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Introduction

Project Title: Factors Affecting Qualification/Certification - Evaluating the Criticality of Inherent
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Principal Investigator: Nima Shamsael
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Background
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Significantly reduce and introduce uncertainty to fatigue performance

Pose great challenge for qualification/certification of AM parts

Muhammad, Nezhadfar, Thompson, Sahar: ar . J. Fatigue, 124 (2019) 188-204
Snell, T s, Chechi ndez-Nava, 5 & Todd, JOM 72 (2020) 101-109




Objective and Approach

Obijective: To quantify the detrimental effect of volumetric defects on mechanical properties of L-PBF Ti-6Al-4V
Gr. 5

Approach: Three steps are taken,
Explore process windows by varying laser power, scan speed, and hatching distance

Determine the criticality of volumetric defects on mechanical performance using specimens seeded with different defect

types

Take advantage of machine learning and simulations wherever applicable
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AP&C Ti-6Al-4V Grade 5 powder (15-53 pm) was used as feedstock



Significance of Categorical Defect Feature
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Categorical defects feature, 1.e., defect types (KHs, GEPs, LoF's), is indicative of processing condition

Oliveira, Lal.onde, & Ma, Processing parameters in laser powder bed fusion metal additive manufacturing. Materials & Design, 193 (2020) 108762

Poudel, Yasin, Ye, Liu, Vinel, Shz sael. Nature Communications, 13 (2022) 6369



Decision Tree for Defect Classification

250 250 : 250 ) Branch Stem Binary
_ 200 200 200 Pl<a —(—2Pr1>b
3 150 < 150 £ 150 P2 < P2 > d P3 < P3>h
Q O o M c N - g 3
o <« «— >
100 © 400 © 400 - c<P2<d c<P3<d - -TypeA
50 50 50 [ Type B
% 20 30 40 50" 60 70 0 02 04 06-08 10 Q& 04 06 08 10 P3<e P3>f _ P4<i P4>] [c] I Type C
Max. Axis (um) Aspect Ratio Sphericity T o<p3<t - T i<P4gj
300 300 v \ 4 v
o @ e g
200 200
£ £ £
5 150 5 150 5 ) ) )
S S oo . 3 Note: Reported accuracy is only for Ti-6Al-4V Grade 5 material
50 50 tabricated using EOS M290
30 02 04 o6 d¢ 10 %0 03 06 09 12 15
Solidity Sparseness
300 300

Morphological parameters such as max. axis, aspect
ratio, sphericity, extent, solidity, sparseness, roundness,

elongation, and flatness were used for defect
50A classification
0 )

0 02 04 06 “D8*10
Flatness

2500 &
,{' m 250 a
200 200
150 150
100 . 100 .

50 50

Count
Count
Count

.0

02 “04 06 08 1. 0 02 04 06 08
Roundness Elongation




Ranking the Most Discriminating Parameters

Overlap between GEPs and KHs Overlap between GEPs and LoFs Overlap between LoFs and KHs
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The three defect types share overlaps of different degrees in the ranges of their morphological parameters;
thus, employing only one or two parameters cannot uniquely determine a defect’s type

The discriminating potential of a morphological parameter depends on the pair of defect types:
Defect size (max. axis) best discriminates GEPs from KHs

Roundness and sparseness best discriminate GEPs and KHs from LoFs

Poudel, Yasin, Ye, Liu, Vinel, Shao, & Shamsaei, Nature Communications, 13 (2022) 6369



Defect Classification Methodology
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A defect classification methodology incorporating
multiple morphological parameters had been developed

>98% accuracy when implemented into decision tree

Probability

- KH

- LoF

L GEP

>99% accuracy when implemented into artificial neural

network

Poudel, Yasin, Ye, Liu, Vinel, Shao, & Shamsaei, Nature Communications, 13 (2022) 6369



Defect Contents: Fatigue Specimens
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E = 90.28 J/mm3

P: Laser power
V: Laser speed
h: Hatch distance
t: Layer thickness
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E
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Preaiive (%): 99.9722 99.7124 98.9414 99.9994 99.9993 99.9946 99.9578 99.9939
Note: X-ray computed tomography (XCT) was performed on vertical fatigue specimens with 5.5 pm voxel size

240 fatigue (16 x 15) and 96 tensile (16 x 6) specimens were fabricated
LoF: P3% P-10% P20% 1[+5% and F+20%
KH: PH30%y20% apnd Pr20%y30%

KH specimens were fabricated only in vertical orientation, while the recommended (R) and LoF ones were
fabricated in vertical, diagonal, and horizontal orientations



Tensile Properties
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Note: 6 vertical tensile specimens were
tested for each condition

Yield strength (YS) and ultimate tensile strength (UTS) of all specimens were almost comparable

KH specimens had slightly higher strengths which might be attributed to the higher nitrogen content due to
excessive energy input during fabrication

LoF specimens had lower ductility due to larger number and larger size of defects causing an early failure



Fatigue Performance
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In vertical ortentation, KH specimens exhibited better fatigue performance than recommended ones
LoF specimens exhibited worse fatigue performance for vertical and diagonal orientations

Fatigue lives of Lo specimens had more scatter than KH ones due to wide variation in shape, size, and location of
the crack initiating defects



Fatigue Fractography
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Note: Varea of crack initiating defects is shown on the top right side
of the fractography images
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LoF specimens: all fatigue cracks initiated from either
internal or near surface LoF defects

Recommended specimens: all fatigue cracks initiated
from internal or near surface Lo’ defects

KH specimens: fatigue cracks initiated mostly from KH
defects and rarely from LoF defects located at internal or
near surface



Fatigue Behavior

Defect sizes were measured using actual Varea 250
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Defect types shared different degrees of overlaps in the ranges of their morphological parameters

The defect classification methodology could provide >98% and >99% accuracy when implemented into
decision tree and artificial neural network, respectively

KH specimens exhibited slightly higher tensile strength due to higher amount of nitrogen

KH specimens exhibited better fatigue performance due to smaller crack initiating defect sizes and slightly
higher tensile strengths

LoF specimens exhibited scatter in fatigue behavior due to differences in crack initiating defect sizes




Thank you for your attention !

National Center for Additive Manufacturing Excellence NCAME)
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