

Evaluation of Aged Structural Bonds on Rotor Blades

Waruna Seneviratne, John Tomblin, and Caleb Saathoff

JAMS Technical Review April 2023 Seattle, WA

Evaluation of Aged Structural Bonds on Rotor Blades

Research Team

NIAR

Waruna Seneviratne, PhD John Tomblin, PhD Caleb Saathoff

FAA

Lynn Pham (Technical Monitor) Larry Ilcewicz, PhD (Sponsor) Cindy Ashforth (Sponsor) Other FAA Personnel: Ahmet Oztekin, PhD; Edward Weinstein, PhD; Danielle Stephens

LOCKHEED MARTIN COMPAN

Industry Industry

LEONARDO

Project Overview

_	▲
 Background and Motivation: Long-term durability under operational environments must be understood and the aging mechanism must be investigated to support maintenance practices and to establish criteria for structural retirement Detailed nondestructive inspections (NDI), teardown inspections, and laboratory testing of bonded repairs on aircraft components that have been retired from service provide vital information related to the aging mechanism and any undetected material degradation Concerns related to process sensitivity of the bondline as an improperly accomplished in-service repair could become a safety threat 	 Project Goals: Compare "state of adhesive" or "state of resin" on old blades to the initial state of these polymeric materials on new blades Teardown and evaluate bondline performance parameters Compare existing repairs on old blades and new repairs on old blades to new repairs on new blades Use existing repairs or perform repairs → mechanical performance evaluation Compare accelerated aging protocols to real life Structural testing based on lower building block findings Demonstrate improved accelerated testing in rotor blade bench tests
 Potential for weak bond to degrade in an unpredictable manner when subjected to operational environments and ground-air-ground (GAG) thermo-mechanical loads Concern that unique dynamic loads for rotor blades yield complex history-dependent behavior for products with shifting missions 	Task List: Task I: Structural Test Rig Development 1) Steering Committee Formation 2) FAA Tech Center Fixture Design 3) NIAR ATLAS Fixture Design and Manufacturing Task II: Rotor Blade Acquisition 4) Blade History Documentation 5) Receiving Inspections
 Objective: Evaluate bondline integrity and durability of adhesively bonded composite rotor blades for understanding the aging mechanisms with respect to various operational conditions. 	 6) Mechanical Performance Analysis of Rotorcraft Blades Task IV: Rotor Blade Teardown and Lower-Level Testing 7) Failure Documentation and Analysis 8) Detailed Experimental Investigations

Structural Test Rig Development

Objective: Establish the capability, and enhance subject matter knowledge, for rotorcraft main rotor blade structural testing efforts at FAA Technical Center and NIAR ATLAS.

- Loading Requirement Definition
 - <u>Centrifugal Force</u>: **120.0**-kip
 - Lift Force: **44.4**-kip
 - Drag Force: **14.2**-kip
 - Damper Force (Not on all rotor types): **9.8**-kip
 - Considerations Required: [Fully Articulated, Semirigid, Rigid]
- Fixture Definition
 - FAA Technical Center: Standalone
 - NIAR ATLAS: Incorporation into Existing Multipurpose Test Rig

Fix.FAA

Fix.NIAR

Structural Test Rig Development

Objective: Establish the capability, and enhance subject matter knowledge, for rotorcraft main rotor blade structural testing efforts at FAA Technical Center and NIAR ATLAS.

LL.Test

- Fixture Overview
- Centrifugal Force Application
 - Class 2 Lever: Pressurized Air Spring

History

NDI

Mech.Test Failure(s)

Force 1	Table (L	Jse for	Airstro	ke [™] act	uator d	esign)
Accombly	Volume		Po	ounds For	се	
Height (in.)	PSIG (in ³)	@20 PSIG	@40 PSIG	@60 PSIG	@80 PSIG	@ 100 PSIG
10.0	3,064	4,480	9,320	14,130	19,110	24,190
9.0	2,796	4,990	10,200	15,520	20,940	26,410
8.0	2,512	5,440	10,990	16,680	22,480	28,270
7.0	2,206	5,780	11,650	17,620	23,740	29,830
6.0	1,889	5,950	12,090	18,330	24,640	31,000
5.0	1,559	6,310	12,720	19,340	26,040	32,740
4.0	1,211	6,650	13,320	20,150	27,140	34,100

Structural Test Rig Development

Objective: Establish the capability, and enhance subject matter knowledge, for rotorcraft main rotor blade structural testing efforts at FAA Technical Center and NIAR ATLAS.

