

Improving Adhesive Bonding of Composites Through Surface Characterization: Potential Composite Bond Contamination By Contact Angle Fluids

2013 Technical Review

Ashley C. Tracey, Jonathan T. Morasch, Aaron

Capps & Brian D. Flinn

University of Washington

Materials Science and Engineering

Potential Composite Bond Contamination By Contact Angle Fluids

- Motivation and Key Issues
 - Most important step for bonding is SURFACE PREPARATION!!
 - Inspect the surface prior to bonding to ensure proper surface prep
- Objective
 - Develop quality assurance (QA) techniques for surface prep
- Approach
 - Investigate surface preps, process variables and examine effect of measurements on bonding surface

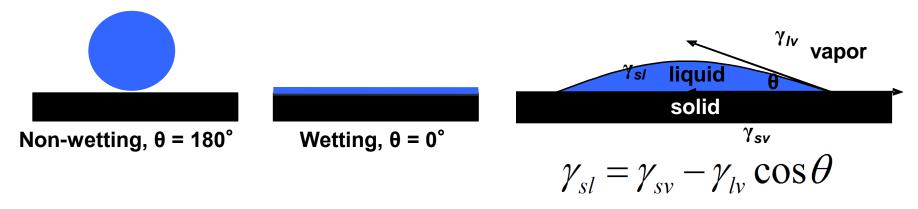
FAA Sponsored Project Information

- Principal Investigators & Researchers
 - Brian D. Flinn (PI)
 - Ashley C. Tracey (PhD student, UW-MSE)
 - Jonathan T. Morasch (undergraduate, UW-MSE)
 - Aaron Capps (UW-MSE)
- FAA Technical Monitor
 - David Westlund
- Other FAA Personnel Involved
 - Larry Ilcewicz
- Industry Participation
 - Toray Composites
 - Precision Fabrics, Richmond Aerospace & Airtech International
 - The Boeing Company (Marc Piehl, Kay Blohowiak, Pete VanVoast, Will Grace, Tony Belcher, Liz Castro)

2012-2013 Statement of Work

	Surface Characterization/QA Technique				
	Contact Angle		FTIR		
	Goniometer	Surface Analyst	DATR	Diffuse Reflectance	
Cure Temp and Dwell Time	✓	✓	In progress	In progress	
Peel Ply Prep	✓	✓	✓	✓	
Si Contaminants	✓	✓	✓ (Boeing)		
Peel Ply Orientation	✓	✓ No effect	N/A	In progress	
Peel Ply + Abrasion	✓		In progress	In progress	
Scarfed Surfaces/Repair	In progress	In progress	In progress	In progress	
Effect of Measurement on Bonding Surface	✓	TBD	TBD	N/A	

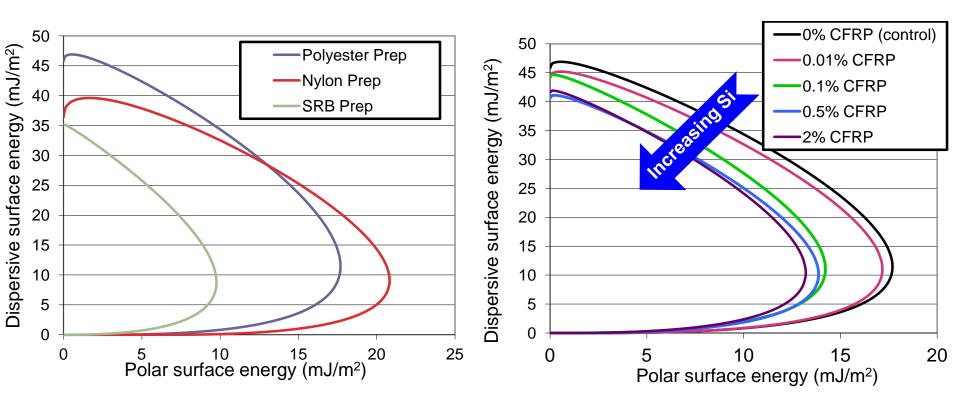
✓ = work completed



Surface Energy to Examine Surfaces

- Adhesive must wet substrate controlled by surface energy
- Surface energy = measure of energy associated with unsatisfied bonds at the surface [free energy/unit area]
- CAs used to measure surface energy

- Historically: water break test for metal bond QA, not sufficient for composites – esp. peel ply material
 - Need multiple fluids to determine surface energy, wettability envelopes



