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Impact Damage Formation on Composite Aircraft Structures 
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– PI:  Prof. Hyonny Kim, Professor, UCSD 
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– Curt Davies 
– Larry Ilcewicz 
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– Participation by Bombardier, UAL, Delta, JC Halpin, Avanti Tech 
– Collaborations with Sandia Labs, Bishop GMBH (EASA-funded) 
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Impact Damage Formation on Composite Aircraft Structures 

• Motivation and Key Issues  
• impacts are ongoing and major source of (hidden) damage 
• high energy blunt impact damage (BID) of key interest 

• involves large contact area, not well understood 
• can possibly exist with little or no exterior visibility 

• Existing Needs: (i) establish clear understanding of damage 
formation from blunt sources, (ii) prediction capability 

• Focus: sources of concern are blunt impacts affecting 
wide area and/or multiple structural elements 

Hail Ice Impact 
• upward & forward facing 

surfaces 
• low mass, high velocity 
• threat: 38-61 mm diam. 

ice at in-flight speed 

Ground Vehicles &  
Service Equipment  
• side & lower facing 

surfaces 
• high mass, low velocity 
• wide area contact 
• damage at locations 

away from impact likely 
• threats: 
 - belt loader ~3,000 kg 
 - cargo loader ~15,000 kg 
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Impact Damage Formation on Composite Aircraft Structures 
 Objectives 

• Characterize Blunt Impact threats and locations where damage can occur 
• Understand BID formation and visual detectability 

• determine key failure modes, phenomena and parameters 
• how affected by bluntness/contact-area 
• ID & predict failure thresholds (useful for design) 
• what conditions relate to development of significant internal damage with minimal or 

no exterior visual detectability? 

• Develop analysis & testing methodologies 
• Establish new modeling capabilities validated by tests 

 Approach 
• Experiments: impact representative structure/specimens 

» wide area high energy blunt impact – e.g., from ground service equipment 
» high velocity hail ice impacts – in-flight and ground-hail conditions, internal stiffeners 
» low velocity impacts – non-deforming impactor, large radius effects 

• Modeling – nonlinear FEA, analytical 
• Communicate results to industry, collaboration on relevant problems/projects 

via workshops and meetings (visit company, at UCSD, teleconf) 



Blunt Impact Energy-Damage Spectrum 
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Outline 

• Ground Service Equipment (GSE) 
High Energy Blunt Impact 

• Hail Ice High Velocity Impact 

• Blunt Metal Tip Low Velocity Impact 
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Recent activity concentrated in two areas: 
• Continued Wide Area Blunt Impact Testing 

– 1st large-sized panel (ID: Frame03) tested to large damage state (March 2012 / JAMS 2012) 
– 2nd Large-sized panel (ID:  Frame04-1) tested to lower damage state (May 2012 ) 
– 2nd Large-sized panel (ID:  Frame04-2) reconfigured with more substantial 7075 Al Alloy shear 

ties (thicker, longer) and tested to large damage state (August 2012) 
• Model Development – all topics are currently in progress 

– Blunt impact modeling methodology 
• establishing how to model wide area blunt impact events 
• predict damage initiation, growth, and final state – entire process to final failure mode 

– Understand effects of panel configuration – stringer, frame, shear tie geometry, spacing, etc. 
– Failure modeling of coupon-level and element-level test specimens 

• analysis of simpler specimens – damage initiation, growth, final failure 
• prediction capability of key small-scale phenomena  affects large damage prediction 

– Addressing model complexity and computational cost issues 
• cost:  (i) model formulation using only shell elements – allows large-sized structure 

modeling, (ii) geometric simplification of complex features such as bolt lines 
• interlaminar failure modes prediction –  cohesive elements, multi-shell layers 

– Establish failure criteria for FEA prediction of damage visibility from “soft” impact 
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Ground Service Equipment High Energy Impact 



Blunt Impact Tests – Specimen Description and Results Overview 

Specimen “Frame03” 
• Composite shear ties 
• Tested 3/2012 @ 0.5 m/s; 225 mm stroke 
• Major damage: (i) 9 shear ties broken, (ii) 3 

frames cracked each at 2 locations 
(between central loading and outer BC)  

