With that said, keep in mind, you can always define a geometric bundle per wire if desired. This will emulate defining specific connectivity, but you will find that it requires a lot of time and work when dealing with smaller wires.

Electrical Harness Design

In this section, you will look at developing a simple single branch harness. Keep in mind, you will be using both the Electrical 3D Design and Electrical 3D Part Design workbenches. These two workbenches work together to define the harness and the bundles.

Defining Electrical Branch Geometry

In this first exercise, you are going to look at creating a basic electrical branch between two connectors. As you continue through this book, you will find the harnesses and branches becoming more and more complex as the options are covered in more detail.

Create a new product named <u>ELEC060 - Harness 1</u>. This new product will serve as your first harness.

If not already there, switch to the Electrical 3D Design workbench. This will allow you to build the electrical harness.

Select the Electrical Geometry icon, then select *ELEC060 - Harness 1* from the specification tree. Selectrical Geometry window appears.

Electrical Geometry	?	×
Electrical Geo	ometry	
Title	Electrical Geometry00000043	8
Name	elegeo-96333692-00000043	*
Description		
Sub-type		
Design Range	Normal Range 🗸 🗸 🗸	
Collaborative Policy	Engineering Definition Classic	
	ОК	Cancel

Change the *Title* to <u>ELEC060 - Electrical Geometry</u> and select *OK*. It should appear as shown.

Right click on *ELEC060 - Electrical Geometry* in the specification tree and select *Insert*, *Existing 3D Part*. This will display the *Search Selection* window.

Search for and select the ELEC - 4 Pin Mount Connector document from the *Electrical Harness I* directory. This will be a simple four pin mounting connector.

Remember, you can also insert components from the catalog.

Select the Catalog Browser icon from the bottom toolbar. It is in the *Tools* section. This will display the *Catalog Browser* window.

Search for and select the ELEC - Electrical Catalog, then expand the *Connectors* chapter and select the *Single Insert Connectors* family. It should appear as shown.

ELEC - Electrical Catalog		_ ×
ELEC - Electrical Catalog (12)	#	Item name 🔺
Electrical Devices (12)	1	
Connectors (2)	2	🔯 ELEC - 4 Pin Connector A.1
Single Insert Connectors (1)		
Multi-Insert Connectors (1)		
Ferminals and Contacts (1)		
Back Shells (2)		
🖶 🚞 Shells (1)		
Protective Coverings (6)		
🗄 📄 Filler Plugs (0)		

Select the *ELEC060 - Electrical Geometry* branch in the tree and then double select the **ELEC - 4 Pin Connector from the catalog to insert it.** This method will insert a connector into the assembly as well.

Close the catalog browser when done.

Double select on the *ELEC060 - Electrical Geometry* **branch to activate it.** This will allow you to manipulate the components within it.

Using the compass or other manipulation tools, manipulate the 4 pin connector to the approximate location shown. The exact position is not required, just separate the two parts.

At this point, you are ready to define a bundle between the two connectors.

Select the Electrical Branch Geometry icon. Use It is located under the Electrical Geometry icon. The *Electrical Branch Geometry* window appears.

Electrical Branch Geor	metry ?	×
Electrical Bra	nch Geometry 🔒 3D Part	
Title	Electrical Branch Geometry00000049	
Name	elebranch-96333692-00000049	*
Description		
Sub-type		
Separation Code		
Design Range	Normal Range	×
Collaborative Policy	Engineering Definition Classic	
	ОК	Cancel

Change the *Title* to be <u>ELEC060 - Electrical Branch Geometry</u> and select *OK*. It should appear in the tree.

The Branch Definition window also appears.