- Force Application
 - Lift: **28.4**-kip
 - 2 x Servohydraulic Actuators
 - Drag: **14.2**-kip
 - 1 x Servohydraulic Actuators
 - Centrifugal: 100-kip via Airbag
- Cyclic Rate Capacity
 - 6.o-inch Displacement: *o.44-Hz*
 - 1.1-inch Displacement: **1.0**-Hz

Dual 8-Channel Distribution Manifolds HSM

	Actuator	Load C	apacity [kip]	Radi	ii [in]	Expected	Stroke [in]	Volun	ne [in ³]	Required	Servovalve	Size [gps]	Servovalve	Size [gpm]	Frequency
	ID	Tension	Compression	Bore	Rod	Cap Side	Rod Side	Cap Side	Rod Side	Time [s]	Cap Side	Rod Side	Cap Side	Rod Side	[Hz]
	Centrifugal Force	-	-	-	-	-	-	-	-	-	-				
[Lift Force	22.2	36.4	2.00	1.25	6.0	6.0	75.40	45.95	0.50	0.65	0.40	78.34	47.74	1.00
[Drag Force	7.3	14.2	1.25	0.88	3.0	3.0	14.73	7.51	0.50	0.13	0.07	15.30	7.80	1.00
[MR Damper Force	3.7	9.8	0.94	0.69	0.3	0.3	0.69	0.32	0.50	0.01	0.00	0.72	0.33	1.00

Actuator	Load C	apacity [kip]	Radi	ii [in]	Expected	Stroke [in]	Volun	ne [in ³]	Required	Servovalve	e Size [gps]	Servovalve	Size [gpm]	Frequency
ID	Tension	Compression	Bore	Rod	Cap Side	Rod Side	Cap Side	Rod Side	Time [s]	Cap Side	Rod Side	Cap Side	Rod Side	[Hz]
Centrifugal Force	-	-	-	- 1			-	-	-	-	-	-	-	
Lift Force	22.2	36.4	2.00	1.25	1.1	1.1	14.44	8.80	0.50	0.13	0.08	15.00	9.14	1.00
Drag Force	7.3	14.2	1.25	0.88	0.6	0.6	2.82	1.44	0.50	0.02	0.01	2.93	1.49	1.00
MR Damper Force	3.7	9.8	0.94	0.69	0.3	0.3	0.69	0.32	0.50	0.01	0.00	0.72	0.33	1.00
	-													

Actuator	Load C	apacity [kip]	Radi	i [in]	Expected	Stroke [in]	Volun	ne [m ³]	Required	Servovalve	Size [gps]	Servovalve	Size [gpm]	Frequency
ID	Tension	Compression	Bore	Rod	Cap Side	Rod Side	Cap Side	Rod Side	Time [s]	Cap Side	Rod Side	Cap Side	Rod Side	[Hz]
Centrifugal Force	-	-	-	-	-	-	-	-	-	-	-	-		
Lift Force	22.2	36.4	2.00	1.25	6.0	6.0	75.40	45.95	1.14	0.29	0.17	15.00	9.14	0.44
Drag Force	7.3	14.2	1.25	0.88	3.0	3.0	14.73	7.51	1.14	0.06	0.03	2.93	1.49	0.44
MR Damper Force	3.7	9.8	0.94	0.69	0.3	0.3	0.69	0.32	1.14	0.00	0.00	0.14	0.06	0.44

NIAR ATLAS: Evaluation of Aged Structural Bonds on Rotor Blades – pg. 8

Fix.FAA

Fix.NIAR

History

NDI

Mech.Test Failure(s)

Structural Test Rig Development

Objective: Establish the capability, and enhance subject matter knowledge, for rotorcraft main rotor blade structural testing efforts at FAA Technical Center and NIAR ATLAS.