• No exterior visibility 

Specimen “Frame04-1” 
• Composite shear ties 
• Tested 5/2012 @ 0.25 m/s; 180 mm  stroke 
• Intentionally lower-level stroke to excite 

low-level damage -> only center 3 shear 
ties crushed with no other damage 

• No exterior visibility 

Specimen “Frame04-2” 
• Retrofitted Frame04-1 with 7075 Al alloy 

shear ties – replaced inner 9 shear ties 
• Tested 8/2012 @ 0.5 m/s; 225 mm stroke  
• Major damage: all 3 frames locally failed at 

joint with shear tie 
• No shear tie failure  
• Low level exterior visibility – light skin 

cracks towards outer (non-loaded) frames 

Co-Cured 
Composite 

Skin & 
Stringers  

Composite Frames 
(C-Shape) 

Shear Ties: 
- Composite 

- 7075 Al Alloy 

7075 Shear Ties 
Have Added 

Length & 2 
More Fasteners 
(8) Connecting 

to Frame 

Blunt Impact 
Loading Zone – on 
Skin Directly Onto 

Shear Ties 

All three specimens have common skin, stringer, and frames. 

New 7075 Shear 
Tie Design; 3.18 

mm  Thk. 
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Central 9 



Key Points: 
- Major Frame 

& Shear Tie 
Damage  

- No Exterior 
Visibility 

Frame03 Test Summary 

Broken Shear Ties at 9 Locations 
(3 Shear Ties per 3 Frames) 

Post-Test view 
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Fractured C-Frames 
at 6 Locations 

(3 Frames, 2 locations ea.) 



Frame04-1 and Frame04-2 Specimens 
- Skin & Stringers Identical to Specimen Frame03 
- Frame04-1:  composite shear ties 
- Frame04-2:  aluminum alloy shear ties (7075) 

Frame04-1  –  Composite Shear Ties 

Thickness increased by ~25% 
and added two more fasteners 

in connection to frame. 
04-2 

04-1 

Frame04-2  –  Aluminum Alloy (7075) Shear Ties 
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Frame04-1 and Frame04-2 Results 

Frame04-1 at peak stroke (180 mm) 

Frame04-2 at peak stroke (225 mm) 

Local shear tie failure. No other damage. 

Local frame failure – no shear tie damage. 

04-2 

04-1 

Light Skin 
Cracks Formed 
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Comparison Frame03 and Frame04-2 
Both loaded with 225 mm actuator stroke 

04-2 
03 

Frame04-2  –  Local failure of frame @ center. No 
shear tie failure, thus no major frame rotation. 
Minor skin cracks visible away from impact site. 

Frame03  –  Non-local failure of frame away from center 
due to load transfer between stringer-frame contact & 
frame rotation. No visible cracks or dent. 
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Near 
BCs Near 

BCs 

Frame03 Test 
Video 

Frame04-2 Test 
Video 



Loading Comparison 
Key Observations: 
• Weak shear ties 

• shear tie crushing & 
progressive failure  

• stringer-to-frame contact & 
large frame rotation 

• non-local frame failure away 
from loading location 

• For strong shear ties not failing 
• higher forces develop before 

initial failure 
• frame failure is initial mode 

w/ no large frame rotation & 
stringer-frame contact prior 

• frame failure is local, near 
loading location 

• Failure thresholds and energy 
absorption 
• dependent on specifics of 

internal components 
• possible tuning of damage 

modes (e.g., only shear tie 
failure) can be achieved by 
design of components 
 

Frame Failure for 7075 Al 
Alloy Shear Ties @ ~175 mm 

Frame Failure 
for Composite 
Shear Ties @ 
~215 mm 
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Note: Could have stopped 
Frame04-2 at 180 mm –
frame dmg. w/ no skin dmg. 



