

Potential Composite Bond Contamination By Contact Angle Fluids

April 9, 2013 Ashley C. Tracey, Jonathan T. Morasch, Aaron Capps & Brian D. Flinn University of Washington Materials Science and Engineering

Improving Adhesive Bonding Through Surface Characterization

- Motivation and Key Issues
 - Most important step for bonding is SURFACE PREPARATION!
 - Inspect the surface prior to bonding to ensure proper surface prep
- Objective
 - Develop quality assurance (QA) techniques for surface prep
- Approach
 - Investigate surface preps, process variables
 - Effect of measurements on bonding surface

FAA Sponsored Project Information

- Principal Investigators & Researchers
 - Brian D. Flinn (PI)
 - Ashley C. Tracey (PhD student, UW-MSE)
 - Jonathan T. Morasch (undergraduate, UW-MSE)
 - Aaron Capps (UW-MSE)
- FAA Technical Monitor
 - David Westlund
- Other FAA Personnel Involved
 - Larry Ilcewicz
- Industry Participation
 - Toray Composites
 - Precision Fabrics, Richmond Aerospace & Airtech International
 - The Boeing Company (Marc Piehl, Kay Blohowiak, Pete VanVoast, Will Grace, Tony Belcher, Liz Castro)

Surface Energy to Examine Surfaces

- Adhesive must wet substrate controlled by surface energy
- Surface energy = measure of energy associated with unsatisfied bonds at the surface [free energy/unit area]
- CAs used to measure surface energy

- Historically: water break test for metal bond QA, not sufficient for composites – esp. peel ply material
 - Need multiple fluids to determine surface energy, wettability envelopes

Contact Angle to Detect Surface Prep

CA can detect surface prep and silicone contamination
Wettability envelopes: 2D representation of surface energy

Need to understand how fluid affects bonding surface

Experimental Overview

Investigate effect of CA fluid application on prepared composite surfaces and resulting bond quality

- Apply CA fluid on prepared CFRP surfaces followed by use of one of below methods:
 - 1. Dry wipe fluid on surface 10-20 min
 - 2. Acetone wipe fluid on surface 10-20 min
 - 3. Air dry (in fume hood) fluid on surface 30 min-3 hr
 - Note: amount of fluid applied to surfaces much larger than would typically be exposed to in QA situations (100% vs <5% coverage)
- Fabricate Double Cantilever Beam (DCB) test specimens (bond within 4 hours of application)
 - Mode I strain energy release rate (G_{IC}) and failure mode

Materials and Process

- Toray 3900/T800 unidirectional laminates
 Autoclave cure (350 °F, 89 psi)
- Peel ply surface prep
 - Precision Fabric Group 60001 polyester peel ply
- Contact angle fluid application
 - Fluids: DI H₂O, ethylene glycol (EG), glycerol (GLY), diiodomethane (DIM)
 - DuPont Sontara aerospace grade wipes
 - Application and removal of CA fluid

Materials and Process – CA Measurement

- Measure CAs of 1 µL sessile drops from side view using goniometer
 10 drops (20 CAs) per fluid
- Fluids: DI H₂O, EG, GLY, DIM
- Measure at 0 or 90° wrt peel ply texture

VCA Optima Goniometer

Calculate CFRP surface energy from CAs

$$\frac{\gamma_{lv}(\cos\theta + 1)}{2\sqrt{\gamma_{lv}^{p}}} = \sqrt{\gamma_{sv}^{d}} \left(\sqrt{\frac{\gamma_{lv}^{d}}{\gamma_{lv}^{p}}}\right) + \sqrt{\gamma_{sv}^{p}}$$

Drop application: dispense drop, raise surface

Side-view of drop as viewed from goniometer camera

Materials and Process – DCB Testing

- AF 555M film adhesive
 - Aerial weight: 0.050 ± 0.005 lb/ft^{2 [1]}
 - Autoclave cure (350 °C, 89 psi)
 - Bondline thickness: 4.1 12.6 mils
- MB 1515-3M film adhesive
 - Aerial weight: 0.05 lb/ft² [2]
 - Autoclave cure (350 °F, 45 psi)
 - Bondline thickness: 7.4 11.8 mils

[1] "3M Scotch-Weld Structural Film Adhesive AF 555 Technical Data Sheet." *3M Aerospace and Aircraft*. N.p., Oct 2007. Web. 4 Mar 2013. http://www.3M.com/aerospace.