Contact Angle to Detect Surface Prep

- CA can detect surface prep and silicone contamination
 - Wettability envelopes: 2D representation of surface energy

Need to understand how fluid affects bonding surface

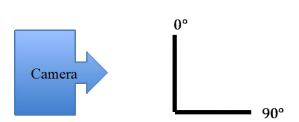
Experimental Overview

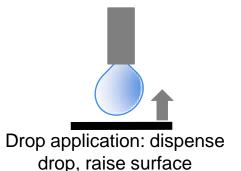
Investigate effect of CA fluid application on prepared composite surfaces and resulting bond quality

- Apply CA fluid on prepared CFRP surfaces followed by use of one of below methods:
 - 1. Dry wipe
 - 2. Acetone wipe
 - 3. Air dry (in fume hood)
 - Note: amount of fluid applied to surfaces much larger than would typically be exposed to in QA situations
- Fabricate Double Cantilever Beam (DCB) test specimens (bond within 4 hours)
 - Mode I strain energy release rate (G_{IC}) and failure mode

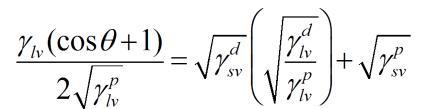
Materials and Process

- Toray 3900/T800 unidirectional laminates
 - Autoclave cure (350 ° F, 89 psi)
- Peel ply surface prep
 - Precision Fabric Group 60001 polyester peel ply
- Contact angle fluid application
 - Fluids: DI H₂O, ethylene glycol (EG), glycerol (GLY), diiodomethane (DIM)
 - DuPont Sontara aerospace grade wipes
 - Application and removal of CA fluid

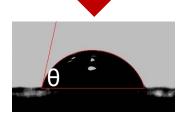



Materials and Process - CA Measurement

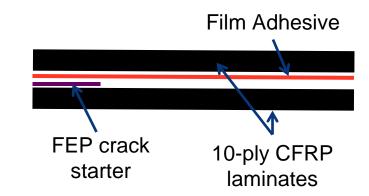
- Measure CAs of 1 µL sessile drops from side view using goniometer
 - 10 drops (20 CAs) per fluid
- Fluids: DI H₂O, EG, GLY, DIM
- Measure at 0 or 90° wrt peel ply texture



VCA Optima Goniometer



Calculate CFRP surface energy from CAs



Side-view of drop as viewed from goniometer camera

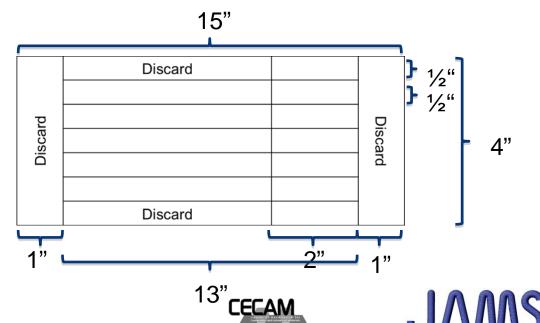
Materials and Process – DCB Testing

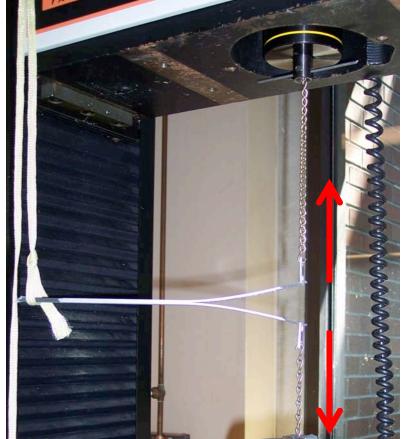
- AF 555M film adhesive
 - Aerial weight: $0.050 \pm 0.005 \text{ lb/ft}^{2}$ [1]
 - Autoclave cure (350 ° C, 89 psi)
 - Bondline thickness: 4.1 12.6 mils
- MB 1515-3M film adhesive
 - Aerial weight: 0.05 lb/ft² [2]
 - Autoclave cure (350 ° F, 45 psi)
 - Bondline thickness: 7.4 11.8 mils

[1] "3M Scotch-Weld Structural Film Adhesive AF 555 Technical Data Sheet." 3M Aerospace and Aircraft. N.p., Oct 2007. Web. 4 Mar 2013. http://www.3M.com/aerospace.

