

Report No: NCP-RP-2009-001 Rev B

Report Date: July 8, 2019

Solvay (Formerly ACG) MTM45-1/ Style 6781 S2 Glass Qualification Statistical Analysis Report

FAA Special Project Number: SP3505WI-Q

NCAMP Report Number: NCP-RP-2009-001 Rev B

Report Date: July 8, 2019

Elizabeth Clarkson, Ph.D.

National Center for Advanced Materials Performance (NCAMP) National Institute for Aviation Research Wichita State University Wichita, KS 67260-0093

Testing Facility:

National Institute for Aviation Research Wichita State University 1845 N. Fairmount Wichita, KS 67260-0093

Test Panel Fabrication Facility:

Bell Helicopter Textron, Inc. 600 East Hurst Blvd. Hurst, TX 76053

Distribution Statement A. Approved for public release; distribution is unlimited.

Report No: NCP-RP-2009-001 Rev B

Report Date: July 8, 2019

Pı	rej	par	ed	by	7:

Elizabeth Clarkson

Reviewed by:

Evelyn Lian

Approved by:

Royal Lovingfoss

REVISIONS:

Rev	Ву	Date	Rev Approved By	Pages Revised or Added
N/C	Elizabeth Clarkson	06/07/2011	Yeow Ng	Document Initial Release
A	Elizabeth Clarkson	07/19/2011	Yeow Ng	Corrected Eq. 13 and changed CBS units to lbs in table 3.4 (it was incorrectly stated as ksi)
В	Elizabeth Clarkson	05/01/2013	Yeow Ng	Removed 'working draft' from all references to CMH17 Rev G. Decimals increased to 3 digits in all tables. ETW2 modulus values added for WC, FC, and UNC test results. Corrected revision of purchasing spec for material. Corrections made to tables 3-2, 3-3, 3-4 and 4-3.
В	Elizabeth Clarkson	07/08/2019	Royal Lovingfoss	Updated Table 3-3 – set the column width wider to display WC strength mean value at CTD condition.

Table of Contents

1.	Introduction	7
1.1	Symbols and Abbreviations	8
1.2	Pooling Across Environments	10
1.3	Basis Value Computational Process	10
1.4	Modified Coefficient of Variation (CV) Method	10
2.	Background	12
2.1	ASAP Statistical Formulas and Computations	12
2	.1.1 Basic Descriptive Statistics	12
2	.1.2 Statistics for Pooled Data	
2	.1.3 Basis Value Computations	13
2	.1.4 Modified Coefficient of Variation	
2	.1.5 Determination of Outliers	15
2	.1.6 The k-Sample Anderson Darling Test for batch equivalency	16
2	.1.7 The Anderson Darling Test for Normality	
2	.1.8 Levene's test for Equality of Coefficient of Variation	
2.2	STAT-17	18
2	.2.1 Distribution tests	18
2	.2.2 Computing Normal Distribution Basis values	19
2	.2.3 Non-parametric Basis Values	23
2	.2.4 Non-parametric Basis Values for small samples	24
2	2.2.5 Analysis of Variance (ANOVA) Basis Values	26
2.3	Single Batch and Two Batch Estimates using Modified CV	28
2.4	Lamina Variability Method (LVM)	28
3.	Summary Tables	30
3.1	NCAMP Recommended B-basis Values	30
3.2	Lamina and Laminate Summary Tables	
J. <u>L</u>	Lamma and Lammad Summary Tables	
4.	Lamina Test Results, Statistics, Basis Values and Graphs	35
4.1	Warp (0°) Tension Properties (WT)	36
4.2	Warp (0°) Compression Properties (WC)	38

4.3	Fill (90°) Tension Properties (FT)	40
4.4	Fill (90°) Compression Properties (FC)	42
4.5	In-Plane Shear Properties (IPS)	45
4.6	Short Beam Strength Properties (SBS)	48
5.	Laminate Test Results, Statistics, Basis Values and Graphs	50
5.1	Quasi Isotropic Unnotched Tension Properties (UNT1)	50
5.2	Quasi Isotropic Unnotched Compression Properties (UNC1)	53
5.3	Laminate Short Beam Strength Properties (LSBS)	55
5.4	Open Hole Tension Properties (OHT1, OHT2, OHT3)	57
5.4		
5.4	4.2 "Soft" Open Hole Tension 2 (OHT2)	59
5.4	4.3 "Hard" Open Hole Tension 3 (OHT3)	61
5.5	Open Hole Compression Properties (OHC1, OHC2, OHC3)	63
5.5		
	5.2 "Soft" Open Hole Compression 2 (OHC2)	
	5.3 "Hard" Open Hole Compression 3 (OHC3)	
5.6	Quasi Isotropic Filled Hole Tension Properties (FHT1)	69
5.7	Quasi Isotropic Filled Hole Compression Properties (FHC1)	71
5.8	Quasi Isotropic Pin Bearing Properties (PB1)	73
5.9	Compression After Impact (CAI)	75
5.10	Interlaminar Tension (ILT) and Curved Beam Strength (CBS)	76
6.	Outliers	77
7.	References	78

List of Figures

Figure 4-1: Batch Plot for WT Strength normalized	36
Figure 4-2: Batch Plot for WC Strength normalized	
Figure 4-3: Batch Plot for FT Strength normalized	
Figure 4-4: Batch Plot for FC Strength normalized	
Figure 4-5: Batch plot for IPS 5% Shear Strain	
Figure 4-6: Batch plot for IPS 0.2% Offset Strength	
Figure 4-7: Batch plot for SBS Strength	
Figure 5-1: Batch plot for UNT1 Strength normalized	51
Figure 5-2: Batch plot for UNC1 Strength normalized	
Figure 5-3: Batch plot for LSBS Strength as measured	55
Figure 5-4: Batch plot for OHT1 Strength normalized	58
Figure 5-5: Batch plot for OHT2 Strength normalized	59
Figure 5-6: Batch plot for OHT3 Strength normalized	61
Figure 5-7: Batch plot for OHC1 Strength normalized	64
Figure 5-8: Batch plot for OHC2 Strength normalized	65
Figure 5-9: Batch plot for OHC3 Strength normalized	67
Figure 5-10: Batch plot for FHT1 Strength normalized	69
Figure 5-11: Batch plot for FHC1 Strength normalized	71
Figure 5-12: Batch plot for PB1 Strength normalized	73
Figure 5-13: Plot for Compression After Impact normalized strength	75
Figure 5-14: Plot for Interlaminar Tension and Curved Beam Strength	76