Branch Def	inition				?		\times
Name:		Brand	:h.1				
Separation	Code:	<uns< td=""><td>et></td><td></td><td></td><td>×</td><td></td></uns<>	et>			×	
Resource:		Unse	t				5
Diameter:		0.75i	n			•	
Section:		0.442	2in2			▲ ▽	
Bend Rad	lius for	Check					
Bend Rad	ius:		1in				▲ ▽
🗌 Bend I	Radius	Ratio:	Unset				-
Computed	Bend I	Radius	: 3.937	'e+031in		~	3 👌
Build Mo	de —						
Mode:	Slack						
Slack(%):	1						
Length:	0in					-	ł: "
		Rout	e Defini	tion			
	S	iegme	nts Def	nition			
External Cu	irve: N	lo Sele	ection				
			ОК	Apply		Car	ncel

Name	Specifies the name of the branch
Separation Code	Specifies the separation code value for the branch
Resource	Displays the unique identifier for the branch
Diameter	Specifies the outside diameter of the branch
Section	Specifies the cross sectional area of the branch
Bend Radius	Specifies the minimum bend radius allowed for the branch
Bend Radius Ratio	Defines the bend radius based on the diameter of the branch. A ratio of 1 will set the <i>Bend Radius</i> to the same size as the branch <i>Diameter</i> .

Build Mode

Mode			
Slack		Branches are computed with a minimum distance, and then a percentage of slack is added to the branch	
Lengt	h	Branches are a set length, regardless of the amount of slack	
Bend		CATIA will compute the minimum length possible while respecting the <i>Bend Radius</i>	
Straig	ht Bend	Segment length corresponds to the path defined by arcs of circles of fixed radius and straight lines going through points.	
Corne	ered Polyline	Segment length corresponds to the shortest path defined by arcs of circles of fixed radius and lines. The curve does not go through the points, except if the bend radius is equal to zero. Tangency at route points is ignored.	
Slack (%)	Define Althou .1% to	es the percentage of slack between connection points. agh 0% is allowed, there needs to be a slack of at least avoid update errors with Harness Flattening tools.	
Length	Define length the two	es the length of the branch when in <i>Length</i> mode. The must be as long, or longer than the distance between o connection points.	
Route Definition	Defines the br	anch route	
Segments Definition	Allows for the the branch	e branch to swap sides of a surface that is attached to	
External Curve	Allows selection of a curve to define the branch route		

Many of these parameters will be tested further once the route is defined.

Change the Name to Harness 1 Branch. This will define the name for the branch.

Unless already set, change the *Diameter* to 0.5in. You will notice the *Section* will automatically change to 0.196in2. This is due to the two fields being computed based on each other.

Change the *Bend Radius* **to 0.5in.** Typically, your bend radius will be equal to or greater than the diameter. If you set the bend radius smaller than the diameter, CATIA will display an error message about the impracticality of this.

Change the *Build Mode* to *Slack*, and set the *Slack* percentage to 10. This will have all the branch options defined. Now to generate the branch via the route definition.

Branch De	finition				?	×
Name:		Harne	ess 1 Br	anch		
Separatior	n Code:	<uns< td=""><td>et></td><td></td><td></td><td>~</td></uns<>	et>			~
Resource:		Unset	t			5
Diameter:		0.5in				÷
Section:		0.196	in2			▲ ▼
_ Bend Rad	dius for	Check				
Bend Rad	lius:		0.5in			▲ ▽
Bend	Radius	Ratio:	Unset			<u> </u>
Computed	l Bend I	Radius	3.937	'e+031in		- 👌
Build Mo	de —					
Mode:	Slack					×.
Slack(%):	10					•
Length:	0in					
		Rout	e Defini	tion		
	S	egme	nts Defi	inition		
External Cu	urve: N	lo Sele	ction			
			ОК	Apply		Cancel

Select *Route Definition*. This will allow you to define the route for the bundle. The *Route Definition* window will display. Take a quick look at the various options in the *Route Definition* window.

Route Definition		?	×
Routed Objects	Tangent Dir.		
● Add after ○ Add befo	re O Replace	ΟA	dd auto
Remove			
More >>			
C	K Apply		Cancel

Routed Objects / Tangent Dir.	Displays the objects and points for the route definition
Add after	Adds points and connection points after the selected point
Add before	Adds points and connection points before the selected point
Replace	Replaces the selected point with another selection
Replace	Replaces the selected point with another selection
Add auto	Automatically orders the route selections based on their type

By selecting the *More*>> button, you get a few additional options.

