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Motivation, Objective, and Approach 

• Motivation and Key Issues  

 Develop analysis techniques useful in design of 

 composite aircraft structures under out-of-plane 

 loading (bending and shear) 

• Objective 

 Determine failure modes and evaluate capabilities of 

 current models to predict failure  

• Approach 

Experiments: Bending and Mode III fracture 

Modeling: Progressive damage development and 

delamination (Abaqus) 
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Out-of-Plane Shear Mode III Bending 

• Principal Investigators & Researchers 
• John Parmigiani (PI); OSU faculty 

• M. Daniels, L. Suryan; OSU grad students 

• FAA Technical Monitor 
• Curt Davies 

• Lynn Pham 

• Other FAA Personnel Involved 
• Larry Ilcewicz  

• Industry Participation 
• Gerry Mabson, Boeing (technical advisor) 

• Tom Walker, NSE Composites (technical advisor) 
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Project Overview 

• Phase I (2007-08) 

• Out-of-plane bending experiments w/composite plates 

• Abaqus modeling with progressive damage 

• Phase II (2008-09) 

• Abaqus modeling with buckling delamination added 

• Sensitivity study of (generic) material property values   

• Phase III (2009-10) 

• Abaqus modeling w/ more delamination interfaces 
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Project Overview 

• Phase IV (2010-11) 

• Further study of additional delamination interfaces 

• Feasibility of Abaqus/Explicit and XFEM for future work 

• Sensitivity study using Boeing mat’l property values 

• Phase V (2011-12) 

• Out-of-plane shear (mode III) experiments  

• Evaluate the Abaqus plug-in Helius for out-of-plane 

bending 

• Phase VI (2012-13) 

• Out-of-plane shear modeling with Abaqus Standard 

• Evaluation of plug-in Helius: MCT for out-of-plane shear  

• Out-of-plane shear modeling with Abaqus Explicit 
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Project Overview 

• Phase VII (2013-14) 

• Evaluation of solid vs. shell elements in modeling 

• Comprehensive report on Phase VI work for Boeing 

• Improvement to Abaqus Explicit models 

• Explore damage softening parameters in Helius: MCT 

• Explore possible inaccuracies in material properties 

• Phase VIII (2014-15) 

• Explore significance of damage propagation material 

properties, i.e. when do energy parameters matter? 

• Begin work on modeling matrix compression damage 

propagation. Likely topic for future work 
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• Review of out-of-plane bending and out-of-plane 

shear experiments and modeling 

• Significance of damage propagation material 

properties (energies) 

• Literature review of modeling matrix compression 

damage propagation 

  Today’s Topics 

7 



• Review of out-of-plane bending and out-of-plane 

shear experiments and modeling 

• Significance of damage propagation material 

properties (energies) 

• Literature review of modeling matrix compression 

damage propagation 

  Today’s Topics 
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• Due to a need to understand its effects and a lack of useful 

information in the literature, out-of-plane bending loading was 

investigated 

• Specimens: Center-notched carbon fiber panels having 20 ply 

and 40 ply layups with 10%, 30%, and 50% zero-degree plies 

 

  Review: Out-of-Plane Bending 

9 

Dashed lines are load lines for 4-point bending 



• Panels were fabricated by 

Boeing and tested at OSU 

• Applied load versus crosshead 

displacement data was collected 

• Results showed that 

• Initially load increased with 

displacement 

• As panels became damaged 

rate of increase decreased 

• Eventually, accumulated 

damage caused load to 

decrease with displacement 

• Key parameter was the 

maximum load the panel was 

able to support 

  Review: Out-of-Plane Bending 
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• Observations of tested 

specimens showed that 

• 20-ply panels failed by local 

damage 

• 40-ply panels failed by local 

damage and also by ply 

delamination 

• Finite element models 

were created to 

predict damage 

 

  Review: Out-of-Plane Bending 
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• Finite element models for out-of-plane bending 

• Used Abaqus/Standard with Hashin progressive damage model 

• The need to model multiple plies, to use Hashin in Abaqus, and to 

include delamination interfaces (VCCT) resulted in the use  of 

continuum shell elements  

• Finite element results were compared to experiments using maximum 

load 

• Excellent results were obtained with model calculations agreeing with 

experimental measurements to within 10% for all layups 

  Review: Out-of-Plane Bending 
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• Based on the success of the out-of-plane bending study, 

attention was shifted to out-of-plane shear.  