LL.Test

Rotor Blade Acquisition

Objective: Acquire rotorcraft main rotor blades exhibiting same construction materials and methods while exhibiting varying environmental/operational applications.

LL.Test

Inspections

- Shearography: Complete
- Thermography: Complete
- Ultrasonics: Complete

Path Forward

Teardown

- Root-end extraction
- Preparation for F.S. testing
- Testing

Fix.FAA

Planning

- Strain surveys
- Fixture validation

B. Leonardo AW109

- **Blade Details**
- Quantity
- One main rotor blade
- Historical Information

Hours: 4,352

Status

- Inspections
 - Shearography: On-Hold
 - Thermography: On-Hold
 - Ultrasonics: On-Hold

Path Forward

Holding

NDI

Focusing efforts on other blade sets that exhibit same material systems with various service histories

Mech.Test Failure(s)

Blade Details

- Quantity
- One main rotor blade
- Historical Information
 - Hours: 10,457.7

Status

- Inspections
 - Shearography: Complete
 - Thermography: Complete
 - Ultrasonics: Complete

Path Forward

- Holding
 - Focusing efforts on other blade sets that exhibit same material systems with various service histories

D. Sikorsky S-92

Blade Details

- Quantity
 - Two main rotor blades
- Historical Information
 - Hours: In-Work

Status

- Inspections
 - Shearography: Complete
 - Thermography: Complete
 - Ultrasonics: In-Work

Path Forward

Teardown

- Extraction plan development
- Preparation for F.S. testing
- Testing
 - High level and low level

Fix.NIAR History

Non-destructive Testing

Finish

Mechanical Testing

Component Level NDI

Objective: Establish whether fleet blades received have traditional damage we would typically see with NDI & do they have other aging effects that we don't normally measure?

- Laser Technology Inc. (LTI)
 - Laser Shearography: LTI-2100HP-300
 - 300-mW @ 532-nm Green Laser
 - 2-kW Thermal Stress System
 - In-house Vacuum System and Local Chamber

Mech.Test Failure(s)

- Thermal Wave Imaging (TWI)
 - Pulsed Thermography: X8500 SC Camera

NDI

Resolution: 1280x1024

History

Frequency: 180-Hz

Fix.NIAR

• NDTS MAUS

- Pulse Echo UT: Single-element 5.0-MHz
- Resonance Testing: 270-kHz and 320-kHz
- Mechanical Impedance Analysis: 19-kHz

LL.Test

S-76A Inspection

NIAR ATLAS: Evaluation of Aged Structural Bonds on Rotor Blades – pg. 12

A.

Planning

Fix.FAA

Fix.FAA

Component Level NDI

Objective: Establish whether fleet blades received have traditional damage we would typically see with NDI & do they have other aging effects that we don't normally measure?

LL.Test

Mech.Test Failure(s)

Inspection Reporting

Inspecti NIAR A 1845 Fai Wichita, PH: 316	on Facility Addrey TLAS Laboratory 3 rmount Street KS 67260 978-7445	an MESA RM.102	Inspe Inspe Mate	Inspection Type: Thermography, Shearography and Ultrasonic Inspection Configuration: Helicopter Blade Material Configuration: Face sheet-Honeycomb/composite spar					
1 TV 2 L1 3 M	VI EchoTherm T Shearography AUS V		Instrument	1					
1 TV 2 L1 3 M	VI EchoTherm T Shearography AUS V		Inspections Performed by: Christopher Trevine: Performed July 2021 Christopher Trevine: Performed July 2021 Christopher Trevine: Performed July 2021						
		Ing	ection Documentation	and Reporting					
lisine 1	Date October 27th, 2022	Total Pages 20	Pages Affected 1-20	Initial Rel	Description rase of Inspection Data				
	Action	Name	Position	Date	Signature				
1	repared	Chris Trevino	Research Engineer	October 27, 2022	Christopher A. Trevino				
3	Reviewed	Caleb Saathoff	Senior Research	October 27, 2022	Caleb J. Saathoff Sand				

Fix.NIAR

History

NDI

Component Level NDI

Objective: Establish whether fleet blades received have traditional damage we would typically see with NDI & do they have other aging effects that we don't normally measure?

