

Bond Process Qualification Protocols for Aircraft Design and Certification

Waruna Seneviratne, John Tomblin, and Upul Palliyaguru

JAMS Technical Review April 2023 Seattle, WA

Bond Process Qualification Protocols for Aircraft Design and Certification

Research Team

NIAR

Waruna Seneviratne, PhD John Tomblin, PhD Upul Palliyaguru

FAA

Ahmet Oztekin, PhD Larry Ilcewicz, PhD Cindy Ashforth

Industry

AFRL, Boeing, Bell Helicopter, Henkel, Honda Aircraft Co., Lockheed Martin, MMM, MTech Engineering Services, NAVAIR, Solvay Industries, Textron Aviation, Boom Aerospace

Background & Motivation

- Use of <u>Bonded Joints</u> in primary and secondary aircraft structures are preferred over mechanical joins by aircraft manufacturing community due to :
 - Weight reduction compared to fastened structures.
 - Less labor intensive process compared to hole drilling, fastener installation and inspection procedures.
 - Minimum local stress concentrations.
- Despite the many advantages of using Bonded Joints, there are few <u>challenges</u> in using bonded joints in aircraft structures
 - Qualification challenges of the <u>bond process</u>.
 - Bonding process <u>sensitivity</u>.
 - High complexity of **multiple parameters** in the bond system.
 - High variability seen in <u>technician</u> involved processes.
 - Lack of effective means to assess the <u>quality of the bond process</u> (surface preparation)

The primary goal of this research program is to develop guidance material for bond process qualification protocols and support development of certification road map for bonded structures.

Road Map & Bonded Joint Certification Approach

- Bond Process Qualification (BPQ)
 - Develop an acceptance criteria
 - Requirements (based on information in AC's and FAR's, etc.)
 - Applicability of existing standards and/or develop new standards
 - Select known bond system failures
 - Simulate and investigate the BPQ methodology flags the "bad" bonds
 - Develop Protocols
 - Quantify process reliability
 - Assess repeatability/maturity

Bonding Process Limit Determination

Selection of Parameters for Bond System

Test Methods for Bond Process Evaluations

	Bond System Component Under Investigation					
Joint Property	Surface	e Preparation	Adhesive Preparation and Cure Process			
Under investigation	Surface Preparation Method	Test Method	Surface Preparation Method	Test Method		
Peel/Fracture Toughness/Mode I	Variable	ASTM D5528	Fixed Based on	ASTM D5528		
Shear		ASTM D3165	step 2	ASTM D3165		

Cohesion Failure

Fiber-Tear Failure

Thin-Layer Cohesion Failure

Light Fiber-Tear Failure

Surface Preparation Evaluation – Step 2

Surface Preparation Effectiveness Measurement

Surface Preparation Quality Assessment

- Surface Free Energy Measurement
- Water Contract Angle Measurement

Surface

Contamination

Assessment

Fourier Transform Infrared

Energy Dispersive X-ray

Spectroscopy (FTIR)

spectroscopy (EDS)

- Scanning Electron Microscopy (SEM)
- **Optical Microscopy**

Surface Morphology /Roughness Assessment

- **Optical Profilometry**
- Surface Roughness Measurements

Surface Preparation Evaluation Test Matrix Manual and Machine Assisted Abrasion

total

20 0

10

5

Closed

-De-ionised Water

- Ethylene Glycol

- Surface Energy Ratio

T20

T10

symbols

T40

16.00

Perpendicular

of

as

Polar

- Potential Parameters
 - Grit Size, Type
 - Duration of Sanding
 - Applied Pressure (Technician Variability)
 - Sanding Direction
 - Sanding Repetitions
 - Sander Type (Disk, Orbital)

Surface Preparation Evaluation Test Matrix Grit Blasting

Surface Preparation Evaluation Test Matrix

Potential Parameters

- Material Type, Thickness, & Resin Content
- Placement Location
- Peel Ply Removal Direction & Angle
- Removal Time Frame
- Repetitive Cure Processes
- Recommended Additional Evaluations
 - Fiber Volume Fraction & Resin Content
 - Degree of Cure