• Specimens: Edge-notched carbon fiber panels having 20 ply 

and 40 ply layups with 10%, 30%, and 50% zero-degree 

plies 

 

  Review: Out-of-Plane Shear 
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  Review: Out-of-Plane Shear 
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• Panels were fabricated by Boeing 

and tested at OSU 

• Collected data 

• Load vs. Displacement 

• DIC-measured strain fields 

• Key parameters 

• Maximum load 

• Notch-tip strain 



• Observations of tested 

specimens showed that 

damage concentrated at 

the notch tip 

• Finite element models 

were created to 

predict damage 

• Match maximum load 

• Match notch-tip strain fields 

 

  Review: Out-of-Plane Shear 
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• Finite element models for out-of-plane shear 

• Used same approach as with out-of-plane bending 

• Abaqus/Explicit with Hashin progressive damage model 

• Continuum shell elements 

• Delamination interfaces (VCCT) 

• Results  

• Maximum load: Model calculations agreeing with experimental 

measurements to within 25% for all layups 

• Notch-tip strain fields (E1,E2) agree within +/- 40% before any 

visible damage. Error gets much larger when damage occurs. 

  Review: Out-of-Plane Shear 
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• Modeling approach worked better for out-of-plane bending 

than for out-of-plane shear 

• Agreement between experimentally-measured and FEA-

calculated maximum loads 

• Within 10% for bending 

• Within 25% for shear 

• Also large differences between experimentally-measured 

and FEA-calculated notch-tip strain fields 

• Why? 

  Review: Out-of-Plane Bending & Shear 
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• Out-of-plane shear is a more complicated than out-of-plane bending 

• Under out-of-plane bending, the panel experiences out-of-plane applied 

loading, but internal loading is primarily planar (in the plane of the 

panel) 

 

 

 

 

 

 

 

• Buckling occurs but is due to in-plane compression. Resulting crack 

propagation is modeled well with VCCT 

• Abaqus continuum shell elements work well since they include planar 

response and allow for interfaces to model delamination 

  Review: Out-of-Plane Bending & Shear 
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• Out-of-plane shear is a more complicated than out-of-plane bending 

• Under out-of-plane shear, the panel experiences out-of-plane applied 

loading, and significant out-of-plane internal loading at the notch tip  

 

 

 

 

 

 

• This is not in-plane compressive buckling, but is caused by out-of-plane 

normal strain.  

• Abaqus continuum shell elements do not work well since they do not 

include out-of-plane normal strain response 

• Given the need to model multiple plies and use the Hashin progressive 

damage model, it is not feasible to use other element types 

  Review: Out-of-Plane Bending & Shear 
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• The goal of the out-of-plane loading study has been to develop effective 

finite element models, validated by experiments, to predict response 

using the built-in features of Abaqus.  The development of custom 

methods has not been part of the statement of work. 

• In the case of out-of-plane bending, this appears to work quite well 

• In the case of out-of-plane shear, the inability to capture out-of-plane 

normal effects appears to be a limiting factor 

• Over the recent phases, we have made a very thorough evaluation of 

the built-in capabilities of Abaqus/Standard, Explicit, and the Abaqus 

plug-in, Helius:MCT 

• It is our conclusion that the results we are obtaining for out-of-plane 

shear are the best that can be obtained using the built-in features of 

Abaqus.  

  Review: Out-of-Plane Bending & Shear 
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• Review of out-of-plane bending and out-of-plane 

shear experiments and modeling 

• Significance of damage propagation material 

properties (energies) 

• Literature review of modeling matrix compression 

damage propagation 

  Today’s Topics 
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Energy Sensitivity Study Goals and Motivations 

• The Hashin progressive damage model, as implemented in 

Abaqus, is used for all finite element modeling 

• It consists of  

– 6 parameters (strengths) which control damage initiation 

 XT & XC: tensile & compressive strengths parallel to the fibers 

 YT & YC: tensile & compressive strengths normal to the fibers 

 SL & ST: Longitudinal & transverse shear strengths 

– 4 parameters (energies) which control damage propagation 
(areas under stress-displacement curves, nominally fracture energies) 