Inspection Reporting

Project Title: Sikor Date: Feb 15, 2023	sky S92 Blade End o	f Life Inspection		
Inspection Facility Add	Iress	Inspect	ion Type: Thermoj	raphy, Shearography and Ultrasonic
4174 S Oliver Building	57 140H		Inspection Configu	aration: Helicopter Blade
Wichita, KS 67210 PH: 316-978-7445		Materi	al Configuration: (3FRP Honeycomb
		Instrument		
1 TWI EchoTherm				
3 MAUS V				
		Investions Perform	ed her	
1 TWI EchoTherm		inspections removal	Steven Lee: Perform	aed Nov 2022
2 LTI Shearography		Chri	stopher Trevino: Pe	rformed Nov 2022
3 35AUS V		Steven Lee'Ch	istopher trevillo: P	erformed Dec/Jan 2022/2025
	Ins	pretion Documentation a	and Reporting	
Issue Date	Total Pages	Pages Affected	2-1-1-1 PL	Description
1 E-b 16 2021		1917	EDGM N	nease of impection pairs
1 Feb 15, 2023		Position	Date	Signature
1 Feb 15, 2023 Action	Name			- Children and a family of the later
1 Feb 15, 2023 Action Prepared	Name Steven Lee	NDI Level II	Feb 15, 2023	Steven Lee Date 2010 10 10 10 10 10 10 10 10 10 10 10 10

Component Level NDI

Objective: Establish whether fleet blades received have traditional damage we would typically see with NDI & do they have other aging effects that we don't normally measure?

Approach for S-92 Blades

- Two identical blades exhibiting vastly different levels of skin-to-core bond strength as determined by OEM in-situ peel testing.
 - Evaluation of operational conditions (environment, flight profiles, etc.).
 - Performance of NDI for receiving condition evaluation and region of interest (ROI) determination (defects/damages).
 - Evaluation of skin-to-core bond characteristics.

Initial NDI Findings: Utilizing standard inspection techniques, no change from nominal was discernable in severely aged blades.

Summary of Status

Task I: Structural Test Rig Development

1) Steering Committee Formation <a>- Complete

2) FAA Tech Center Fixture Design 🗸 - Complete

Task II: Rotor Blade Acquisition

4) Blade History Documentation √ - *Complete*

5) Receiving Inspections - Complete

Task III: Full-scale Structural Testing

6) Mechanical Performance Analysis of Rotorcraft Blades ---- In-progress

Task IV: Rotor Blade Teardown and Lower-Level Testing

7) Failure Documentation and Analysis ----> In-progress

8) Detailed Experimental Investigations ----> In-progress

Moving Forward: Full-Scale Structural Testing – Stage 1

(A)

Objective: *Risk Mitigation and Confidence.*

- General Approach:
 - Assumptions for Force Estimations
 - Blade Weight: 88.o-lbs
 - Blade Speed: 300-RPM
 - Blade Length: **19.98-ft**
 - Main Rotor Dia: 44.o-ft
 - Takeoff Weight: 10,500-lb
 - Disk Area: **1520.5**-sqft
 - Reverse engineer blade loft for both INBD and OTBD attach
- Full-scale testing : Quasistatic strain surveys

Moving Forward: Coupon Level Testing for Artificial Aging

Objective: Establish testing methodology for laboratory aging of structural details in which a strength knockdown is observed due to environmental exposure.

LL.Test

Approach

- Two Configurations: Pristine vs. Porosity
 - Based upon dried vs. wet* core utilization when bonding

Mech.Test Failure(s)

- Use of material systems, to an extent, from rotor blade
 - Facesheet: T650/5320-1 PW
 - Adhesive: *Metlbond* 1113 [0.06-psf]
 - Core: *HRH10-3/16-2.0*
- Baseline and Intermediate Testing
 - Peel and Flatwise Tensile

Fix.NIAR

Fix.FAA

Hi-fidelity NDI via X-ray CT

History

NDI

Questions?

• Waruna Seneviratne – ATLAS

- Contact: waruna@niar.wichita.edu

Caleb Saathoff – ATLAS

- Contact: csaathoff@niar.wichita.edu