JAWS

JOINT ADVANCED MATERIALS & STRUCTURES
CENTER OF EXCELLENCE

Impact Damage
Formation on Composite

Alrcraft Structures

Hyonny Kim,
Professor, Dept. Structural Engineering
University of California San Diego

JAMS 2015 Technical Review
March 31 — April 1, 2015

Aircraft Airworthiness & Sustainment Conference 2015
Baltimore Marriott Waterfront, Baltimore MD




Impact Damage Formation on Composite Aircraft Structures
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Impact Damage Formation on Composite Aircraft Structures

* Motivation and Key Issues
« impacts are ongoing and major source of aircraft damage
 high energy blunt impact damage (BID) of interest
* involves large contact area
« damage created can exist with little/no exterior visibility
e Sources of Interest: those acting over wide area and/or
multiple structural elements, leaving low/no visibility
» ground service equipment (GSE) rubber bumpers

« railings, blunt/round corners, FOD of unknown geometry _
hail | » upward & forward facing
"° alrice _ surfaces

* low mass, high velocity
(25 to 230+ m/s)

Halil Ice Impact

Ground Vehicles &

Service Equipment

» side & lower facing
surfaces

* high mass, low
velocity
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Overall Program Objectives

General Objectives Applicable to Blunt Impact Sources of Interest:

 Understand blunt impact damage formation and visual detectability,
seeking to:

establish how damage is affected by bluntness/contact-area

determine key phenomena and parameters controlling both internal and
external/visual damage formation

identify and predict failure thresholds (useful for design)

 Develop analysis and testing methodologies, including:

physically-based modeling capabilities validated by tests, and
defining how to analytically predict if damage is visually detectable
» surface crack (failure criteria), residual dent

for GSE impact on large-sized structure: defining appropriate boundary
conditions between full-scale panels vs. entire aircraft
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Outline

e Ground Service Equipment (GSE)
High Energy Blunt Impact
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GSE High Energy Blunt Impact g -,

Previous Results Summary |

|

* series of large specimens (ID: Frame03,
Frame04-1, Frame04-2) tested

— internal damage to frames and shear Btured
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. . . . o] Skin&
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GSE High Energy Impact — Previous Results Summary I
Modeling Results as of March 2014 SEOH e

 skin-stringer cracking —visible cracking onset

e shear tie crushing

— layered continuum shell elements with cohesive
surface interactions

— model properties from: coupon test data, literature
— validation with element-level test

* full panel simulation (2014 Version 2) — early termination
due to failed element distortion issues

Large Panel Simulation — Version 2 Model

Element-Level Test +
Model Development
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Large Panel Simulation

Results as of March 2015 - Version 3 Model

 refinement to shear tie modeling - apply to large panel
» 2015 V3 model predicts all failure modes

« final frame fracture failure mode predicted — model runs to completion

Simulation Solid
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Large Panel Simulation
Version 3 Model Detalls

1st Shear Ties
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Improvements still needed , including
accurate frame failure prediction.



Full Panel Modeling Success Foundation:
Establish Modeling Capability Via Element Level Tests

e small-scale failures o
affect large-scale
overall behavior

Delam., Buckling, Bending Skin Surface Cracking

e element-level tests
conducted to
support accurate
model development

— key failure modes
— initiation &
growth

— final failure

* no “tuning” of
material properties
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Frame-to-Floor Structure

Interaction

Focus:

o C-frame failure due to GSE impacts close
to floor structure
* Region 1: bending dominated
* Region 2: more stiff — high beam shear
* Region 3: most stiff — frame & joint

crush

 frame-to-floor joint failure & stiffness/BC
effect

* prediction-capability = explore various
configurations & scenarios

Need: element-level C-frame tests
* bending
« combined bending + torsion

Region 3

—
Region 2

| @R >

‘ Region 2
O—0O

Region 1

Region 3

[
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C-Frame Element
Test Specimen

» C-frame test specimen

 short section w/ extension arm
« fixed end boundary condition
 loaded end:

2 point connection - bending

1 point = bending + torsion
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Web layup:
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C-Frame Element Bending Test Results
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C-Frame Element
Bending Test Results

Stain vs. load on bot. flange near fixed-end and mid=span
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Modeling Capabilities Plan

= UCSD

Department of Structural Engineering
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Outline

e Blunt Impact Damage to Sandwich
Panels
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Overview and Previous Work Summary

Investigate internal damage morphology of impacts on sandwich
panels using blunt/soft impact sources

— special focus on levels just barely visible damage

e understand impact conditions resulting in subsurface
damage formation (barely visible dents)

e focus on core damage with no facesheet cracking
* relate core damage severity vs. dent depth / span
— metal tips of varying tip radii: R12.7 to R76.2 mm (low vel.)
— 50.8 mm ice spheres at glancing angles 10 to 40 deg. (high vel.)
Establish impact core crush and dent depth prediction model

Determine reduction in core strength / fracture properties as
function of (i) damage severity and (ii) dent visibility

e direct measurement
 modeling (including prediction of impact-induced damage)
Investigate varying core density, varying facesheet config.

