

Design of Energy-Absorbing CFRP Stanchions for the Cargo Floor Structure of Transport Category Airplanes

2013 Technical Review Paolo Feraboli & Max Spetzler University of Washington

Design of Energy-Absorbing CFRP Stanchions for the Cargo Floor Structure of Transport Category Airplanes

Motivation and Key Issues

- Airframe-level crashworthiness regulations expected to enter CFR
- Crashworthiness of all-composite structures relatively new topic in aviation

Objective

- Streamline certification process
- Develop guidance material

Approach

 Develop crashworthiness certification protocol for a virtual generic all-composite Part 25 airplane

Design of Energy-Absorbing CFRP Stanchions for the Cargo Floor Structure of Transport Category Airplanes

Principal Investigators & Researchers

- Paolo Feraboli, Research Professor (PI)
- Bonnie Wade (PhD student)
- Max Spetzler (PhD student)

FAA Technical Monitor

Allan Abramowitz

Other FAA Personnel Involved

- Dr. Larry Ilcewicz (Technical Advisor)
- Curt Davies (JAMS Program Manager)

Industry Participation

- Dr. Mostafa Rassaian, Boeing/BR&T (Technical Advisor)
- Kevin Davis, Boeing/BCA (Technical Advisor)

Crashworthiness certification protocol

- Building Block Approach adapted to crashworthiness
- Based on analysis supported by test evidence
- Successfully adopted by Boeing for 787 to meet Special Conditions
- Certification by test not likely to be an option for Part 25 but may be considered for Part 23

Courtesy: Boeing

AUTOMOBILI LAMBORGHINI ADVANCED COMPOSITE STRUCTURES LABORATORY UNIVERSITY OF WASHINGTON

Typical twin-aisle fuselage layout & dimensions

- Separate passenger and cargo floor
- Dimensions largely determined by
 - Passenger space requirements
 - Standard cargo container dimensions
- Cargo floor structure as 'crush zone' to improve vehicle crashworthiness

Cargo floor structure as 'crush zone'

- Cargo floor stanchions may be designed to absorb energy through progressive crushing in case of a crash
- Dual functionality of stanchions
 - Carry all operational loads according to airworthiness requirements
 - In crash event:
 - 1. Separate from frame
 - 2. Crush on inner skin surface to absorb energy

Stanchion separation

- Three configurations tested to investigate how failure can be triggered at desired location
- Channel-section type stanchions, 190mm long

Type 2

CECAM

Type 3

- T800/3900-2 PW fabric, all 0°
- Displacement control, 50mm/min

10 plies :

8 plies 2

12 plies

6 plies

AUTOMOBILI LAMBORGHINI

ADVANCED COMPOSITE STRUCTURES LABORATORY UNIVERSITY OF WASHINGTON

Type 1

ransport Aircraft Struct

Stanchion separation

- Failure preceded by local buckling in all cases
- Rupture triggered by any kind of discontinuity
- Interaction between separated pieces
 - Tearing into flat segments

Proof of concept with full-length stanchions

- 4th and 5th configuration derived from test results
 - Flanges trimmed off to trigger failure and avoid interaction
 - 380mm length
 - Multiple thickness transitions to encourage progressive failure

Proof of concept with full-length stanchions

Stability of progressive crushing - Test

- Full-length tests showed that crushing is not necessarily stable
- Conditions for stable crushing of interest
- Crushing tests of C-section specimens with varying thickness (6, 8, 10 and 12 plies, all in 0°-direction)

Stability of progressive crushing - Test

- Thick specimens (10-12 plies)
 - Local buckling patterns of low amplitude visible initially
 - Stable crushing
 - High specific energy absorption
- Thin specimens (6-8 plies)
 - Severe buckling of web and flanges throughout process
 - Crushing repeatedly disturbed by rupture at a distance form the crush zone
 - Significantly lower specific energy absorption

Stability of progressive crushing - Test

- Crushing under buckling deformation coincides with unsteady part force-displacement curves
- Laminate failure outside of crush zone causes load to drop and reduces energy absorption

- Finite element model of specimen (LS-DYNA)
 - 2.5mm mesh size, fully integrated shell elements (type 16), MAT54
 - Nodes constrained at location of hydraulic grips
 - Edge load applied at other end (Represents load imposed onto specimen by the crush zone)
 - Loaded edge 'pinned'
- Length of specimen varied
- Two types of analysis
 - 1. Implicit buckling analysis (eigenmode analysis)
 - 2. Explicit non-linear failure load analysis

AUTOMOBILI LAMBORGHINI ADVANCED COMPOSITE STRUCTURES LABORATORY UNIVERSITY OF WASHINGTON

UNIVERSITY OF WASHINGTON

- Both analysis types predict buckling patterns (pictures from non-linear analysis)
- Failure location (non-linear analysis) depends on laminate thickness
 - 6-8 plies
- at a distance \rightarrow from crush zone
- 10-12 plies \rightarrow at loaded edge

AUTOMOBILI LAMBORGHINI ADVANCED COMPOSITE STRUCTURES LABORATORY UNIVERSITY OF WASHINGTON

16

Conclusion

- Typical transport category airplanes feature stanchions in the cargo floor structure, which can be designed to improve crashworthiness of the airframe
- Energy absorption through progressive crushing of CFRP stanchions requires certain design features in the stanchions
- To increase energy absorption, the C-channel stanchions need to separate from the structure on one side so that they may subsequently crush
- A discontinuity (thickness transition, change of flange height) at the desired location can trigger separation after local buckling of web and flanges
- Stable crushing requires that the laminate does not fail outside the crush process zone
- Buckling and failure loads obtained from finite element analysis may be used to assess if crushing will be stable or not

AUTOMOBILI LAMBORGHINI Advanced composite structures laboratory UNIVERSITY OF WASHINGTON

Looking Forward

Subcomponent-Level Test and Analysis

AUTOMOBILI LAMBORGHINI Advanced composite structures laboratory UNIVERSITY OF WASHINGTON

Looking Forward

Benefit to Aviation

- Provide guidance for certification process
- Increase confidence and therefore level of safety

Future needs

Guidance material for all levels of the BBA

End of Presentation.

21