Tangent managemer	nt:
Constraint type:	Explicit ~
Tangent direction:	No selection
🗹 Tangent Mode 🛛	Remove Tangent Reverse Tangent
Slack management:	Ignore Slack
Computed Bend Rad	ius: 🛛 3.937e+031in 🛛 🚊 🔮
Offset Management	at Creation
(Automatic
C	O Automatic with Safety Margin
	Din 🗧
C) Manual
	Din 🚊
	OK Apply Cancel

Tangent management

Constraint type	Defines the type of tangency to be defined
Explicit	Tangency is defined via a manual vector definition. Tangency definition is defined through a right click in the <i>Tangent Direction</i> field.
From curve	Tangency is defined from a curve or line selection. When <i>From curve</i> is selected, the <i>Tangent direction</i> changes to <i>Element</i> .

Slack management Ignores or removes slack between points

Offset Management at Creation

Automatic	Lays the bundle on the surface
Automatic with	Lays the bundle on the surface with an additional offset of the safety margin distance
Manual	Allows you to specify a specific distance for the bundle to exist off the surface

Now you are ready to define the route.

Select the 4 Pin Mount Connector. Notice the connector is automatically added to the *Route Definition* window, as well as the segment connection point is automatically defined.

Anytime you select an electrical device with a segment connection point, the connection point will automatically be selected and the tangent direction will automatically be defined in the *Initial Condition* direction defined in the segment connection point's placement constraints.

Select the 4 Pin Connector. This connector will also be defined in the routed objects. Notice the bundle is now present.

Note: The physical shape of the branch may vary based on the position of the two connectors.

Select *OK* **to the** *Route Definition* **window.** This will take you back to the *Branch Definition*.

Select OK to the Branch Definition window. The branch is defined.

Notice that you are still in the Electrical 3D Part Design workbench.

Select the Exit icon. This will take you back to the Electrical 3D Design workbench and activate the electrical geometry branch.

Next, you will create the same branch using a different method.

Delete the Electrical Branch Geometry from the tree. Select *No* when asked about saving.

Select the Electrical Branch Geometry icon. W It is located under the Electrical Geometry icon. The *Electrical Branch Geometry* window appears.

Change the *Title* to be <u>ELEC060 - Electrical Branch Geometry</u> and select *OK*. It should appear in the tree and the *Branch Definition* window appears.

Select Cancel in the Branch Definition window. A different method will be used.

Select the Immersive Branch Definition icon. **W** The *Branch Properties* window appears.

Notice at toolbar appears in the display as well.

Change the *Diameter* to 0.5, the *Slack* to 10%, and the *Bend Radius* to 0.5. Now you are ready to route the branch.

Move your mouse over the 4 Pin Mount Connector and select the segment connection that appears. Notice a yellow sphere appears at the connection point.

Anytime you select a segment connection point, the connection point will automatically be selected and the tangent direction will automatically be defined in the *Initial Condition* direction defined in the segment connection point's placement constraints.

Select the segment connection for the 4 Pin Connector. This connector will also be defined in the routed objects. Notice the bundle is now present.

Note: The physical shape of the branch may vary based on the position of the two connectors.

Select in space. The branch is completed.

Select the Exit icon. This will take you back to the Electrical 3D Design workbench and activate the electrical geometry branch.

Save your harness. Save with Options would be a good option to use when saving your bundles. Leave your harness open, it will be used in the next section.

Defining Multi-Branches

Although single branches are very useful for simple geometric bundles, you will often find that you are not able to create the necessary bundles with just a single branch. The most common type of bundle used, even for a simple straight geometric bundle, is a multi-branchable.

Open the ELEC080 - Multi-Branchable document. You will create a multi-branchable document of a simple harness of three connectors in a "Y" configuration.

If not already there, switch to the Electrical 3D Design workbench. Defining a multibranch initially is going to be no different than a single branch.

Select the Electrical Geometry icon, then select the *ELEC080 - Multi-Branchable* product. Set The *Electrical Geometry* window appears.

Change the *Title* **to be <u>ELEC080 - Electrical Geometry</u> and select** *OK***.** It should appear as shown.

