

A qualification approach for difficult to inspect metal AM as-printed surfaces

Mark Shaw Neville Tay

May 22, 2024

Project Team

COLIBRIUM ADDITIVE

a GE Aerospace company

Program Plan

Main	Percent	CY2023 CY2024									CY2025														
Task Subtasks	Complete		Q3			Q4		Q1			<i>Q2</i>		<i>Q3</i>			Q4			Q1			Q2			
INSIX	Complete	М7	M8	M9	M10	M11	M12	Ml	M2	М3	M4	M5	M6	М7	M8	M9	M10	M11	M12	M1	M2	М3	M4	M5	M6
1 Crack Generation Approach																									
1.1 Process Induced Crack Generation	100%																								
1.2 EDM Induced Crack Generation																									
2 Iow-Cycle Fatigue Life Evaluation																									
2.1 Optimized "As-Printed" Coupons	250/																								
2.2 Process Induced Crack Coupons	25%											Ш													
2.3 EDM Induced Crack Coupons												Ш													
3 Nondestructive Inspection																									
3.1 Process Development	050/																								
3.2 Final Coupon Inspections	25%											П													
3.3 PODDocumentation																									
4 De sign & Analysis Approach Generation	0%]																							

Project is on Track

Project Background & Problem Statement

Background

- One of the primary value propositions of LBPF AM is directly printing part geometry without secondary processing
- As-printed rough surface impact on fatigue is repeatable and has been well documented.
- As-printed fatigue debit is caused by very small "crack-like" features and is not directly related to the measured surface roughness.
- Surface inspection methods such as **FPI is not interpretable** since the entire surface holds penetrant

Problem Statement

The impact of an un-inspectable surface crack beyond the printed surface roughness is unknown.

Project Overview

- 1. Research methods for creating test coupon to simulate crack on as-printed surface.
 - a) Direct print method
 - b) Post process machining method
- 2. Research methods of inspecting for crack
- 3. Establish interpretable crack length
- 4. Establish fatigue impact of surface crack which is not interpretable by inspection as compared to as-printed surface
- 5. Propose qualification approach for as-printed surfaces

Three Direct Print Methods Evaluated

Thermally induced crack

Lack-of-Fusion DOE block

Lack-of-Fusion Fatigue Coupon-

Test Coupon: Direct Print Method

Geometrically Forced Thermal Crack Coupon

T-blocks with
varying
thickness (x)
Investigate thick
to thin transitions
to force thermal
cracking

Test Coupon: Direct Print Method

Lack-of-fusion Test Block

Skipping layers while printing creates a lack-of-fusion feature

CAD model dimensions shown. Actual size after printing are smaller due to layer "healing"

	WIDTH	l (mm)	0.1	0.2	0.3	0.4	0.5
Shape	HEIGHT (mm)	DEPTH (mm)					
Block	0.05	0.25	R1-1	R1-2	R1-3	R1-4	R1-5
Block	0.1	0.25	R2-1	R2-2	R2-3	R2-4	R2-5
Block	0.2	0.25	R3-1	R3-2	R3-3	R3-4	R3-5
Triangle	0.05	0.25	R4-1	R4-2	R4-3	R4-4	R4-5
Triangle	0.1	0.5	R5-1	R5-2	R5-3	R5-4	R5-5
Triangle	0.15	0.5	R6-1	R6-2	R6-3	R6-4	R6-5
Triangle	0.2	0.5	R 7 -1	R7-2	R7-3	R7-4	R7-5
Triangle	0.25	0.5	R8-1	R8-2	R8-3	R8-4	R8-5

Test Coupon: Direct Print Method

Lack-of-fusion Fatigue Coupon

Test Coupon: Post Process Machining Method

Femtosecond laser machining trials

- Carried out at Materials Characterization Services
- These are trial cuts made on spare tool steel of the same diameter (0.2 inch).
- Specimens were then cut at the notch to inspect the depth and length machined.
- Cobalt Chrome specimens have been cut

Cut height = $31.44 \text{ um} (0.0012^{\circ})$

Cut width = 2.5281 mm (0.1")