List of Tables

Table 1-1: Test Property Abbreviations	8
Table 1-2: Test Property Symbols	9
Table 1-3: Environmental Conditions Abbreviations	9
Table 2-1: K factors for normal distribution	19
Table 2-2: Weibull Distribution Basis Value Factors	22
Table 2-3: B-Basis Hanson-Koopmans Table	25
Table 2-4: A-Basis Hanson-Koopmans Table	26
Table 2-5: B-Basis factors for small datasets using variability of corresponding lar	rge
dataset	_
Table 3-1: NCAMP recommended B-basis values for lamina test data	31
Table 3-2: Recommended B-basis values for laminate test data	32
Table 3-3: Summary of Test Results for Lamina Data	33
Table 3-4: Summary of Test Results for Laminate Data	34
Table 4-1: Statistics, Basis values and/or Estimates for WT Strength data	37
Table 4-2: Statistics from WT modulus data	37
Table 4-3: Statistics, Basis Values and/or Estimates for WC Strength	39
Table 4-4: Statistics from WC modulus data	39
Table 4-5: Statistics, Basis Values and/or Estimates for FT Strength data	
Table 4-6: Statistics, Basis Values and/or Estimates for FT Modulus data	
Table 4-7: Statistics, Basis Values and/or Estimates for FC Strength data	43
Table 4-8: Statistics from FC Modulus data	44
Table 4-9: Statistics, Basis Values and/or Estimates for IPS Strength data	47
Table 4-10: Statistics from IPS Modulus data	47
Table 4-11: Statistics, Basis Values and/or Estimates for SBS Strength data as	
measured	49
Table 5-1: Statistics, Basis Values and/or Estimates for UNT1 Strength data	52
Table 5-2: Statistics from UNT1 Modulus Data	52
Table 5-3: Statistics, Basis Values and/or Estimates for UNC1 Strength data	
Table 5-4: Statistics from UNC1 Modulus data	54
Table 5-5: Statistics, Basis Values and/or Estimates for LSBS Strength data	56
Table 5-6: Statistics, Basis Values and/or Estimates for OHT1 Strength data	
Table 5-7: Statistics, Basis Values and/or Estimates for OHT2 Strength data	60
Table 5-8: Statistics, Basis Values and/or Estimates for OHT3 Strength data	
normalized	
Table 5-9: Statistics, Basis Values and/or Estimates for OHC1 Strength data	64
Table 5-10: Statistics, Basis Values and/or Estimates for OHC2 Strength data	
Table 5-11: Statistics, Basis Values and/or Estimates for OHC3 Strength data	68
Table 5-12: Statistics, Basis Values and/or Estimates for FHT1 Strength data	
Table 5-13: Statistics, Basis Values and/or Estimates for FHC1 Strength data	72
Table 5-14: Statistics, Basis Values and/or Estimates for PB1 2% Offset Strength	
data	74
Table 5-15: Statistics for CAI Strength data	75
Table 5-16: Statistics for ILT and CBS Strength data	
Table 6-1: List of outliers	

1. Introduction

This report contains statistical analysis of ACG - MTM45-1/ Style 6781 S2 Glass material property data published in NCAMP Test Report CAM-RP-2009-001 Rev C. The lamina and laminate material property data have been generated with FAA oversight through FAA Special Project Number SP3505WI-Q and also meet the requirements outlined in NCAMP Standard Operating Procedure NSP 100. The test panels, test specimens, and test setups have been conformed by the FAA and the testing has been witnessed by the FAA.

B-Basis values and estimates were calculated using a variety of techniques that are detailed in section two. Qualification material was procured in accordance with ACG material specification ACGM 1001-12 Revision I/R dated March 10, 2005. An equivalent NCAMP Material Specification NMS 451/12 which contains specification limits that are derived from guidelines in DOT/FAA/AR-03/19 has been created. The qualification test panels were fabricated per ACGP1001-02 Revision E "MH" cure cycle. An equivalent NCAMP Process Specification NPS 81451 with baseline "MH" cure cycle has been created. The ACG Test Plan AI/TR/1392 Revision E was used for this qualification program.

Basis numbers are labeled as 'values' when the data meets all the requirements of CMH-17 Revision G. When those requirements are not met, they will be labeled as 'estimates.' When the data does not meet all requirements, the failure to meet these requirements is reported along with the specific requirement(s) the data fails to meet. The method used to compute the basis value is noted for each basis value provided. When appropriate, in addition to the tradition computational methods, values computed using the modified coefficient of variation method is also provided.

The material property data acquisition process is designed to generate basic material property data with sufficient pedigree for submission to Complete Documentation sections of Composite Materials Handbook 17 (CMH-17 Rev G).

The NCAMP shared material property database contains material property data of common usefulness to a wide range of aerospace projects. However, the data may not fulfill all the needs of a project. Specific properties, environments, laminate architecture, and loading situations that individual projects need may require additional testing.

The use of NCAMP material and process specifications do not guarantee material or structural performance. Material users should be actively involved in evaluating material performance and quality including, but not limited to, performing regular purchaser quality control tests, performing periodic equivalency/additional testing, participating in material change management activities, conducting statistical process control, and conducting regular supplier audits.

The applicability and accuracy of NCAMP material property data, material allowables, and specifications must be evaluated on case-by-case basis by aircraft companies and certifying agencies. NCAMP assumes no liability whatsoever, expressed or implied, related to the use of the material property data, material allowables, and specifications.

Part fabricators that wish to utilize the material property data, allowables, and specifications may be able to do so by demonstrating the capability to reproduce the original material properties; a process known as equivalency. More information about this equivalency process including the test statistics and its limitations can be found in Section 6 of DOT/FAA/AR-03/19 and Section 8.4.1 of CMH-17 Rev G. The applicability of equivalency process must be evaluated on program-by-program basis by the applicant and certifying agency. The applicant and certifying agency must agree that the equivalency test plan along with the equivalency process described in Section 6 of DOT/FAA/AR-03/19 and Section 8.4.1 of CMH-17 Rev G are adequate for the given program.

Aircraft companies should not use the data published in this report without specifying NCAMP Material Specification NMS 451/12. NMS 451/12 may have additional requirements that are listed in its prepreg process control document (PCD), fiber specification, fiber PCD, and other raw material specifications and PCDs which impose essential quality controls on the raw materials and raw material manufacturing equipment and processes. *Aircraft companies and certifying agencies should assume that the material property data published in this report is not applicable when the material is not procured to NCAMP Material Specification NMS 451/12*. NMS 451/12 is a free, publicly available, non-proprietary aerospace industry material specification.

This report is intended for general distribution to the public, either freely or at a price that does not exceed the cost of reproduction (e.g. printing) and distribution (e.g. postage).

1.1 Symbols and Abbreviations

Test Property	Abbreviation
Warp Compression	WC
Warp Tension	WT
Fill Compression	FC
Fill Tension	FT
In-Plane Shear	IPS
Short Beam Strength	SBS
Unnotched Tension	UNT
Unnotched Compression	UNC
Open Hole Tension	OHT
Open Hole Compression	OHC
Filled Hole Tension	FHT
Filled Hole Compression	FHC
Pin Bearing	PB
Interlaminar Tension	ILT
Curved Beam Strength	CBS
Compression After Impact	CAI

Table 1-1: Test Property Abbreviations

Test Property	Symbol
Warp Compression Strength	Fı ^{cu}
Warp Compression Modulus	E ₁ ^c
Warp Compression Poisson's Ratio	v ₁₂ ^c
Warp Tension Strength	F1 ^{tu}
Warp Tension Modulus	E_1^t
Warp Tension Poisson's Ratio	v12 ^t
Fill Compression Strength	F2 ^{cu}
Fill Compression Modulus	E_2^c
Fill Compression Poisson's Ratio	v_{21}^{c}
Fill Tension Strength	F2 ^{tu}
Fill Tension Modulus	E_2^t
Fill Tension Poisson's Ratio	v21 ^t
In-Plane Shear Strength at 5% strain	F12 ^{s5%}
In-Plane Shear Strength at 0.2% offset	F12 ^{s0.2%}
In-Plane Shear Modulus	G_{12}^{s}

Table 1-2: Test Property Symbols

Environmental Condition	Abbreviation
Cold Temperature Dry (-65°F)	CTD
Room Temperature Dry (75°F)	RTD
Elevated Temperature Dry (200°F)	ETD
Elevated Temperature Wet (200°F)	ETW
Elevated Temperature Wet (250°F)	ETW2

Table 1-3: Environmental Conditions Abbreviations

Tests with a number immediately after the abbreviation indicate the lay-up:

1 = "Quasi-Isotropic" 25/50/25 2 = "Soft" 10/80/10 3 = "Hard" 40/20/40

EX: OHT1 is an open hole tension test with layup of 25/50/25.