Previous

|

Current/Future

Work

Direction



Sandwich Panel Ice Impact Example = UCSD

Department of Structural Engineering

Panel:

Nomex core 32 kg/m3,
29 mm depth
Facesheet 1.2 mm thick
woven carbon/epoxy

A320 Rudder

Hail Ice (Sphere)
Impact: 50.8 mm ice at
25 m/s, 40° glancing)

Damage:

- core fracture

- non-visible dent
(0.008 mm)
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Sandwich Core Crush Response — For Model Input

Core Ow Elasto-Plastic

Crush Crushing

Model - (Minakuchi et
e
L.

7__ / al. 2008)
mple

& o /<“ d/ W) U,moadmg S

Core crush data 45 Core ID#8 (load) |,
. —_ Core ID#8 (unload) |
needed for model: z ., — ‘
 elastic facesheet 2 as
on elasto-plastic S
foundation 2
S 25
Core crush + 3
unloading tests: o
. @ 15
* buckling followed ‘;‘;
1
by constant 5
stress 5 %
e unloading: tensile 71

stress to return
back to initial
height (dent
driving force)

ormalized displacement (u/t) (%)

Specimen: aircraft
fuselage sandwich panel



Sandwich

Out-of-plane reaction force R ; (kN)

Beam Indentation Tests
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Specimen: aircraft
fuselage sandwich panel

Core crush localized near
upper facesheet.

Click Here
for Video
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Sandwich Beam Indentation Model

Comparison

UCsD

Department of Structural Engineering

(Minakuchi
et al. 2008)
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Outline

 Conclusions, Benefits to Aviation, and
Future Work
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Conclusions
Ground Service Equipment (GSE) High Energy Blunt Impact

Element-level experiments enabled accurate analysis procedure development
due to their simplified geometries, loading conditions, and isolated failure
modes.

Accurate full-panel model established with latest-generation shear tie model;
element distortion issues resolved allowing simulation to run to completion.

Frame element-level bending test successful — supports focus on frame failure
modeling and study of frame-to-floor interaction.

Blunt Impact Damage to Sandwich Panels

Core fracture can be induced by blunt/soft impact with almost no surface dent;
core wrinkling is concentrated near the impacted facesheet.

Core crush/indentation: peak force defined by local cell wall elastic buckling;
further crushing displacement drives postbuckling/wrinkling and eventually cell
wall fracture.

Indentation/core-crushing model found to accurately predict crushing but not
unloading (thus residual dent not well predicted) — need improved core
unloading constitutive model and extension to 2D.
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Benefits to Aviation
Ground Service Equipment (GSE) High Energy Blunt Impact

Understanding of prospective damage produced from wide-area GSE impact
events

« awareness of phenomena and possible internal failure modes

» provides information on mode and extent of seeded damage, particularly
non-visible impact damage (NVID) from blunt impact threats

FEA modeling capability of blunt impact - can be used for design and trade
studies

» predict damage modes, size, and locations
» external visibility

Blunt Impact Damage to Sandwich Panels

Knowledge of internal core damage state based on external damage visibility
for different blunt/soft threats

Insight into properly seeding damage for damage tolerance assessment
Modeling capability for predicting core impact-crushing and residual dent depth

after unloading
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Looking Forward

Ground Service Equipment (GSE) High Energy Blunt Impact

Continued development of high fidelity physics based FEA modeling capability

Effects of floor joints/beams to better represent fuselage structure; door
adjacent structure

Quarter-barrel or half-barrel fuselage tests; effect of glancing impact
(underbody)

Effect of geometry of components on blunt damage/visibility — GSE and aircraft
Define visibility metrics and FE failure criterion

Blunt Impact Damage to Sandwich Panels

Refine internal damage and dent prediction methodology

Relate actual impact core damage to subsequent facesheet separation (tearing
within core model vs. separation at core/skin interface model)

— conduct post-impact facesheet peel/fracture tests

Establish capability within explicit FEA simulation to predict impact damage,
especially to core and residual dent

Dynamic impact/rate effects on core crush, indentation tests
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