ELEC080 - Multi-Branchable A.1
 ELEC080 - 10 Pin Square Plug A.1 (ELEC080 - 10 Pin Square Plug.1)
 ELEC080 - 6 Pin Square Plug A.1 (ELEC080 - 6 Pin Square Plug.1)
 ELEC080 - 6 Pin Square Plug A.1 (ELEC080 - 6 Pin Square Plug.2)
 ELEC080 - Electrical Geometry (ELEC080 - Electrical Geometry.1)

In this case, you will move all of the connectors into the electrical geometry so the entire thing will be self contained.

Drag each of the connectors into the *ELEC080 - Electrical Geometry*. It should appear as shown when you are finished.

At this point, you are ready to define the branch segment.

Activate the *ELEC080* - *Electrical Geometry*.

Select the Electrical Branch Geometry icon. When the Electrical Branch Geometry window appears.

Key in <u>ELEC080 - Electrical Branch Geometry</u> for the *Title* **and select** *OK***. This will start a branch.**

Branch De	finition				?	×
Name:		Branc	:h.1]
Separatior	n Code:	<uns< td=""><td>et></td><td></td><td>~</td><td></td></uns<>	et>		~	
Resource:		Unset	t			5
Diameter:		0.394	4in		▲ ▼	
Section:		0.122	2in2		▲ ▼	
Bend Rad	dius for	Check	. ———			
Bend Rad	lius:		0.591	n		▲ ▼
🗌 Bend	Radius	Ratio:	Unset			-
Computed	l Bend I	Radius	: 3.937	/e+031in	-	3 🔒
– Build Mo	de					
Mode:	Slack					~
Slack(%):	0					
Length:	0in				-	ļ
		Rout	e Defin	ition		
	S	iegme	nts Def	inition		
External Cu	urve: N	lo Sele	ection			
			OK	Apply	Ca	ncel

Change the *Name* of the branch to <u>Main Branch</u>. This will set the name of the first branch you are going to create.

Change the *Diameter* to 0.5in and the *Bend Radius* to 1.0in. Again, it is a good rule of thumb to make sure that your bend radius is larger than your branch diameter.

With the *Build Mode* set to *Slack*, set the *Slack* percentage to 5.0. Now you are ready to define the route.

Select Route Definition. The Route Definition window appears.

Route Definition		?	×
Routed Objects	Tangent Dir.		
Add after O Add before	ore O Replace	O Ad	d auto
Remove			
More >>			
	K Apply	C	ancel

Select the 10 pin square plug. The Segment Connection Point text should appear.

Select the *Segment Connection Point* text to begin the route and then select the 6 pin square plug as shown.

Select the connection point for the 6 pin square plug. This will define the route.

Select *OK* to the *Route Definition* window. Notice now the *Segments Definition* button is available within the *Branch Definition* window.

lo	Name	Start point	End point	Name:	Segment.1	
	Segment.1	Point.1	Point.2	Color:		
				Resource:	Unset	C
	1			Profile Type:	0000	
	L	-		Section Par	rameters	
					Diameter: 0.5in	▲ ▼
					→)	
9						
30	86/					
E 1	utromity Managom	ant				
- Ex	xtremity Managem	ient		Section Area	a: 0.196in2	
tart	xtremity Managem point: 0 point: 1	ent		Section Area	ı: 0.196in2	
tart nd p	xtremity Managem point: 0 point: 1 isualization Manag	ent - - ement		Section Area	a: 0.196in2	
tart nd p Vi Refr	xtremity Managem point: 0 point: 1 isualization Manag rame on selection	lent rement		Section Area	a: 0.196in2	
tart nd p Vi Refr	xtremity Managem point: 0 point: 1 isualization Manag rame on selection	lement		Section Area	a: 0.196in2	ly Cancel
tart nd r Vi Refr	egment Defini	eent eement	This a	Section Area	0.196in2 Detailed Profile Management OK Appl You to view the various	ly Cancel
E> tart nd µ Refr	egment Defini	eent	This ar multi-t	Section Area	a: 0.196in2	ly Cancel segments
E> tart nd p N Refr	xtremity Managem point: 0 point: 1 isualization Manag rame on selection	eent eement ition	This an multi-b	Section Area	a: 0.196in2	ly Cancel segments
E> tart nd F Refr	Add Brancl	eent	This an multi-b Create	Section Area rea allows pranch s an additio	a: 0.196in2 Detailed Profile Management OK Appl OK Appl you to view the various onal branch point along	ly Cancel segments : the curve
E) tart nd p Nafar Refr	Add Branc	eent eement ition h Point	This an multi-t Create	Section Area rea allows pranch s an additio	a: 0.196in2 Detailed Profile Management OK Appl OK Appl you to view the various onal branch point along	ly Cancel segments the curve
E> tart nd p Refr	Add Branc	eent ement ition h Point	This an multi-t Create	Section Area	a: 0.196in2 Detailed Profile Management OK Appl you to view the various onal branch point along 1	ly Cancel segments the curve
Extart tart Vi Refr	Add Branc	eent	This ar multi-t Create	Section Area	a: 0.196in2 Detailed Profile Management OK Appl you to view the various onal branch point along	ly Cancel segments the curve