[2] "Cytec Metlbond 1515-3 Film Adhesive Technical Data Sheet." *Cytec Engineered Materials*. N.p., 12 Aug 2010. Web. 8 Mar 2013. http://www.cytec.com/>

Materials and Process – DCB Testing

- Bonded panels cut into (5) ¹/₂" x 13" specimens
- Used area method
 - E: area of curve
 - A: crack length
 - B: specimen width

DCB Failure Modes – AF 555M Adhesive

Control	DI H ₂ O	DIM	EG	GLY
Air Dry				
Dry Wipe				
Acetone Wipe				

DCB Mode I Strain Energy Release Rates – AF 555M Adhesive

Secondary Method

- DI H₂O did not degrade G_{IC}
- DIM and EG decreased G_{IC} 20-30%
- GLY decreased G_{IC} 10-20%

DCB Observations – AF 555M Adhesive

- DI H₂O did not degrade failure mode or G_{IC} compared to control samples
- DIM did not change failure mode but decreased G_{IC} 20-30%
 - Interaction of DIM with substrate and/or adhesive?
- EG decreased G_{IC} 20-30%
 - EG + Air Dry and EG + Dry Wipe mostly interlaminar failure → may explain decrease
 - EG + Acetone Wipe similar failure to control samples
- GLY decreased G_{IC} 10-20%
 - Unexpected as fracture mode mostly cohesive
 - Interaction between GLY and substrate and/or adhesive?

DCB Failure Modes – MB 1515-3M Adhesive

Control	DI H ₂ O	DIM	EG	GLY
Air Dry				
Dry Wipe				
Acetone Wipe				

DCB Mode I Strain Energy Release Rates – MB 1515-3M Adhesive

Secondary Method

- DI H₂O and DIM did not significantly change G_{IC}
- EG showed variable results
- GLY decreased G_{IC} 50-55%

DCB Observations – MB 1515-3M Adhesive

- DI H₂O and DIM did not degrade failure mode or G_{IC} compared to control samples
- EG showed variable fracture surfaces and G_{IC} measurements
 - FTIR or CA detect differences?
- GLY decreased G_{IC} 50-55%
 - Unexpected as fracture mode mostly cohesive
 - Interaction between GLY and substrate and/or adhesive?

Diffuse Reflectance FTIR Analysis of EG Surfaces

 Slight spectral differences between EG samples but not due to EG on surface

GLY Fracture Surfaces

• GLY fracture surface showed significant bondline porosity compared to control and all other "contaminated" surfaces

Control

GLY + Air Dry

GLY + Dry Wipe GLY + Acetone Wipe

Control

GLY + Air Dry

GLY + Dry Wipe GLY + Acetone Wipe

CA Measurements

Some CA probe fluids affect G_{IC} and fracture mode \rightarrow CA analysis of "contaminated" surfaces

Sample

- DI H₂O, DIM and EG did not significantly change surface energy
- GLY showed largest difference in surface energies ۲
 - GLY + Air Dry and GLY + Dry Wipe samples approaching surface energy of GLY itself (γ^p = 30 mJ/m², γ^d = 34 mJ/m²)

Summary

- Contact angle used to measure bonding surfaces → effect of measurement on surface?
- All DCBs showed acceptable failure modes no adhesion failure
- Some observations of decrease in G_{IC} and change in failure mode
 - CA analysis showed surface energy differences for GLY substrates
 - More research necessary to understand other ${\rm G}_{\rm IC}$ and failure mode differences
 - Note: amount of fluid applied to bonding surfaces much larger than would typically be exposed to in QA situations

Looking Forward

- Benefit to Aviation
 - Guide development of QA methods for surface prep
 - Greater confidence in adhesive bonds
- Future needs
 - Application to other composite/surface prep/adhesive systems (repair, paste adhesive, etc.)
 - Model to guide bonding based on characterization, surface prep and material properties
 - QA methods to ensure proper surface for bonding

Acknowledgements

- FAA, JAMS, AMTAS JMS
- Boeing Company
 - Marc Piehl, Kay Blohowiak, Pete VanVoast, Will Grace, Tony Belcher, Liz Castro
- Precision Fabric Group
- Richmond Aircraft Products
- Airtech International
- UW MSE W MATERIALS

PRECISION FABRICS

ENGINEERING

&

Thank you!

Questions and comments welcome.

A Center of Excellence Advanced Materials in Transport Aircraft Structures

JOINT ADVANCED MATERIALS & STRUCTURES CENTER OF EXCELLENCE