Detailed information about the test methods and conditions used is given in NCAMP Test Report CAM-RP-2009-001 Rev C.

1.2 Pooling Across Environments

When pooling across environments was allowable, the pooled co-efficient of variation was used. ASAP (AGATE Statistical Analysis Program) 2008 version 1.0 was used to determine if pooling was allowable and to compute the pooled coefficient of variation for those tests. In these cases, the modified coefficient of variation (section 1.4) based on the pooled data was used to compute the basis values.

When pooling across environments was not allowable, (i.e. the data failed the Anderson-Darling test or normality tests and engineering judgment indicated there was no justification for overriding the result), B-Basis values were computed for each environment separately using Stat17 version 5.

1.3 Basis Value Computational Process

The general form to compute engineering basis values is: basis value = $\overline{X} - kS$ where k is a factor based on the sample size and the distribution of the sample data. There are many different methods to determine the value of k in this equation, depending on the sample size and the distribution of the data. In addition, the computational formula used for the standard deviation, S may vary depending on the distribution of the data. The details of those different computations and when each should be used are in section 2.

1.4 Modified Coefficient of Variation (CV) Method

A common problem with new material qualifications is that the initial specimens produced and tested do not contain all of the variability that will be encountered when the material is being produced in larger amounts over a lengthy period of time. This can result in setting basis values that are unrealistically high. The variability as measured in the qualification program is often lower than the actual material variability because of several reasons. The materials used in the qualification programs are usually manufactured within a short period of time, typically 2-3 weeks only, which is not representative of the production material. Some raw ingredients that are used to manufacture the multi-batch qualification materials may actually be from the same production batches or manufactured within a short period of time so the qualification materials, although regarded as multiple batches, may not truly be multiple batches so they are not representative of the actual production material variability.

The modified Coefficient of Variation (CV) used in this report is in accordance with section 8.4.4 of CMH-17 Rev G. It is a method of adjusting the original basis values downward in anticipation of the expected additional variation. Composite materials are expected to have a CV of at least 6%. The modified coefficient of variation (CV) method increases the measured coefficient of variation when it is below 8% prior to computing basis values. A higher CV will result in lower or more conservative basis values and lower specification limits. The use of the modified CV method is intended for a temporary period of time when there is minimal data available. When a sufficient number of production batches (approximately 8 to 15) have been produced and tested, the asmeasured CV may be used so that the basis values and specification limits may be adjusted higher.

The material allowables in this report are calculated using both the as-measured CV and modified CV, so users have the choice of using either one. When the measured CV is greater than 8%, the modified CV method does not change the basis value. NCAMP recommended values make use the modified CV method when it is appropriate for the data.

When the data fails the Anderson-Darling k-sample test for batch to batch variability or when the data fails the normality test, the modified CV method is not appropriate and no modified CV basis value will be provided. When the ANOVA method is used, it may produce excessively conservative basis values. When appropriate, a single batch or two batch estimate will be provided in addition to the ANOVA estimate.

In some cases a transformation of the data to fit the assumption of the modified CV resulted in the transformed data passing the ADK test and thus the data can be pooled only for the modified CV method.

NCAMP recommends that if a user decides to use the basis values that are calculated from asmeasured CV, the specification limits and control limits be calculated with as-measured CV also. Similarly, if a user decides to use the basis values that are calculated from modified CV, the specification limits and control limits be calculated with modified CV also. This will ensure that the link between material allowables, specification limits, and control limits is maintained.

2. Background

Statistical computations are performed with AGATE Statistical Analysis Program (ASAP) when pooling across environments is permissible according to CMH-17 Rev G guidelines. If pooling is not permissible, a single point analysis using STAT-17 is performed for each environmental condition with sufficient test results. If the data does not meet the requirements of CMH-17 Rev G for a single point analysis, estimates are created by a variety of methods depending on which is most appropriate for the dataset available. Specific procedures used are presented in the individual sections where the data is presented.

2.1 ASAP Statistical Formulas and Computations

This section contains the details of the specific formulas ASAP uses in its computations.

2.1.1 Basic Descriptive Statistics

The basic descriptive statistics shown are computed according to the usual formulas, which are shown below:

Mean:
$$\bar{X} = \sum_{i=1}^{n} \frac{X_i}{n}$$
 Equation 1

Std. Dev.:
$$S = \sqrt{\frac{1}{n-1}\sum_{i=1}^{n}\left(X_{i} - \overline{X}\right)^{2}}$$
 Equation 2

% Co. Variation:
$$\frac{S}{\overline{X}} \times 100$$
 Equation 3

Where *n* refers to the number of specimens in the sample

2.1.2 Statistics for Pooled Data

Prior to computing statistics for the pooled dataset, the data is normalized to a mean of one by dividing each value by the mean of all the data for that condition. This transformation does not affect the coefficients of variation for the individual conditions.

2.1.2.1 Pooled Standard Deviation

The formula to compute a pooled standard deviation is given below:

Pooled Std. Dev.
$$S_p = \sqrt{\frac{\displaystyle\sum_{i=1}^k \left(n_i - 1\right)S_i^2}{\displaystyle\sum_{i=1}^k \left(n_i - 1\right)}}$$
 Equation 4

Where k refers to the number of batches, S_i indicates the standard deviation of i^{th} sample, and n_i refers to the number of specimens in the i^{th} sample.

2.1.2.2 Pooled Coefficient of Variation

Since the mean for the normalized data is 1.0 for each condition, the pooled normalized data also has a mean of one. The coefficient of variation for the pooled normalized data is the pooled standard deviation divided by the pooled mean, as in equation 3. Since the mean for the pooled normalized data is one, the pooled coefficient of variation is equal to the pooled standard deviation of the normalized data.

Pooled Coefficient of Variation =
$$\frac{S_p}{1} = S_p$$
 Equation 5

2.1.3 Basis Value Computations

Basis values are computed using the mean and standard deviation for that environment, as follows: The mean is always the mean for the environment, but if the data meets all requirements for pooling, S_p can be used in place of the standard deviation for the environment, S.