Select the Segments Definition button. This will display the Segments Definition window.

Switches the branch point units between length and ratio along the branch

Modifies the reference point being used to locate the branch point

Switches between Standard and Associative type branch points

Remove Branch Point

Change Reference Object

Change Branch Point Type

Removes the branch point

.

	Ъ	Exits Branch Point B	Edition	Exits the branch point edition
ø	Remo	ve Branch Point	Removes bran	ch points in a bundle
Name			Specifies the n	ame of the segment
Color			Specifies the c	olor of the segment
Resour	rce		Displays the u	nique identifier for the segment
Profile	e Type		Specifies the s	hape of the segment
Section	n Paran	neters	Specifies the s	ize characteristics of the segment
Section	n Area		Specifies the c linked to the S will update the	ross section area of the segment. It is <i>ection Parameters</i> , so modifying one e other
Detaile	ed Profi	ile Management	Allows more is along the segn	n depth modification of the profiles nent
Extren	nity Mai	nagement		
	Start p	point	Defines the rat	tio of the curve the branch point starts
	End po	pint	Defines the rat ends	tio of the curve length the branch point
Visual	ization .	Management		
	Refran	ne on Selection	Reframes and	fits the bundle segment in the display

At this point, you are ready to define the branch point.

Change the *Color* **to light blue.** The exact shade of blue is not important, you just want to see that the color of the bundle can be changed.

Now to add a branch point.

Select the Add a Branch Point icon. Once you select the icon, the system will wait until you select the bundle segment you want to add the branch point in.

At this point, you need to determine how you want the branch point defined. In this case, assume you want the branch point defined a particular distance away from the other connector.

Select the Change Branch Point Unit icon. The text in the display should change from *Ratio* to *Distance*.

Select the Distance text. This will allow you to edit the value.

Key in 6.0 and select Enter. This will set the distance exactly to 6 inches. Now, no matter how long the geometric bundle becomes when you install it, the distance to the break point will always be 6 inches. If you were to set it to a ratio, then the distance would adjust based on the length of the bundle.

Select the Exit icon when done. This will split the branch into two segments. Notice the segments were renamed back to the default naming scheme.

Segn	nents Definition						×
No 1	Name Segment.1	Start point Point.1	End point Branch Point	Name: Color:	Segment.2	~	
2 E	Segment.2	Branch Point	Point.2	Resource: Profile Type: Section Part	Unset	C	1
End F Vi Refr	point: 1 isualization Management rame on selection				Detailed Profile Management	y Ca	ncel

With the first segment selected in the window, change the *Color* to yellow. This will help you keep track of the various segments.

Also, notice the start and end points in the *Extremity Management*. These values are now accessible to adjust the start and end locations of the segments.

Select *Segment.2* and change the *Diameter* to 0.375in. You may need to select *Apply* to get the bundle to update properly.

Select OK to the Segments Definition window. This will have the new segments defined.

Select OK to the Branch Definition window. This will create the branch.

Select the Classic Branch Definition icon. V This will allow you to create a new

branch within the existing branch set.