Effects of Peel Ply Material on single lap shear strength (ASTM D3165) and Mode I fracture toughness (ASTM D5528) Substrate Material: Toray T800H/3900-2

Material	Code	Style	Thickness [in]	Color	Warp [ends/in]	Fill [picks/in]
Nylon	51789	52006	0.0045 - 0.0055	White	160	103
Polyester	60004	56111	0.0045 - 0.0055	White	120	59

	Filament Material	Precision Fabrics Code	Warp (ends/mm) (ends/in.)	Fill (picks/mm) (ends/in.)	Peel Ply Thickness (mm)
	Polyester	60001	2.75 (70)	1.97 (50)	0.13-0.15
	Polyester	60004 VLP	4.72 (120)	2.32 (59)	0.13-0.15
	Polyester	60004	4.72 (120)	2.32 (59)	0.11-0.14
AF555	Polyester	60005	3.54 (90)	2.28 (58)	0.15-0.18
MB1515-3	Nylon 6,6	52008	3.98 (101)	3.23 (82)	0.10-0.13
[Nylon 6,6	40000	2.99 (76)	2.01 (51)	0.19-0.22

Effects of Peel Ply Pattern/Texture/Thickness⁶ Substrate Material: Carbon fiber/epoxy unidirectional material Test Method: ASTM D5528

Surface Preparation Evaluation Test Matrix Peel Ply (Cont.)

	Filament Material	Precision Fabrics Code	Warp (ends/mm) (ends/in.)	Fill (picks/mm) (ends/in.)	Peel Ply Thickness (mm)
[Polyester	60001	2.75 (70)	1.97 (50)	0.13-0.15
	Polyester	60004 VLP	4.72 (120)	2.32 (59)	0.13-0.15
	Polyester	60004	4.72 (120)	2.32 (59)	0.11-0.14
555	Polyester	60005	3.54 (90)	2.28 (58)	0.15-0.18
1515-3	Nylon 6,6	52008	3.98 (101)	3.23 (82)	0.10-0.13
[Nylon 6,6	40000	2.99 (76)	2.01 (51)	0.19-0.22

Effects of Peel Ply Pattern/Texture/Thickness ⁶ Substrate Material: Carbon fiber/epoxy unidirectional material Test Method: ASTM D5528

Effects of Repetitive Cure Processes Test Method: ASTM D3165 Substrate Material: Toray T800H/3900-2 PP: Peel ply intact during post-cure PPR: Peel ply removed during post-cure

MCCx: No. of post-cure cycles (1 or 2)

Material	Code	Style	Thickness [in]	Color	Warp [ends/in]	Fill [picks/in]
Nylon	51789	52006	0.0045-0.0055	White	160	103
Polyester	60004	56111	0.0045-0.0055	White	120	59

Surface Preparation Evaluation Test Matrix

Surface Preparation Quality Assurance Test Matrix

- Surface preparation technique evaluation data to be analyzed to estimate the upper and lower levels of Surface Free Energies (SFE) and/or Water Contact Angle (WCA) of prepared substrates
- Utilization of Goniometer/Surface Analysts (BTG Labs)/ Surface Analyzer (KRUSS) to measure the SFE and WCA.
- Perform mechanical testing outlined below to evaluate the bonded joint strength and failure modes.

			Substrates		Water Contact Angle/SFE			
Test Method	Standard	Substrates	Thickness [in]	Low	Low- Medium	Medium	Medium- High	High
Single Lap Shear Testing	ASTM D3165	Composites Substrate	0.064 (minimum)	5	5	5	5	5
Mode I Fracture Toughness	ASTM D5528	Under Investigation	0.12-0.20-inch	5	5	5	5	5

Adhesion Failure

Cohesion Failure

Thin-Layer Cohesion Failure

Fiber-Tear Failure

Surface Preparation Quality Assurance – FM300-2M

Surface Preparation Quality Assurance – EA9394

Surface Preparation to Bonding Time Frame – Step 3

Adhesive Processing & Bonding Parameter Evaluation – Step 4 & 5

- Adhesive Processing Parameters
 - Adhesive Mix Ratio Effects (2 part adhesives)
 - Assembly Time
 - Adhesive Mixing Methodology (2 part adhesives)
 - Adhesive Application Methodology
 - Bondline Control Mechanisms
- Adhesive Curing
 - Primary Cure Cycle
 - Post Cure Cycle
- Test Methods used for Adhesive Processing and & Bonding Parameter Evaluation
 - ASTM D3165/ASTM D1002 Single Lap Shear Strength
 - ASTM D5528 Mode 1 Fracture Toughness
 - Adhesive Glass Transition Temperature
 - Degree of Cure of Adhesives