Basis Values:
$$A-basis=\overline{X}-K_{a}S \\ B-basis=\overline{X}-K_{b}S$$
 Equation 6

2.1.3.1 K-factor computations

K_a and K_b are computed according to the methodology documented in section 8.3.5 of CMH-17 Rev G. The approximation formulas are given below:

$$K_{a} = \frac{2.3263}{\sqrt{q(f)}} + \sqrt{\frac{1}{c_{A}(f) \cdot n_{j}}} + \left(\frac{b_{A}(f)}{2c_{A}(f)}\right)^{2} - \frac{b_{A}(f)}{2c_{A}(f)}$$
 Equation 7
$$K_{b} = \frac{1.2816}{\sqrt{q(f)}} + \sqrt{\frac{1}{c_{B}(f) \cdot n_{j}}} + \left(\frac{b_{B}(f)}{2c_{B}(f)}\right)^{2} - \frac{b_{B}(f)}{2c_{B}(f)}$$
 Equation 8

Where

r = the number of environments being pooled together n_i = number of data values for environment j

$$N = \sum_{j=1}^{r} n_j$$
$$f = N - r$$

$$q(f) = 1 - \frac{2.323}{\sqrt{f}} + \frac{1.064}{f} + \frac{0.9157}{f\sqrt{f}} - \frac{0.6530}{f^2}$$
 Equation 9

$$b_{\scriptscriptstyle B}(f) = \frac{1.1372}{\sqrt{f}} - \frac{0.49162}{f} + \frac{0.18612}{f\sqrt{f}} \qquad \qquad \text{Equation 10}$$

$$c_{\scriptscriptstyle B}(f) = 0.36961 + \frac{0.0040342}{\sqrt{f}} - \frac{0.71750}{f} + \frac{0.19693}{f\sqrt{f}} \qquad \qquad \text{Equation 11}$$

$$b_{\scriptscriptstyle A}(f) = \frac{2.0643}{\sqrt{f}} - \frac{0.95145}{f} + \frac{0.51251}{f\sqrt{f}} \qquad \qquad \text{Equation 12}$$

$$c_{\scriptscriptstyle A}(f) = 0.36961 + \frac{0.0026958}{\sqrt{f}} - \frac{0.65201}{f} + \frac{0.011320}{f\sqrt{f}} \qquad \qquad \text{Equation 13}$$

2.1.4 Modified Coefficient of Variation

The coefficient of variation is modified according to the following rules:

This is converted to percent by multiplying by 100%.

CV* is used to compute a modified standard deviation S*.

$$S^* = CV^* \cdot \overline{X}$$
 Equation 15

To compute the pooled standard deviation based on the modified CV:

$$S_{p}^{*} = \sqrt{\frac{\sum_{i=1}^{k} \left((n_{i} - 1) \left(CV_{i}^{*} \cdot \overline{X}_{i} \right)^{2} \right)}{\sum_{i=1}^{k} (n_{i} - 1)}}$$
 Equation 16

The A-basis and B-basis values under the assumption of the modified CV method are computed by replacing S with S*.

2.1.4.1 Transformation of data based on Modified CV

In order to determine if the data would pass the diagnostic tests under the assumption of the modified CV, the data must be transformed such that the batch means remain the same while the standard deviation of transformed data (all batches) matches the modified standard deviation.

To accomplish this requires a transformation in two steps:

Step 1: Apply the modified CV rules to each batch and compute the modified standard deviation $S_i^* = CV^* \cdot \overline{X}_i$ for each batch. Transform the data in each batch as follows:

$$X'_{ij} = C_i \left(X_{ij} - \overline{X}_i \right) + \overline{X}_i$$
 Equation 17

$$C_i = \frac{S_i^*}{S_i}$$
 Equation 18

Run the Anderson-Darling k-sample test for batch equivalence (see section 2.1.6) on the transformed data. If it passes, proceed to step 2. If not, stop. The data cannot be pooled.

Step 2: Another transformation is needed as applying the modified CV to each batch leads to a larger CV for the combined data than when applying the modified CV rules to the combined data (due to the addition of between batch variation when combining data from multiple batches). In order to alter the data to match S*, the transformed data is transformed again, this time setting using the same value of C' for all batches.

$$X_{ij}'' = C' \left(X_{ij}' - \overline{X}_i \right) + \overline{X}_i$$
 Equation 19
$$C' = \sqrt{\frac{SSE^*}{SSE'}}$$
 Equation 20
$$SSE^* = (n-1) \left(CV^* \cdot \overline{X} \right)^2 - \sum_{i=1}^k n_i \left(\overline{X}_i - \overline{X} \right)^2$$
 Equation 21
$$SSE' = \sum_{i=1}^k \sum_{j=1}^{n_i} \left(X_{ij}' - \overline{X}_i \right)^2$$
 Equation 22

Once this second transformation has been completed, the k-sample Anderson Darling test for batch equivalence can be run on the transformed data to determine if the modified co-efficient of variation will permit pooling of the data.

2.1.5 Determination of Outliers

Outliers are identified using the Maximum Normed Residual Test for Outliers as specified in section 8.3.3 of CMH-17 Rev G.

$$MNR = \frac{\max\limits_{all\ i}\left|X_i - \overline{X}\right|}{S}, \ i = 1...n$$
 Equation 23
$$C = \frac{n-1}{\sqrt{n}}\sqrt{\frac{t^2}{n-2+t^2}}$$
 Equation 24

where t is the $1-\frac{.05}{2n}$ quartile of a t distribution with n-2 degrees of freedom.

If MNR > C, then the X_i associated with the MNR is considered to be an outlier. If an outlier exists, then the X_i associated with the MNR is dropped from the dataset and the MNR procedure is applied again. This process is repeated until no outliers are detected. Additional information on this procedure can be found in references 1 and 2.

2.1.6 The k-Sample Anderson Darling Test for batch equivalency

The k-sample Anderson-Darling test is a nonparametric statistical procedure that tests the hypothesis that the populations from which two or more groups of data were drawn are identical. The distinct values in the combined data set are ordered from smallest to largest, denoted $z_{(l)}$, $z_{(2)}$, ... $z_{(L)}$, where L will be less than n if there are tied observations. These rankings are used to compute the test statistic.

The k-sample Anderson-Darling test statistic is:

$$ADK = \frac{n-1}{n^{2}(k-1)} \sum_{i=1}^{k} \left[\frac{1}{n_{i}} \sum_{j=1}^{L} h_{j} \frac{\left(nF_{ij} - n_{i}H_{j}\right)^{2}}{H_{j}\left(n - H_{j}\right) - \frac{nh_{j}}{4}} \right]$$
 Equation 25

Where

 n_i = the number of test specimens in each batch

 $n = n_1 + n_2 + ... + n_k$

 h_j = the number of values in the combined samples equal to $z_{(j)}$

 H_j = the number of values in the combined samples less than $z_{(j)}$ plus ½ the number of values in the combined samples equal to $z_{(j)}$

 F_{ij} = the number of values in the i^{th} group which are less than $z_{(j)}$ plus ½ the number of values in this group which are equal to $z_{(j)}$.

The critical value for the test statistic at $1-\alpha$ level is computed:

$$ADC = 1 + \sigma_n \left[z_\alpha + \frac{0.678}{\sqrt{k-1}} - \frac{0.362}{k-1} \right].$$
 Equation 26

This formula is based on the formula in reference 3 at the end of section 5, using a Taylor's expansion to estimate the critical value via the normal distribution rather than using the t distribution with k-1 degrees of freedom.

$$\sigma_n^2 = VAR(ADK) = \frac{an^3 + bn^2 + cn + d}{(n-1)(n-2)(n-3)(k-1)^2}$$
 Equation 27

With

$$a = (4g - 6)(k - 1) + (10 - 6g)S$$

$$b = (2g - 4)k^{2} + 8Tk + (2g - 14T - 4)S - 8T + 4g - 6$$

$$c = (6T + 2g - 2)k^{2} + (4T - 4g + 6)k + (2T - 6)S + 4T$$

$$d = (2T + 6)k^{2} - 4Tk$$

$$S = \sum_{i=1}^{k} \frac{1}{n_{i}}$$

$$T = \sum_{i=1}^{n-1} \frac{1}{i}$$

$$g = \sum_{i=1}^{n-2} \sum_{j=i+1}^{n-1} \frac{1}{(n-i)j}$$

The data is considered to have failed this test (i.e. the batches are not from the same population) when the test statistic is greater than the critical value. For more information on this procedure, see reference 3.