Half symmetric boundary condition 

Composite 
C-Frame 

Aluminum 
Frame 

Stiffened 
support at 
boundary 

Frame #5 
Frame #4 

Frame #3 
Frame #2 

Frame #1 

Panel: SC8R elements 
(8 node continuum shell) with 
Hashin-Rotem Failure 

Bumper: 
C3D8I elements 
(8 node solid) 

FEA Model Development 

Refined mesh 
size (6 mm) 

Effective fastener 
modeling 
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Global mesh 
size (19 mm) 

 Continuum shell elements 
used for lower computation 
cost (compared to ply-by-ply 
solid element representation) 

 Progressive failure of 
laminates represented with 
Hashin-Rotem failure criteria 



Frame Relative 
Loading – Center of 
Bumper of Near 
Ends 
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Inner frames 
carry more 

load 

Shear ties at inner frames fail first 
• directly-loaded set 
• adjacent set 

Outer frames 
carry less 

load 



Adjacent shear ties fail along 
fastener line on loaded frames 

FEA Model Results 
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Ctr. shear 
ties crushed 

Ctr. shear 
ties 

crushed 

Partial Width 

Full Width 

Adjacent shear tie 
failure along fastener 
line (Frames #2 and #4) 

Adjacent shear tie failure 
along fastener line (Frame #3) 

Good correlation 
• initial load drop 
• failure mode sequence 
• final failure  

Issues with 
• initial & intermediate 

failure displacements 

Frame failure 
near boundaries 

Frame failure 
near boundaries 



Final Frame Failure Prediction 
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Failure Initiation 
in Frames Near 
Boundaries 

No 
Damage 

Failure 
Initiation 

Frame03 failure away 
from impact area 



Component Material Study 
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Permanent Skin 
Deformation 

All-Aluminum 2024 Panel 
Very visible dent after unloading – caused 
by yielding of the shear ties 

Composite Panel with Aluminum 
Shear Ties & Frames 
Very visible dent after unloading – caused 
by yielding of the shear ties 

Aluminum frames and shear ties influence the visual 
detectability and loading response. 

Loaded shear 
ties yield 

Also Analyzed (not shown):  Aluminum 
Skin with Composite Shear Ties & 
Frames – similar loading response as all-
composite Baseline model; local yielding 
at shear ties likely resulting in visible 
surface dents 



Model Development – Small Scale Processes 
• Hierarchical model development:  models of element level specimens used to accurately predict 

small-scale failure processes  these lead up to and affect large-scale failure 
• Areas of focus – predict progressive failure process and energy absorption: 

• bolted joint rows – stress concentration effective representation 
• skin-to-stringer delamination 
• skin cracking at stringer to skin junction (high local bending – leads to exteriorly visible cracks) 
• shear tie curved radius region – interlaminar tension failure 

 

Bending failure along fastener line: reduced 
failure properties in select plies within simple 
strip – avoid explicitly modeling hole geometry 
(costly) 

Interlaminar tension failure of 
curved section: modeled via 
continuum shell elements layers 
and cohesive zone surfaces 

Also (not shown), stinger-to skin delamination 
and local bending failure of skin surface (visible 
cracks): establish damage visibility criterion 
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Outline 

• Ground Service Equipment (GSE) 
High Energy Blunt Impact 

• Hail Ice High Velocity Impact 

• Blunt Metal Tip Low Velocity Impact 
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Hail Ice Impact – Critical Force Initiation Criterion 
• FEA-prediction of delamination onset established – predictive model w/ no property tuning 
• Failure threshold force – critical force 

 
 

Applicable to many composites via effective 
bending stiffness D* and Mode II SERR GIIC 

𝐹𝐹 = 12.3�𝐺𝐺𝐼𝐼𝐼𝐼𝐼𝐼𝐷𝐷∗ 
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For low-cost model w/ shell elements: Critical 
Force can be used as failure criterion with 
shell elements to predict damage initiation 

Validated 
Model 

Ply-by-Ply 
Solids Elems. 
w/Cohesive 
Interfaces 



Hail Ice Impact – Stringer Stiffened Panels 

Impact Location FTE 
(J) 

Knockdown 
Factor 

1 – Middle of bay 227 - 
567 

0.51 - 1.3 

2a – End of stringer Flange N/A N/A 
2b- Middle of stringer Flange 183 0.41 
3 – Middle of Stringer 357 0.80 
4 – Directly over Shear Tie N/A N/A 
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• Determine effect of hat stringer on 
 (i) damage initiation 
 (ii) damage modes 
• Comparison to 305 x 305 mm 16 ply flat 

panel impact data:  FTE = 489 J 
• Test details: 

• 61 mm ice spheres 
• two 4-stringer panels – curved 16 ply 

T800/3900-2 with bolted shear ties 

• Loc. 1 skin impact induces 
stringer flange separation 

• Loc. 2 direct on-flange 
impacts most critical case. 