	Bond System Component Under Investigation					
Joint Property	Surface Preparation		Adhesive Preparation and Cure Process			
Under Investigation-	Surface Preparation Method	Test Method	Surface Preparation Method	Test Method		
Peel/Fracture Toughness/Mode I	Variable	ASTM D5528	Fixed Based on	ASTM D5528		
Shear		ASTM D3165	Step 2	ASTM D3165		

Adhesive Processing & Bonding Parameter Evaluation Effects of Mix Ratio, Assembly Time, and Adhesive Application Method

Adhesive Processing & Bonding Parameter Evaluation Bondline Thickness Control Mechanisms

Adhesive Processing & Bonding Parameter Evaluation Effects of Cure Cycle on Mechanical Performance, Tg, and DoC

Adhesive Processing & Bonding Parameter Evaluation

Effects of Post Cure on Degree of Cure

Summary and Conclusions

- Bond system consists of four main components each containing multiple parameters that effects the integrity of the bonded joint.
- Guidelines are required to assess what parameters should be used and an quantitative measure to evaluate the effectiveness of each parameter.
- Standardized test methods and matrices are required to down select the various parameters in support of developing the protocols to quality the bond process of a joint.
- Guidelines are provided to support develop the bond process protocols and bond process qualification activities.

Thank You!

Contacts:

- Waruna Seneviratne (waruna@niar.wichita.edu)
- Upul Palliyaguru (upul@niar.wichita.edu)

References

- **1.** G. Yang, T. Yang, W. Yuan and Y. Du, "The influence of surface treatment on the tensile properties of carbon fiber-reinforced epoxy composites-bonded joints," Composites Part B: Engineering, vol. 160, 2019.
- 2. K. Ramaswamy, R. M.O'Higgins, A. K. Kadiyala, M. A.McCarthy and C. T.McCarthy, "Evaluation of grit-blasting as a pre-treatment for carbon-fibre thermoplastic composite to aluminium bonded joints tested at static and dynamic loading rates," Composites Part B: Engineering, vol. 185, 15 March 2020.
- 3. A. A. Khan, A. A. A. Kheraif, S. M. Alhijji and J. P. Matinlinna, "Effect of grit-blasting air pressure on adhesion strength of resin to titanium," International Journal of Adhesion and Adhesives, vol. 65, pp. 41-46, 2016.
- 4. D. J. Varacalle Jr, D. P. Guillen, D. M. Deason, W. Rhodaberger and E. Sampson, "Effect of Grit-Blasting on Substrate Roughness and Coating Adhesion," Journal of Thermal Spray Technology, vol. 15, no. 3, pp. 348-355, 2006.
- 5. C. Buchmann, S. Langer, J. Filsinger and K. Drechsler, "Analysis of the removal of peel ply from CFRP surfaces," Composites Part B: Engineering, vol. 89, pp. 352-361, 2016.
- 6. B. Flinn and M. Phariss, "The Effect of Peel-Ply Surface Preparation Variables on Bond Quality," Federal Aviation Administration, 2006.
- 7. R. Zaldivar, J. Nokes, G. Steckel, H. Kim and B. Morgan, "The Effect of Atmospheric Plasma Treatment on the Chemistry, Morphology and Resultant Bonding Behavior of a Pan-Based Carbon Fiber-Reinforced Epoxy Composite," Journal of Composite Materials, vol. 44, no. 2, pp. 137-156, September 2009.
- 8. E. Altuncu, S. G. Esen, F. Üstel and E. Karayel, "Various Nozzle Designs Effect on the Polypropylene (PP) Surface Energy in Plasma Activation Treatments of Bumpers," in 18th International Metallurgy and Materials, Istanbul, 2016.