Branch Definition		?	×
Name:	Branch.2		
Separation Code	<unset></unset>		~
Resource:	Unset		5
Diameter:	0.5in	_	•
Section:	0.196in2	_	▲ ▼
⊢ Bend Radius fo	r Check		
Bend Radius:	1in		×
Bend Radius	Ratio: Unset		× -
Computed Bend	Radius: 3.937e+031in		- 👌
– Build Mode –			
Mode: Slack			~
Slack(%): 5			•
Length: Oin		_	-
	Route Definition		
	Segments Definition)
External Curve:	No Selection		
	OK Apply		Cancel

Change the *Name* to <u>Side Branch</u>, then set the *Diameter* to 0.375in. Now you are ready to define the route for the side branch.

Select *Route Definition.* At this point, you can select any of the connectors or branch points to start the route. When you select a branch point, the segment you select will help determine what extremity the branch will associate to.

Select the yellow bundle near the split. Notice a point and arrow is shown on the bundle.

Select the other 6 pin square plug. This will add the branch.

Look closely at the specification tree.

The new branch has an exclamation point with a yellow oval around it to indicate that the bend radius might not have been respected. This is not a critical error, but it is something you will want to watch for when you install the harness into your assembly. If you find that you still have radius issues at installation, then you may need to look at adjusting the branch point or adding additional slack.

Select OK to the Route Definition window.

Select the Segments Definition button. The Segments Definition window appears.

Change the Color to tan. This will better differentiate the segment.

Select OK to the Segments Definition window.

Select *OK* to the *Branch Definition* window. This will have the next branch defined. It should appear as shown.

Select the Exit icon to return to the Electrical 3D Design workbench.

Delete the *ELEC080 - Electrical Branch Geometry* **from the tree.** You will create the same harness using the immersive options.

Select the Electrical Branch Geometry icon. When the Electrical Branch Geometry window appears.

Key in <u>ELEC080 - Electrical Branch Geometry</u> for the *Title* and select *OK*. This will start a branch and the Branch Definition window appears.

Select Cancel.

Select the Immersive Branch Definition icon. The *Branch Properties* window appears.

Branch Properties	-	×
Sranch.1		
General parameters		
Branch Name	Branch.1	
Separation Code	<unset></unset>	
Build Mode	Slack	-
▼ Profile	L	
Profile type	$\bigcirc \bigcirc \square \square \square$]
Diameter	0.5in	
Section Area	0.196in2	
Geometry		
Slack	5.00 %	
Length	0in 4	
Bend Radius	1 in (
Bend Radius Ratio	0.000	
Computed Bend Radius		

Change the *Name* of the branch to <u>Main Branch</u>. This will set the name of the first branch you are going to create.

Change the *Diameter* **to 0.5in and the** *Bend Radius* **to 1.0in.** Again, it is a good rule of thumb to make sure that your bend radius is larger than your branch diameter.

With the *Build Mode* set to *Slack*, set the *Slack* percentage to 5.0. Now you are ready to define the route.

Select the 10 pin square plug. The Segment Connection Point text should appear.

Select the *Segment Connection Point* text to begin the route and then select the 6 pin square plug as shown.

Select the connection point for the 6 pin square plug. This will define the route.

Notice now the Segment.1 tab appears within the Branch Properties window.

Select the Segment.1 tab. It should appear as shown.

Segment name	Specifies the name of the segment
Color	Specifies the color of the segment
Profile Type	Specifies the shape of the segment
Diameter	Specifies the diameter of the segment
Section Area	Specifies the cross section area of the segment. It is linked to the <i>Diameter</i> , so modifying one will update the other
Start point	Defines the ratio of the curve the branch point starts
End point	Defines the ratio of the curve length the branch point ends

At this point, you are ready to define the branch point.

Change the *Color* **to light blue.** The exact shade of blue is not important, you just want to see that the color of the bundle can be changed.

Now to add a branch point.

From the toolbar in the display, select the Creation Mode icon. The toolbar expands as shown.

Select the Add a Branch Point icon. The point appears as shown and the toolbar changes.

Use the Change Reference Object icon to get the red anchor near the 6 pin square plug if needed. This will switch sides of the reference point. It should appear as shown above.

At this point, you need to determine how you want the branch point defined. In this case, assume you want the branch point defined a particular distance away from the other connector.