2.1.7 The Anderson Darling Test for Normality

Normal Distribution: A two parameter (μ, σ) family of probability distributions for which the probability that an observation will fall between a and b is given by the area under the curve between a and b:

$$F(x) = \int_a^b \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} dx$$
 Equation 28

A normal distribution with parameters (μ, σ) has population mean μ and variance σ^2 .

The normal distribution is considered by comparing the cumulative normal distribution function that best fits the data with the cumulative distribution function of the data. Let

$$z_{(i)} = \frac{\overline{x}_{(i)} - \overline{x}}{s}$$
, for $i = 1,...,n$ Equation 29

where $x_{(i)}$ is the smallest sample observation, \overline{x} is the sample average, and s is the sample standard deviation.

The Anderson Darling test statistic (AD) is:

$$AD = \sum_{i=1}^{n} \frac{1-2i}{n} \left\{ \ln \left[F_0(z_{(i)}) \right] + \ln \left[1 - F_0\left(z_{(n+1-i)}\right) \right] \right\} - n$$
 Equation 30

Where F₀ is the standard normal distribution function. The observed significance level (OSL) is

$$OSL = \frac{1}{1 + e^{-0.48 + 0.78 \ln(AD^*) + 4.58 AD^*}}, \quad AD^* = \left(1 + \frac{0.2}{\sqrt{n}}\right) AD$$
 Equation 31

This OSL measures the probability of observing an Anderson-Darling statistic at least as extreme as the value calculated if, in fact, the data are a sample from a normal population. If OSL > 0.05, the data is considered sufficiently close to a normal distribution.

2.1.8 Levene's test for Equality of Coefficient of Variation

Levene's test performs an Analysis of Variance on the absolute deviations from their sample medians. The absolute value of the deviation from the median is computed for each data value. $w_{ij} = |y_{ij} - \tilde{y}_i|$ An F-test is then performed on the transformed data values as follows:

$$F = \frac{\sum_{i=1}^{k} n_i (\overline{w}_i - \overline{w})^2 / (k-1)}{\sum_{i=1}^{k} \sum_{i=1}^{n_i} i (w_{ij} - \overline{w}_i)^2 / (n-k)}$$
 Equation 32

If this computed F statistic is less than the critical value for the F-distribution having k-1 numerator and n-k denominator degrees of freedom at the 1- α level of confidence, then the data is not rejected as being too different in terms of the co-efficient of variation. ASAP provides the appropriate critical values for F at α levels of 0.10, 0.05, 0.025, and 0.01. For more information on this procedure, see references 4, and 5.

2.2 STAT-17

This section contains the details of the specific formulas STAT-17 uses in its computations.

The basic descriptive statistics, the maximum normed residual (MNR) test for outliers, and the Anderson Darling K-sample test for batch variability are the same as with ASAP – see sections 2.1.1, 2.1.3.1, and 2.1.5.

Outliers must be dispositioned before checking any other test results. The results of the Anderson Darling k-Sample (ADK) Test for batch equivalency must be checked. If the data passes the ADK test, then the appropriate distribution is determined. If it does not pass the ADK test, then the ANOVA procedure is the only approach remaining that will result in basis values that meet the requirements of CMH-17 Rev G.

2.2.1 Distribution tests

In addition to testing for normality using the Anderson-Darling test (see 2.1.7); Stat17 also tests to see if the Weibull or Lognormal distribution is a good fit for the data.

Each distribution is considered using the Anderson-Darling test statistic which is sensitive to discrepancies in the tail regions. The Anderson-Darling test compares the cumulative distribution function for the distribution of interest with the cumulative distribution function of the data.

An observed significance level (OSL) based on the Anderson-Darling test statistic is computed for each test. The OSL measures the probability of observing an Anderson-Darling test statistic at least as extreme as the value calculated if the distribution under consideration is in fact the underlying distribution of the data. In other words, the OSL is the probability of obtaining a value of the test statistic at least as large as that obtained if the hypothesis that the data are actually from the distribution being tested is true. If the OSL is less than or equal to 0.05, then the assumption that the data are from the distribution being tested is rejected with at most a five percent risk of being in error.

If the normal distribution has an OSL greater than 0.05, then the data is assumed to be from a population with a normal distribution. If not, then if either the Weibull or lognormal distributions has an OSL greater than 0.05, then one of those can be used. If neither of these distributions has an OSL greater than 0.05, a non-parametric approach is used.

In what follows, unless otherwise noted, the sample size is denoted by n, the sample observations by $x_1, ..., x_n$, and the sample observations ordered from least to greatest by $x_{(1)}, ..., x_{(n)}$.

2.2.2 Computing Normal Distribution Basis values

Stat17 uses a table of values for the k-factors (shown in Table 2-1) and a slightly different formula than ASAP to compute approximate k-values for the normal distribution when the sample size is larger than 15.

Norm. Dis	st. k Factors	for N<16
N	B-basis	A-basis
2	20.581	37.094
3	6.157	10.553
4	4.163	7.042
5	3.408	5.741
6	3.007	5.062
7	2.756	4.642
8	2.583	4.354
9	2.454	4.143
10	2.355	3.981
11	2.276	3.852
12	2.211	3.747
13	2.156	3.659
14	2.109	3.585
15	2.069	3.520

Table 2-1: K factors for normal distribution

2.2.2.1 One-sided B-basis tolerance factors, k_B , for the normal distribution when sample size is greater than 15.

The exact computation of k_B values is $1/\sqrt{n}$ times the 0.95th quantile of the noncentral t-distribution with noncentrality parameter $1.282\sqrt{n}$ and n-1 degrees of freedom. Since this in not a calculation that Excel can handle, the following approximation to the k_B values is used:

$$k_R \approx 1.282 + \exp\{0.958 - 0.520 \ln(n) + 3.19/n\}$$

Equation 33

This approximation is accurate to within 0.2% of the tabulated values for sample sizes greater than or equal to 16.

2.2.2.2 One-sided A-basis tolerance factors, k_A , for the normal distribution

The exact computation of k_B values is $1/\sqrt{n}$ times the 0.95th quantile of the noncentral t-distribution with noncentrality parameter $2.326\sqrt{n}$ and n-1 degrees of freedom (Reference 11). Since this is not a calculation that Excel can handle easily, the following approximation to the k_B values is used:

$$k_A \approx 2.326 + \exp\{1.34 - 0.522\ln(n) + 3.87/n\}$$

Equation 34

This approximation is accurate to within 0.2% of the tabulated values for sample sizes greater than or equal to 16.

