

SOLVAY

Experimental and Computational Investigation into the Use of Discontinuous Fiber Composites to Manufacture a Bracket

5/22/2024

Marco Salviato (UW)

JAMS meeting 2024

Research Team

University of Washington

PIs: Marco Salviato (AA)

Graduate students:

Collins Davis (Total of 12: 1 PhD and 2 master)

Undergraduate students: Yusuf Rasyid, Alexander Javor, Luke Kuklenski... (50+ students) ALL LANGE

Dave Stanley (Technical monitor) Larry Ilcewicz Amhet Oztekin Cindy Ashforth

Industry Mentors:

FAA:

William Avery (UW) Michael Larson (Boeing) Matthew Soja (Boeing) Scott James (Sekisui Aerospace)

Sponsors

The Joint Center for Aerospace Technology Innovation

A DURAVANT COMPANY

NIAR WICHITA STATE UNIVERSITY

NATIONAL INSTITUTE FOR AVIATION RESEARCH

3

Career Opportunities

Introduction

Carbon Fiber Reinforced Composites Market

Primary Structures

Secondary Structures

Discontinuous Fiber Composites (DFCs)

- Platelet (Chip) based, discontinuous fiber form
- Suitable for automation
- Cost saving

Project Overview

Challenges for DFCs – Design Guidance

Finite Element Framework

- Develop computational tools
- Design 2021 experiment plan

• Design 2021 experiment plan

• Design 2021 experiment plan

• Design 2021 experiment plan

Year 3 (2023-24) Summary

Sekisui Bracket Test Configuration

- Testing 2 configurations of the Sekisui QForge Bracket
 - 1. Square Platelet (14 brackets, 7 x-ray CT)
 - 2. Narrow Platelet (14 brackets, 7 x-ray CT)
- DIC at the top load pin where we think failure will occur

Fixed

Sekisui Bracket Tension

17

Tension Test Setup

- Rate: 0.3 mm/min
- 2 camera setup for DIC
- 1 camera at capturing the base to see if the bracket lifts off the fixture
- Base bolts torqued to 10 lb-ft

Load Displacement Curves

Similarly to the UNT, the narrow platelets outperform the square. The stiffness and strength have a percent difference of 30.61% and 38.46% respectively.

- **Z** -

1 mm

S

1 mm

S

1_mm

S

Sekisui Bracket Bending

Bending Test Setup

- Rate: 0.6 mm/min
- 2 camera setup for 2D DIC at the load pin
- 2 camera setup for 3D DIC of the base of the bracket
- 1 camera at capturing the base to see if the bracket lifts off the fixture
- Base bolts torqued to 10 lb-ft

Bending Slip

0 ا

• Bracket does not slip

a) NP Loading Hole Failure – Max Principal Strain

b) SP Loading Hole Failure – Max Principal Strain

 \mathcal{E}_1

S

Sekisui Bracket Void Analysis

42

Bracket Void Content

	Section				
	1	2	3	4	
SP	0.55±0.37	0.23±0.24	0.06±0.10	0.03±0.02	
NP	0.68±0.39	0.27±0.20	0.09±0.11	0.07±0.08	

- The top of the bracket has a higher void content at the bottom due to flow
- Narrow platelet brackets have a slightly higher void content, but the variation is high

Bracket Flow

- Top of bracket (red) has platelet flow, indicated by fiber curvature
- Bottom of the bracket (green) has little to no flow

Bracket Flow

- Top of bracket (red) has platelet flow, indicated by fiber curvature
- Bottom of the bracket (green) has little to no flow

Sekisui Bracket Simulations

46

Fixed in y • Fixture is explicitly modeled • Boundary conditions are the same as experiment Displacement

Simulation of Tension Tests

Simulation of Matrix and Fiber Damage

-N -

Simulation vs Experiments (tension)

Simulation vs Experiments (bending)

Stiffness (Square Platelets)

	Tension	Bending
Experiments	38.42 ± 27.5%	5.53 ± 17.5%
FEM	40.2 ± 17.2%	6.43 ± 12.5%

Failure load (Square Platelets)

	Tension	Bending
Experiments	9.92 ± 14.3%	14.78 ± 14.4%
FEM	9.1 ± 11.5%	16.3 ± 10.5%

Stiffness (Square Platelets)

	Tension	Bending
Experiments	53.30 ± 18.3%	5.12 ± 6.6%
FEM	56.3 ± 23.5%	5.8 ± 11.5%

Failure load (Square Platelets)

	Tension	Bending
Experiments	14.64 ± 12.4%	13.29 ± 9.1%
FEM	15.7 ± 15.2%	15.3 ± 7.5%

Ongoing work

Can we use the model to generate design allowables?

1. Extract statistical distribution of fiber orientation from X-ray CT

2. Construct digital samples and perform Montecarlo simulations

3. Calculate design allowables

SOLVAY

Experimental and Computational Investigation into the Use of Discontinuous Fiber Composites to Manufacture a Bracket

5/22/2024

Marco Salviato (UW)

JAMS meeting 2024