[2] "Cytec Metlbond 1515-3 Film Adhesive Technical Data Sheet." Cytec Engineered Materials. N.p., 12 Aug 2010. Web. 8 Mar 2013. http://www.cytec.com/>.

Materials and Process - DCB Testing

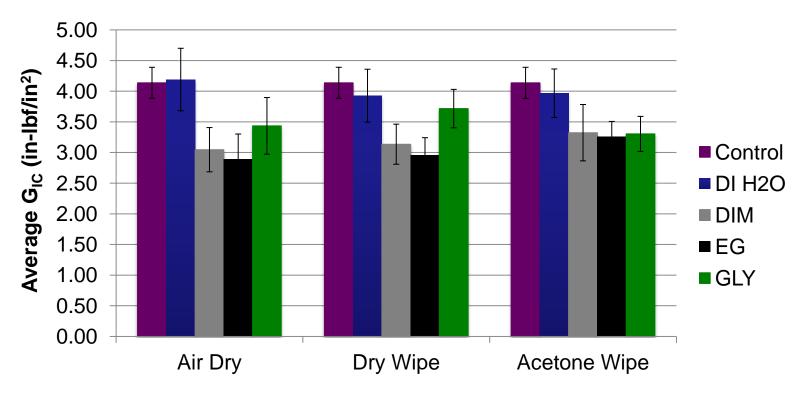

- Bonded panels cut into (5)
 ½" x 13" specimens
- Used area method


- E: area of curve

A: crack length

 $G_{IC} = \frac{E}{A \times B}$

- B: specimen width



DCB Failure Modes - AF 555M Adhesive

Control	DI H ₂ O	DIM	EG	GLY
Air Dry				
Dry Wipe				
Acetone Wipe				

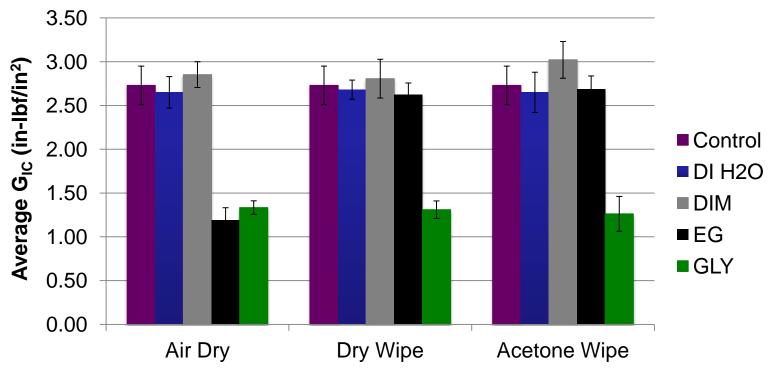
DCB Mode | Strain Energy Release Rates – AF 555M Adhesive

Secondary Method

- DI H₂O did not degrade G_{IC}
- DIM and EG decreased G_{IC} 20-30%
- GLY decreased G_{IC} 10-20%

DCB Observations – AF 555M Adhesive

- DI H₂O did not degrade failure mode or G_{IC} compared to control samples
- DIM did not change failure mode but decreased G_{IC} 20-30%
 - Interaction of DIM with substrate and/or adhesive?
- EG decreased G_{IC} 20-30%
 - EG + Air Dry and EG + Dry Wipe mostly interlaminar failure → may explain decrease
 - EG + Acetone Wipe similar failure to control samples
- GLY decreased G_{IC} 20-30%
 - Unexpected as fracture mode mostly cohesive
 - Interaction between GLY and substrate and/or adhesive?



DCB Failure Modes - MB 1515-3M Adhesive

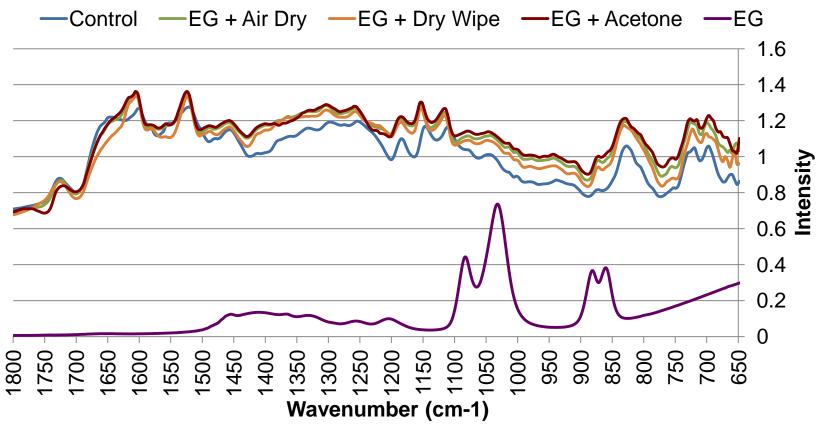
Control	DI H ₂ O	DIM	EG	GLY
Air Dry				
Dry Wipe	SECTION DESCRIPTIONS		NAMES AND ASSESSED.	
Acetone Wipe				