2.2.2.3 Two-parameter Weibull Distribution

A probability distribution for which the probability that a randomly selected observation from this population lies between a and b ($0 < a < b < \infty$) is given by

$$e^{-(a/\alpha)^{\beta}} - e^{-(b/\alpha)^{\beta}}$$
 Equation 35

where α is called the scale parameter and β is called the shape parameter.

In order to compute a check of the fit of a data set to the Weibull distribution and compute basis values assuming Weibull, it is first necessary to obtain estimates of the population shape and scale parameters (Section 2.2.2.3.1). Calculations specific to the goodness-of-fit test for the Weibull distribution are provided in section 2.2.2.3.2.

2.2.2.3.1 Estimating Weibull Parameters

This section describes the *maximum likelihood* method for estimating the parameters of the two-parameter Weibull distribution. The maximum-likelihood estimates of the shape and scale parameters are denoted $\hat{\beta}$ and $\hat{\alpha}$. The estimates are the solution to the pair of equations:

$$\hat{\alpha}\hat{\beta}n - \frac{\hat{\beta}}{\hat{\alpha}\hat{\beta}-1}\sum_{i=1}^{n}x_{i}^{\hat{\beta}} = 0$$
 Equation 36

$$\frac{n}{\hat{\beta}} - n \ln \hat{\alpha} + \sum_{i=1}^{n} \ln x_i - \sum_{i=1}^{n} \left[\frac{x_i}{\hat{\alpha}} \right]^{\hat{\beta}} \left(\ln x_i - \ln \hat{\alpha} \right) = 0$$
 Equation 37

Stat17 solves these equations numerically for $\hat{\beta}$ and $\hat{\alpha}$ in order to compute basis values.

2.2.2.3.2 Goodness-of-fit test for the Weibull distribution

The two-parameter Weibull distribution is considered by comparing the cumulative Weibull distribution function that best fits the data with the cumulative distribution function of the data. Using the shape and scale parameter estimates from section 2.2.2.3.1, let

$$z_{(i)} = \left[x_{(i)}/\hat{\alpha}\right]^{\hat{\beta}}, \quad for \ i = 1,...,n$$
 Equation 38

The Anderson-Darling test statistic is

AD =
$$\sum_{i=1}^{n} \frac{1-2i}{n} \left[\ln \left[1 - \exp(-z_{(i)}) \right] - z_{(n+1-i)} \right] - n$$
 Equation 39

and the observed significance level is

$$OSL = 1/\{1 + \exp[-0.10 + 1.24 \ln(AD^*) + 4.48 AD^*]\}$$
 Equation 40

where

$$AD^* = \left(1 + \frac{0.2}{\sqrt{n}}\right)AD$$
 Equation 41

This OSL measures the probability of observing an Anderson-Darling statistic at least as extreme as the value calculated if in fact the data is a sample from a two-parameter Weibull distribution. If $OSL \le 0.05$, one may conclude (at a five percent risk of being in error) that the population does not have a two-parameter Weibull distribution. Otherwise, the hypothesis that the population has a two-parameter Weibull distribution is not rejected. For further information on these procedures, see reference 6.

2.2.2.3.3 Basis value calculations for the Weibull distribution

For the two-parameter Weibull distribution, the B-basis value is

$$B=\hat{q}e^{\left(-V/\hat{eta}\sqrt{n}
ight)}$$
 Equation 42

where

$$\hat{q} = \hat{\alpha}(0.10536)^{1/\hat{\beta}}$$
 Equation 43

To calculate the A-basis value, substitute the equation below for the equation above.

$$\hat{\mathbf{q}} = \hat{\alpha}(0.01005)^{1/\beta}$$
 Equation 44

V is the value in Table 2-2 when the sample size is less than 16. For sample sizes of 16 or larger, a numerical approximation to the V values is given in the two equations immediately below.

$$V_B \approx 3.803 + \exp\left[1.79 - 0.516\ln(n) + \frac{5.1}{n-1}\right]$$
 Equation 45
 $V_A \approx 6.649 + \exp\left[2.55 - 0.526\ln(n) + \frac{4.76}{n}\right]$ Equation 46

This approximation is accurate within 0.5% of the tabulated values for n greater than or equal to 16.

Weibull Dis	st. K Factors	for N<16
N	B-basis	A-basis
2	690.804	1284.895
3	47.318	88.011
4	19.836	36.895
5	13.145	24.45
6	10.392	19.329
7	8.937	16.623
8	8.047	14.967
9	7.449	13.855
10	6.711	12.573
11	6.477	12.093
12	6.286	11.701
13	6.127	11.375
14	5.992	11.098
15	5.875	10.861

Table 2-2: Weibull Distribution Basis Value Factors

2.2.2.4 Lognormal Distribution

A probability distribution for which the probability that an observation selected at random from this population falls between a and b $(0 < a < b < \infty)$ is given by the area under the normal distribution between $\ln(a)$ and $\ln(b)$.

The lognormal distribution is a positively skewed distribution that is simply related to the normal distribution. If something is lognormally distributed, then its logarithm is normally distributed. The natural (base e) logarithm is used.

2.2.2.4.1 Goodness-of-fit test for the Lognormal distribution

In order to test the goodness-of-fit of the lognormal distribution, take the logarithm of the data and perform the Anderson-Darling test for normality from Section 2.1.7. Using the natural logarithm, replace the linked equation above with linked equation below:

$$z_{(i)} = \frac{\ln(\overline{x}_{(i)}) - \overline{x}_L}{s_L}, \quad \text{for } i = 1,...,n$$
 Equation 47

where $x_{(i)}$ is the ith smallest sample observation, \overline{x}_L and s_L are the mean and standard deviation of the $ln(x_i)$ values.

The Anderson-Darling statistic is then computed using the linked equation above and the observed significance level (OSL) is computed using the linked equation above. This OSL measures the probability of observing an Anderson-Darling statistic at least as extreme as the value calculated if in fact the data are a sample from a lognormal distribution. If OSL \leq 0.05, one may conclude (at a five percent risk of being in error) that the population is not lognormally distributed. Otherwise, the hypothesis that the population is lognormally distributed is not rejected. For further information on these procedures, see reference 6.

2.2.2.4.2 Basis value calculations for the Lognormal distribution

If the data set is assumed to be from a population with a lognormal distribution, basis values are calculated using the equation above in section 2.1.3. However, the calculations are performed using the logarithms of the data rather than the original observations. The computed basis values are then be transformed back to the original units by applying the inverse of the log transformation.

2.2.3 Non-parametric Basis Values

Non-parametric techniques do not assume any particularly underlying distribution for the population the sample comes from. It does require that the batches be similar enough to be grouped together, so the ADK test must have a positive result. While it can be used instead of assuming the normal, lognormal or Weibull distribution, it typically results in lower basis values. One of following two methods should be used, depending on the sample size.

2.2.3.1 Non-parametric Basis Values for large samples

The required sample sizes for this ranking method differ for A and B basis values. A sample size of at least 29 is needed for the B-basis value while a sample size of 299 is required for the A-basis.

To calculate a B-basis value for n > 28, the value of r is determined with the following formulas:

For B-basis values:

$$r_B = \frac{n}{10} - 1.645 \sqrt{\frac{9n}{100}} + 0.23$$
 Equation 48

For A-Basis values:

$$r_A = \frac{n}{100} - 1.645 \sqrt{\frac{99n}{10,000}} + 0.29 + \frac{19.1}{n}$$
 Equation 49

The formula for the A-basis values should be rounded to the nearest integer. This approximation is exact for most values and for a small percentage of values (less than 0.2%), the approximation errs by one rank on the conservative side.