Inspection Research: CT-Scan

Lack-of-fusion Fatigue Coupons

Inspection: Interpretable Flaw

Not Interpretable

Interpretable

Smallest Interpretable Flaw = $0.2h \times 0.25w \times 0.2w$ (mm)

LABELS				1A	1	.B		2A			2B			3A			3B			4A			4B		<u> </u>	5A			5B	
		WIDTH (mm)		0.1	0.1		0.2			0.2			0.3			0.3			0.4			0.4			0.5			0.5		
	HEIGHT (mm)	DEPTH (mm)	Shape						DEPTH (mm)		HEIGHT (mm)	DEPTH (mm)		HEIGHT (mm)			HEIGHT (mm)				DEPTH (mm)			DEPTH (mm)		HEIGHT (mm)			HEIGHT (mm)	
R1	0.05	0.25	Block	R1-1A	R1-1B		R1-2A			R1-2B			R1-3A			R1-3B			R1-4A	L.		R1-4B			R1-5A			R1-5B		
R2	0.1	0.25	Block	R2-1A	R2-1B		R2-2A			R2-2B			R2-3A			R2-3B			R2-4A			R2-4B			R2-5A			R2-5B		
R3	0.2	0.25	Block	R3-1A	R3-1B		R3-2A	0.077	0.222	R3-2B	0.059	0.219	R3-3A	0.113	0.254	R3-3B	0.095	0.221	R3-4A	0.150	0.254	R3-4B	0.161	0.333	R3-5A	0.129	0.246	R3-5B	0.163	0.246
R4	0.05	0.25	Triangl e	R4-1A	R4-1B		R4-2A			R4-2B			R4-3A			R4-3B	0.069	0.176	R4-4A			R4-4B			R4-5A			R4-5B		
R5	0.1	0.5	Triangl e	R5-1A	R5-1B		R5-2A			R5-2B			R5-3A			R5-3B			R5-4A			R5-4B			R5-5A			R5-5B		
R6	0.15	0.5	Triangl e	R6-1A	R6-1B		R6-2A			R6-2B	0.049	0.102	R6-3A			R6-3B	0.089	0.108	R6-4A	0.071	0.083	R6-4B	0.082	0.061	R6-5A	0.140	0.059	R6-5B	0.128	0.085
R7	0.2	0.5	Triangl e	R7-1A	R7-1B		R7-2A			R7-2B			R7-3A	0.066	0.193	R7-3B	0.060	0.227	R7-4A	0.000	0.000	R7-4B	0.000	0.328	R7-5A	0.137	0.143	R7-5B	0.158	0.187
DΩ	0.25		Triangl	R8-1A	R8-1B		R8-2A	0.101	0.260	R8-2B	0.075	0.231	R8-3A	0.161	0.277	R8-3B	0.186	0.202	R8-4A	0.115	0.246	R8-4B	0.174	0.269	R8-5A	0.155	0.186	R8-5B	0.263	0.193

Test Coupon: Lack-of-Fusion Method

Poof of Concept Build #2 Plan

- Build #2 will help further verify repeatability of LOF notch.
- These specimen will be used for preliminary fatigue testing.

Orientation	Condition	Height (H), mm	Depth (D), mm	Width (w), mm	Number of specimens
	LOF notch	0.1	0.25	1	4
	LOF notch	0.1	0.5	1	4
	LOF notch	0.1	1	1	4
ZX	LOF notch	0.2	0.5	1	4
	LOF notch	0.2	0.75	1	4
	LOF notch	0.2	1	1	4
	AS-fabricated	n/a	n/a	n/a	4

Smallest detected flaw on LOF cubes and fatigue specimens based on CT data were designed/modeled with dimensions of:

Total

- Depth: 0.25 mm (0.0098 inch)
- Height: 0.1 mm (0.004 inch)

Next steps

- Colibrium to fabricate 2nd build with proposed (LOF) flaw sizes.
 - NIAR to CT scan to further verify LOF repeatability.
 - NIAR to run fatigue testing trials with specimens from 1st and 2nd build.
- Colibrium to build & NIAR to run final fatigue testing w/ min inspectable flaw size
 - (LOF & laser cut vs. as-printed)
- *NIAR* to propose qualification approach for as-printed surfaces

Questions?