Impact 
Locations 



Blunt Metal Tip Low Velocity Impacts 

Panel  Thickn.  FTF (kN) for Tip Radius (mm): 
Type  (mm) R12.7 R25.4 R50.8 R76.2 

8 Plies 1.7 4.4 5.2 9.7 19.6 
16 Plies 3.3 6.3 8.5 12.3 17.6 
24 Plies  4.9 8.9 12 14.3 19.8 
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• Low velocity impacts – instrumented pendulum 
• Represents generic impacts by various sources such as: dropped 

equipment, vehicle corners, railings, and other protruding features 
• Exact geom. of these items often not well known or not easy to measure 



Dent Visibility 
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• Dent Visibility parameter defined (depth D 
over span L) of dent 

• Strong relationship between visibility and 
delam. area for R12.7 and R25.4 mm tips 

• Wide range of delam. area for R50.8 and 
R76.2 mm tips at same visibility level 
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Benefit to Aviation 1/2 
GSE Wide Area Blunt Impact 
• Understanding of prospective damage produced from wide-area GSE impact events 

• awareness of phenomena and possible internal failure modes – for Damage 
Tolerance considerations 

• provides key information on mode and extent of seeded damage, particularly non-
visible impact damage (NVID) from blunt impact threats 

• threat conditions causing significant damage – range of energy level needed 
• Establish FEA models that provide the capability to predict: 

• full detailed failure process – large deformations, failure initiation, growth, key failure 
modes 

• visibility of the damage produced – failure criteria for impact damage visibility 
• small scale onset of cracks and delamination  leads to greater damage and 

degradation of structural integrity 
• Establish methodologies to analyze whole composite aircraft vs. substructures 

• GSE impacts inducing whole-aircraft motion 
• surrounding GSE secondary impact 

• Identify how to detect/monitor occurrence of damaging events 
• what inspection technique should be used? where? 
• e.g., video cameras and sensors that can help to determine impact energy 

 



26 

Benefit to Aviation 2/2 
High Velocity Ice Impact 
• Critical force (threshold) based failure criterion useful for skin sizing to be damage 

resistant to hail ice impacts 
• applicable to wide range of composite materials and configurations – accounts for 

different GIIC 

• Impacts to stringer-stiffened panels give insight into 
• resulting damage modes (change in modes) 
• knockdown in failure thresholds relative to skin-only impacts 

 
Blunt Metal Tip Low Velocity Impact 
• Insight on effect of tip radius on impact damage 

• specifically delamination area vs. dent depth vs. impactor tip radius 
• Dent visibility metric provides metric for damage visual detection accounting for dent 

depth and span (overall size or area) 
• Awareness – e.g., very large radius tips (radius > 50 mm) can produce wide range of 

delamination area for same low-visibility dent depth 
 



Looking Forward 
High Energy GSE Impact 
• Understanding of glancing impact and boundary condition effects – consider larger sized 

structure:  ½ or ¼ barrel 
– internal joints affecting load paths – e.g., proximity of impact to passenger and cargo floor or 

locations of high stiffness transition 
• Impact on other structure types, metal-composite hybrid, wing structures 
• Continued modeling capability development 

– predict full damage process – use to estimate energy absorption 
– accounting for interlaminar failures using shell element based modeling framework 
– define visibility metrics and failure criterion compatible with FEA – focus on when crack formation 

is visible 
– reduced-order model development – for extension of experimental results to ground operations 

Ice Impact 
• Establish prediction capability for impacts onto stiffened skins – both by FEA simulation 

and empirical/analytical relationships 
• Hail ice damage resistance and damage modes for sandwich construction 
• Investigate effect of multi-hit and impact adjacency 
Large Radius Metal Tip 
• Residual strength evaluation of already-tested panels – correlation with visibility 
• Impact onto stiffened skin panels and sandwich 
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End of Presentation. 
 

Thank you. 
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