The B-basis value is the r_B^{th} lowest observation in the data set, while the A-basis values are the r_A^{th} lowest observation in the data set. For example, in a sample of size n = 30, the lowest (r = 1) observation is the B-basis value. Further information on this procedure may be found in reference 7.

2.2.4 Non-parametric Basis Values for small samples

The Hanson-Koopmans method (references 8 and 9) is used for obtaining a B-basis value for sample sizes not exceeding 28 and A-basis values for sample sizes less than 299. This procedure requires the assumption that the observations are a random sample from a population for which the logarithm of the cumulative distribution function is concave, an assumption satisfied by a large class of probability distributions. There is substantial empirical evidence that suggests that composite strength data satisfies this assumption.

The Hanson-Koopmans B-basis value is:

$$B = x_{(r)} \left[\frac{x_{(1)}}{x_{(r)}} \right]^k$$
 Equation 50

The A-basis value is:

$$A = x_{(n)} \left[\frac{x_{(1)}}{x_{(n)}} \right]^k$$
 Equation 51

where $x_{(n)}$ is the largest data value, $x_{(1)}$ is the smallest, and $x_{(r)}$ is the r^{th} largest data value. The values of r and k depend on n and are listed in Table 2-3. This method is not used for the B-basis value when $x_{(r)} = x_{(1)}$.

The Hanson-Koopmans method can be used to calculate A-basis values for n less than 299. Find the value k_A corresponding to the sample size n in Table 2-4. For a publishable A-basis value according to CMH-17 Rev G, there must be at least five batches represented in the data and at least 55 data points. For a B-basis value, there must be at least three batches represented in the data and at least 18 data points.

n r k 2 2 35.1 3 3 7.8 4 4 4.5 5 4 4.1 6 5 3.0 7 5 2.8 8 6 2.3 9 6 2.2 10 6 2.1 11 7 1.8 12 7 1.8 13 7 1.7 14 8 1.5 15 8 1.5 16 8 1.4 17 8 1.4 18 9 1.3 19 9 1.3	59 05 01 64 58 82 53 37
4 4 4.5 5 4 4.1 6 5 3.0 7 5 2.8 8 6 2.3 9 6 2.2 10 6 2.1 11 7 1.8 12 7 1.8 13 7 1.7 14 8 1.5 15 8 1.5 16 8 1.4 17 8 1.4 18 9 1.3	59 05 01 64 58 82 53 37
4 4 4.5 5 4 4.1 6 5 3.0 7 5 2.8 8 6 2.3 9 6 2.2 10 6 2.1 11 7 1.8 12 7 1.8 13 7 1.7 14 8 1.5 15 8 1.5 16 8 1.4 17 8 1.4 18 9 1.3	05 01 64 58 82 53 37
6 5 3.0 7 5 2.8 8 6 2.3 9 6 2.2 10 6 2.1 11 7 1.8 12 7 1.8 13 7 1.7 14 8 1.5 15 8 1.5 16 8 1.4 17 8 1.4 18 9 1.3	01 64 82 53 37
6 5 3.0 7 5 2.8 8 6 2.3 9 6 2.2 10 6 2.1 11 7 1.8 12 7 1.8 13 7 1.7 14 8 1.5 15 8 1.5 16 8 1.4 17 8 1.4 18 9 1.3	64 58 82 53 37 97
8 6 2.3 9 6 2.2 10 6 2.1 11 7 1.8 12 7 1.8 13 7 1.7 14 8 1.5 15 8 1.5 16 8 1.4 17 8 1.4 18 9 1.3	58 82 53 37 97
8 6 2.3 9 6 2.2 10 6 2.1 11 7 1.8 12 7 1.8 13 7 1.7 14 8 1.5 15 8 1.5 16 8 1.4 17 8 1.4 18 9 1.3	58 82 53 37 97
8 6 2.3 9 6 2.2 10 6 2.1 11 7 1.8 12 7 1.8 13 7 1.7 14 8 1.5 15 8 1.5 16 8 1.4 17 8 1.4 18 9 1.3	53 37 97
10 6 2.1 11 7 1.8 12 7 1.8 13 7 1.7 14 8 1.5 15 8 1.5 16 8 1.4 17 8 1.4 18 9 1.3	37 97
12 7 1.8 13 7 1.7 14 8 1.5 15 8 1.5 16 8 1.4 17 8 1.4 18 9 1.3	37 97
12 7 1.8 13 7 1.7 14 8 1.5 15 8 1.5 16 8 1.4 17 8 1.4 18 9 1.3	97
12 7 1.8 13 7 1.7 14 8 1.5 15 8 1.5 16 8 1.4 17 8 1.4 18 9 1.3	4 4
14 8 1.5 15 8 1.5 16 8 1.4 17 8 1.4 18 9 1.3	14
14 8 1.5 15 8 1.5 16 8 1.4 17 8 1.4 18 9 1.3	38
15 8 1.5 16 8 1.4 17 8 1.4 18 9 1.3	99
16 8 1.4 17 8 1.4 18 9 1.3	40
18 9 1.3	85
18 9 1.3	34
19 9 1.3	54
	11
20 10 1.2	53
21 10 1.2	18
l 22 10 1.1	84
23 11 1.1	43
24 11 1.1	14
25 11 1.0	87
26 11 1.0	60
27 11 1.0	
28 12 1.0	10