Use the Change Branch Point Unit icon if needed to switch to *Distance*. The text in the display should be *Distance* rather than *Ratio*.

Select the *Distance* **text, key in 6.0 and select Enter.** This will set the distance exactly to 6 inches. Now, no matter how long the geometric bundle becomes when you install it, the distance to the break point will always be 6 inches. If you were to set it to a ratio, then the distance would adjust based on the length of the bundle.

Select the Exit icon when done. This will split the branch into two segments. Notice the segments were renamed back to the default naming scheme.

Branch Properties				$- \times$		
🍆 Main Branch	🧈 Segm	nent.1	🧈 Segmer	nt.2		
🔻 General param	eters					
Branch Name		Main B	Branch			
Separation Code	e	<unset< td=""><td>t></td><td>•</td></unset<>	t>	•		
Build Mode		Slack		•		
▼ Profile						
Profile type		Ο	$O \square$			
Diameter		0.5in				
Section Area		0.19	5in2			
Geometry						
Slack		5.00	%			
Length		16.3	2in			
Bend Radius	(• 1in				
Bend Radius Rat	tio	2.00	0			
Computed Bend	l Radius	7.1in				

Switch to the *Segment.1* tab in the window and change the *Color* to yellow. This will help you keep track of the various segments.

Also, notice the start and end points in the *Extremity Management*. These values are now accessible to adjust the start and end locations of the segments.

Select the *Segment.2* tab and change the *Diameter* to 0.375in. You may need to select the Tab key to get the bundle to update properly.

Select the Start New Branch icon from the toolbar. V This will allow you to create

a new branch within the existing branch set.

Branch Properties			_ ×
Sranch.2			
General parameters	eters		
Branch Name		Branch.2	
Separation Code	2	<unset></unset>	•
Build Mode		Slack	•
Profile			
Profile type		$\bigcirc \bigcirc \square$	
Diameter		0.5in	*
Section Area		0.196in2	
Geometry			
Slack		5.00 %	
Length		0in	
Bend Radius	(1in	
Bend Radius Rat	io	0.000	
Computed Bend	Radius		

Change the *Name* to <u>Side Branch</u>, then set the *Diameter* to 0.375in. Now you are ready to define the route for the side branch.

Select the yellow bundle near the split. Notice a point and arrow is shown on the bundle.

Select the other 6 pin square plug. This will add the branch.

Notice the tangency doesn't look right.

Select the branch point symbol as shown above. The display should appear as shown.

Select the Tangency Mode icon in the toolbar and select the main curve. *It* should appear as shown.

Look closely at the specification tree.

The new branch has an exclamation point with a yellow oval around it to indicate that the bend radius might not have been respected. This is not a critical error, but it is something you will want to watch for when you install the harness into your assembly. If you find that you still have radius issues at installation, then you may need to look at adjusting the branch point or adding additional slack.

Select the Segment.1 tab and change the Color to tan.

Select in the display to complete the branch. This will have the next branch defined. It should appear as shown.

Select the Exit icon to return to the Electrical 3D Design workbench.

Open the ELEC090 - Branch Installation product. This is a simple box to put the wire harness you just created into. It should appear as shown.

With the right mouse button, select on the *ELEC090 - Branch Installation* product from the specification tree and select *Insert*, *Existing Product*.

Search for and select the ELEC090 - Multi-Branchable product. It should appear as shown.

At this point, you are ready to begin making the necessary connections to install the harness into the box.

If not already there, switch to the Electrical 3D Design workbench. Since you are connecting two electrical connectors together, you can use the connect devices tools.

Select the Connect Devices icon, then select the connector on the light blue bundle segment. In this will indicate what connector you are going to connect first.

Select the 6 pin connector on the left as shown. You may have to select the connector twice if it is in visualization mode.

Take note of the resulting wire bundle.

Notice the segment split location. Since you defined the split point to be 6 inches from the end of the blue segment, no matter how long the main segment becomes, the split point will always be 6 inches from that end. The tan and yellow bundle segments will dynamically resize since they were not limited by length.

Select the Disconnect Devices icon, then select the two connectors you just attached together. This will electrically disconnect the two connections.