DCB Mode | Strain Energy Release Rates – MB 1515-3M Adhesive

Secondary Method

- DI H₂O and DIM did not significantly change G_{IC}
- EG showed variable results
- GLY decreased G_{IC} 50-55%

DCB Observations - MB 1515-3M Adhesive


- DI H₂O and DIM did not degrade failure mode or G_{IC} compared to control samples
- EG showed variable fracture surfaces and G_{IC} measurements
 - FTIR or CA detect differences?
- GLY decreased G_{IC} 50-55%
 - Unexpected as fracture mode mostly cohesive
 - Interaction between GLY and substrate and/or adhesive?

Diffuse Reflectance FTIR Analysis of EG Surfaces

 Slight spectral differences between EG samples but not due to EG on surface

GLY Fracture Surfaces

GLY fracture surface showed significant bondline porosity compared to control and all other "contaminated" surfaces

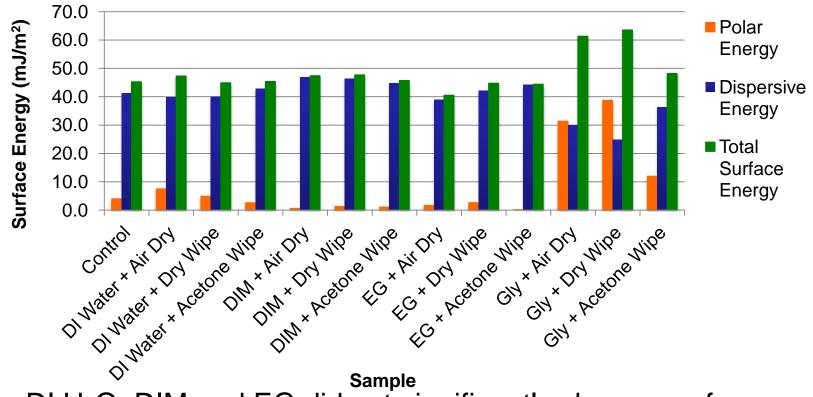
GLY + Air Dry

GLY + Dry Wipe GLY + Acetone Wipe

Control

GLY + Air Dry

GLY + Dry Wipe GLY + Acetone Wipe



CA Measurements

Some CA probe fluids affect G_{IC} and fracture mode → CA analysis of "contaminated" surfaces

- DI H₂O, DIM and EG did not significantly change surface energy
- GLY showed largest difference in surface energies
 - GLY + Air Dry and GLY + Dry Wipe samples approaching surface energy of GLY itself (γ^p = 30 mJ/m², γ^d = 34 mJ/m²)

Summary

- Contact angle used to measure bonding surfaces → effect of measurement on surface?
- All DCBs showed acceptable failure modes no adhesion failure
- Some observations of decrease in G_{IC} and change in failure mode
 - CA analysis showed surface energy differences for GLY substrates
 - More research necessary to understand other G_{IC} and failure mode differences
 - Note: amount of fluid applied to bonding surfaces much larger than would typically be exposed to in QA situations

Looking-Forward

Benefit to Aviation

- Guide development of QA methods for surface prep.
- Greater confidence in adhesive bonds

Future needs

- Application to other composite/surface prep./adhesive systems (repair, paste adhesive, etc.)
- Model to guide bonding based on characterization, surface prep. and material properties
- QA methods to ensure proper surface for bonding

Acknowledgements

• FAA, JAMS, AMTAS J

- Boeing Company
 - Marc Piehl, Kay Blohowiak, Pete VanVoast, Will Grace, Tony Belcher, Liz Castro

Precision Fabric Group

Richmond Aircraft Products

Airtech International

UW MSE

Thank you!

Questions and comments welcome.

JOINT ADVANCED MATERIALS & STRUCTURES CENTER OF EXCELLENCE