 Gft & Gfc: Fiber tension and compression fracture energies 

 Gmt & Gmc: matrix tension and compression fracture energies 

• A number of sensitivity studies conducted in prior phases 

have very seldom indicated the energies to be significant in 

affecting maximum load 
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* Areas under the associated stress-displacement curves, nominally fracture energies 



Energy Sensitivity Study Goals and Motivations 

• Intuitively, one would expect fracture energy parameters 

to be significant in determining maximum load since 

extensive damage occurs during panel loading 

• The goal of the work presented here is to determine 

when/how damage progression energies are significant 

• This will improve the understanding of the effect of 

damage progression parameters in models 

• Also, if one understands when energies are significant, 

one can devise effective methods for their measurement 

(It is currently difficult to accurately experimentally 

measure the energy parameters) 
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Energy Sensitivity Studies: Results 

• Sensitivity studies were conducted for out-of-plane bending and out-of-plane shear 

• Out-of-plane bending showed only the case of all-90° plies to have significant 

energy parameters, Gmt and Gmc, other layups did not show energies to be 

significant. 

• Results for out-of-plane shear, shown below normalized, indicated Gfc was significant 

for the 40-ply layups, not so for the 20-ply layups 
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Interpretation of Results 

• Examination of these results and the associated load displacement 

plots provides the answer. 

• The effect on maximum load is being determined by the 

sensitivity studies 

• The energies control the propagation of damage  

• For out-of-plane bending, the maximum load is predominantly a 

function of when damage initiates (i.e. the maximum load carrying 

ability is reached when a critical amount of damage has initiated) 

• Damage initiation is controlled by the strengths, thus they 

consistently appear as significant in the sensitivity studies 

• Energies are significant in determining load-displacement behavior 

for all loading cases after maximum load is reached 
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Interpretation of Results 

• Out-of-plane shear loading (mode III) clearly shows this behavior  

• 20-ply panels reach maximum load with little damage propagation, thus 

energies are not significant 

• 40-ply panels reach maximum load after considerable damage 

propagation, thus energy is significant 
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Other comments on energy significance 

• The energy parameters will also tend to become (more) 

significant for materials in which the strengths are lower.  

– When strengths are high, initiation occurs with a relatively large 

amount of accompanying damage.  Extensive damage can exist 

before energies play a role (before propagation) 

– When strengths are low, initiation occurs with a relatively small 

amount of accompanying damage. Extensive damage exists only 

after energies play a role (after propagation) 

• Notch Size may have a significant effect 

– Results are presented for a single notch size for out-of-plane 

bending and a single notch size for out-of-plane shear 

– Significantly different notch sizes may give significantly different 

results 



• Review of out-of-plane bending and out-of-plane 

shear experiments and modeling 

• Significance of damage propagation material 

properties (energies) 

• Literature review of modeling matrix compression 

damage propagation 

  Today’s Topics 
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• Damage propagation behavior of the matrix under 

compressive loading is a possible topic for future 

research 

• A first step is to review current literature 

• Relevant literature can be classified into five categories 

– Fiber compression damage propagation 

– Determination of matrix compressive energy-release rate 

– Matrix tension damage propagation 

– Fracture of unreinforced polymers 

– Composite damage initiation criteria 
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Literature review of modeling matrix compression-damage 

propagation 



• Fiber compression damage propagation 

– Fiber micro-buckling is a common failure mode 

– Matrix properties and mechanical response contribute to the 

occurrence of micro-buckling 

– Papers in this area are a source of models for matrix behavior  

 Matrix plasticity response under compression 

 Matrix response under shear 

• Determination of matrix compressive energy-release 

rate 

– Model the propagation of compressive damage in the matrix as 

a mode II crack in the 90° layers 

– Calculate energy release rates 
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Literature review of modeling matrix compression-damage 

propagation 



• Matrix tension damage propagation 

– Provides plastic damage models for matrix under tension 

– Models may be relevant for matrix under compression 

• Fracture of unreinforced polymers 

– Matrix materials are typically polymers 

– Study of polymers is likely relevant 

• Composite damage initiation criteria 

– Provides models for damage initiation in composites and 

specifically the matrix 

– Initiation criteria may be relevant for propagation also 

Overall, no literature was found which discusses in 

detail damage propagation behavior of the matrix 

under compression 
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Literature review of modeling matrix compression-damage 

propagation 