Select the Connect Devices icon again, then select the connector on the blue bundle segment and the 6 pin connector on the right. This will connect it to the other connector.

Connect the other connectors. It should appear as shown.

Notice the twisted branch. This will get fixed as you begin adding supports and other links to your branches.

Save and close your document.

Electrical Manufacturing Preparation

Flattening the bundle is generally the final step to any development of a geometrical bundle. Before a bundle can be manufactured, it will generally need to be flattened for dimensions on wire length, as well as form board development and connector call outs. There are a few key points to keep in mind when flattening your geometric bundle. First, the flattened geometric bundle is separate from the bent geometric bundle. This allows the flattened geometric bundle to maintain associativity in dimensions and geometry, but not in the shape of the bundle. The second thing to keep in mind is that the flattened document is generally used for drafting and FTA markup and annotations. Although this will be touched on here, this will not be the focus of this section.

Formboard Creation

The formboard and prepare layout options are the newest methods for creating harness flattening. This section will demonstrate the process.

Open the ELEC340 - Flattening Orientation document. It should appear as shown.

Select the Formboard icon. The Formboard Process window appears.

Formboard Process			_ × _
Report Selection Select all			
Processes			
Validation	Flatten status	Backbone	Generate layout

Select the *ELEC340 - Electrical Geometry* **in the tree to define what will be included.** It should appear in the window and it should highlight in the display.

Select the Validation button. The harness should highlight green as shown.

- Green Specifies the branch can be flattened
- Yellow Specifies the branch cannot be flattened
- Magenta Specifies the branch can be flattened, but will not be straightened
- Blue Specifies the branch is already flattened

Select the *Flatten status* button in the window. Everything should remain green.

Select the *Backbone* button. The main branch should change to pink and should have the start and end labled.

Select the *Generate layout* button. A new product is created in a new tab. The *Formboard Process* window should appear as shown.

Formboard Proce	ess		_ ×
Report			
Selection	Backbone		8
Sr. no Branch	n 🖓 Status	💎 Length(mm)	Comment
1 Branc	h.1 Flatten	1873	Start-End
		1873	Total length
Processes			
Validati	ion 🥝 Flatten status	; 🔗 Backbone	Generate layout

Close the *Formboard Process* **window and switch to the new product tab.** It should appear as shown.

The entire harness was brought over including any internal electrical connectors. Notice a separate product was also created that includes any supports that were used by, but not internal to the harness.

Prepare Layout

The prepare layout option allows you to modify the flattened harness in order to optimize the layout for manufacturing.

Select the Prepare Layout icon. W The layout toolbar appears.

5	Undo	Undoes the previous modification
6	Punctual Mode	Allows modification of a segment
C	Local Mode	Allows modification of a branch
2	Global Mode	Allows modification of a junction or GBN
ر	Rotate	Performs a rotation
F	Roll	Performs a roll (bend)
\$ }	Arrange Junction	Arranges a junction around the bundle extremity
[≠0	Scale	Scales a branch
(}→[]	Straighten	Straightens a branch
¢,	Close Loop	Closes the loop by positioning the open branch extremity near the second end of the loop

Select the Rotate icon and move your mouse over the branch as shown. the yellow sphere that appears at the opposite end of the branch. This specifies which end of the branch will be modified.

Once the yellow sphere appears at the base of the branch, go ahead and select the branch. A rotational object will appear as shown.

Drag the branch around approximately as shown.

Select the value near the branch, key in 135 and select Enter. This will set the angle for the branch rotation.

Select in space. The branch should appear as shown.

Select near the end of the teal branch. The rotation object should appear as shown.

Rotate the branch to -150 degrees and select in space.

Select the end of the small branch protruding from the teal branch and rotate it to be - **30 degrees.** Select in space when done. This will put it parallel to the main branch.

Rotate the 2 purple branches on the top of the main branch to be 30 degrees from the main branch and rotate the purple branch on the bottom to be -45 degrees. They should appear as shown.

Roll the end of the branch to be 45 degrees and select in space. It should appear as shown.

Rename the top level product and the sub assembly as shown.

Save the document. Leave it open for the next exercise.