Table 2-3: B-Basis Hanson-Koopmans Table

n k n k n k 2 80.00380 38 1.79301 96 1.3232 3 16.91220 39 1.77546 98 1.3155 4 9.49579 40 1.75868 100 1.3080 5 6.89049 41 1.74260 105 1.2903 6 5.57681 42 1.72718 110 1.2739 7 4.78352 43 1.71239 115 1.2585 8 4.25011 44 1.69817 120 1.2442 9 3.86502 45 1.68449 125 1.2308 10 3.57267 46 1.67132 130 1.2181 11 3.34227 47 1.65862 135 1.2062	2 3 4 5 6 7
3 16.91220 39 1.77546 98 1.3155 4 9.49579 40 1.75868 100 1.3080 5 6.89049 41 1.74260 105 1.2903 6 5.57681 42 1.72718 110 1.2739 7 4.78352 43 1.71239 115 1.2585 8 4.25011 44 1.69817 120 1.2442 9 3.86502 45 1.68449 125 1.2308 10 3.57267 46 1.67132 130 1.2181 11 3.34227 47 1.65862 135 1.2062	3 4 5 6 7
4 9.49579 40 1.75868 100 1.3080 5 6.89049 41 1.74260 105 1.2903 6 5.57681 42 1.72718 110 1.2738 7 4.78352 43 1.71239 115 1.2585 8 4.25011 44 1.69817 120 1.2442 9 3.86502 45 1.68449 125 1.2308 10 3.57267 46 1.67132 130 1.2181 11 3.34227 47 1.65862 135 1.2062	4 5 6 7
5 6.89049 41 1.74260 105 1.2903 6 5.57681 42 1.72718 110 1.2739 7 4.78352 43 1.71239 115 1.2585 8 4.25011 44 1.69817 120 1.2442 9 3.86502 45 1.68449 125 1.2308 10 3.57267 46 1.67132 130 1.2181 11 3.34227 47 1.65862 135 1.2062	5 6 7
6 5.57681 42 1.72718 110 1.2739 7 4.78352 43 1.71239 115 1.2585 8 4.25011 44 1.69817 120 1.2442 9 3.86502 45 1.68449 125 1.2308 10 3.57267 46 1.67132 130 1.2181 11 3.34227 47 1.65862 135 1.2062	6 7
7 4.78352 43 1.71239 115 1.2585 8 4.25011 44 1.69817 120 1.2442 9 3.86502 45 1.68449 125 1.2308 10 3.57267 46 1.67132 130 1.2181 11 3.34227 47 1.65862 135 1.2062	7
8 4.25011 44 1.69817 120 1.2442 9 3.86502 45 1.68449 125 1.2308 10 3.57267 46 1.67132 130 1.2181 11 3.34227 47 1.65862 135 1.2062	
9 3.86502 45 1.68449 125 1.2308 10 3.57267 46 1.67132 130 1.2181 11 3.34227 47 1.65862 135 1.2062	8
10 3.57267 46 1.67132 130 1.2181 11 3.34227 47 1.65862 135 1.2062	Ü
11 3.34227 47 1.65862 135 1.2062	9
	12
13 3.00033 49 1.63456 145 1.1842	
14 2.86924 50 1.62313 150 1.1740	
15 2.75672 52 1.60139 155 1.164 ⁴	15
16 2.65889 54 1.58101 160 1.1551	16
17 2.57290 56 1.56184 165 1.1464	17
18 2.49660 58 1.54377 170 1.1380	18
19 2.42833 60 1.52670 175 1.1299	19
20 2.36683 62 1.51053 180 1.1222	20
21 2.31106 64 1.49520 185 1.1148	21
22 2.26020 66 1.48063 190 1.1077	22
23 2.21359 68 1.46675 195 1.1009	23
24 2.17067 70 1.45352 200 1.0943	24
25 2.13100 72 1.44089 205 1.0879	25
26 2.09419 74 1.42881 210 1.0818	26
27 2.05991 76 1.41724 215 1.0759	27
28 2.02790 78 1.40614 220 1.0702	28
29 1.99791 80 1.39549 225 1.0647	29
30 1.96975 82 1.38525 230 1.0593	30
31 1.94324 84 1.37541 235 1.0541	31
32 1.91822 86 1.36592 240 1.0491	32
33 1.89457 88 1.35678 245 1.0442	33
34 1.87215 90 1.34796 250 1.0395	34
35 1.85088 92 1.33944 275 1.0177	35
36 1.83065 94 1.33120 299 1.0000	36
37 1.81139	37

Table 2-4: A-Basis Hanson-Koopmans Table

2.2.5 Analysis of Variance (ANOVA) Basis Values

ANOVA is used to compute basis values when the batch to batch variability of the data does not pass the ADK test. Since ANOVA makes the assumption that the different batches have equal variances, the data is checked to make sure the assumption is valid. Levene's test for equality of variance is used (see section 2.1.8). If the dataset fails Levene's test, the basis values computed are likely to be conservative. Thus this method can still be used but the values produced will be listed as estimates.

2.2.5.1 Calculation of basis values using ANOVA

The following calculations address batch-to-batch variability. In other words, the only grouping is due to batches and the k-sample Anderson-Darling test (Section 2.1.6) indicates that the batch to batch variability is too large to pool the data. The method is based on the one-way analysis of variance random-effects model, and the procedure is documented in reference 10.

ANOVA separates the total variation (called the sum of squares) of the data into two sources: between batch variation and within batch variation.

First, statistics are computed for each batch, which are indicated with a subscript $(n_i, \overline{x}_i, s_i^2)$ while statistics that were computed with the entire dataset do not have a subscript. Individual data values are represented with a double subscript, the first number indicated the batch and the second distinguishing between the individual data values within the batch. k stands for the number of batches in the analysis. With these statistics, the Sum of Squares Between batches (SSB) and the Total Sum of Squares (SST) are computed:

$$SSB = \sum_{i=1}^{k} n_i \overline{x}_I^2 - n \overline{x}^2$$
 Equation 52

$$SST = \sum_{i=1}^{k} \sum_{j=1}^{n_i} x_{ij}^2 - n \overline{x}^2$$
 Equation 53

The within-batch, or error, sum of squares (SSE) is computed by subtraction

$$SSE = SST - SSB$$
 Equation 54

Next, the mean sums of squares are computed:

$$MSB = \frac{SSB}{k-1}$$
 Equation 55
$$MSE = \frac{SSE}{n-k}$$
 Equation 56

Since the batches need not have equal numbers of specimens, an 'effective batch size,' is defined as

$$n' = \frac{n - \frac{1}{n} \sum_{i=1}^{k} n_i^2}{k - 1}$$
 Equation 57

Using the two mean squares and the effective batch size, an estimate of the population standard deviation is computed:

$$S = \sqrt{\frac{MSB}{n'} + \left(\frac{n' - 1}{n'}\right)MSE}$$
 Equation 58

Two k-factors are computed using the methodology of section 2.2.2 using a sample size of n (denoted k_0) and a sample size of k (denoted k_1). Whether this value is an A- or B-basis value depends only on whether k_0 and k_1 are computed for A or B-basis values.

Denote the ratio of mean squares by

$$u = \frac{MSB}{MSE}$$
 Equation 59

If u is less than one, it is set equal to one. The tolerance limit factor is

$$T = \frac{k_0 - \frac{k_1}{\sqrt{n'}} + (k_1 - k_0)\sqrt{\frac{u}{u + n' - 1}}}{1 - \frac{1}{\sqrt{n'}}}$$
 Equation 60

The basis value is $\overline{x} - TS$.

The ANOVA method can produce extremely conservative basis values when a small number of batches are available. Therefore, when less than five (5) batches are available and the ANOVA method is used, the basis values produced will be listed as estimates.

2.3 Single Batch and Two Batch Estimates using Modified CV

This method has not been approved for use by the CMH-17 organization. Values computed in this manner are estimates only. It is used only when fewer than three batchs are available and no valid B-basis value could be computed using any other method. The estimate is made using the mean of the data and setting the coefficient of variation to 8 percent if it was less than that. A modified standard deviation (S_{adj}) was computed by multiplying the mean by 0.08 and computing the A and B-basis values using this inflated value for the standard deviation.

Estimated B-Basis =
$$\overline{X} - k_b S_{adj} = \overline{X} - k_b \cdot 0.08 \cdot \overline{X}$$
 Equation 61

2.4 Lamina Variability Method (LVM)

This method has not been approved for use by the CMH-17 organization. Values computed in this manner are estimates only. It is used only when the sample size is less than 16 and no valid B-basis value could be computed using any other method. The prime assumption for applying the LVM is that the intrinsic strength variability of the laminate (small) dataset is no greater than the strength variability of the lamina (large) dataset. This assumption was tested and found to be reasonable for composite materials as documented by Tomblin and Seneviratne [12].

To compute the estimate, the coefficients of variation (CVs) of laminate data are paired with lamina CV's for the same loading condition and environmental condition. For example, the 0° compression lamina CV CTD condition is used with open hole compression CTD condition. Bearing and in-plane shear laminate CV's are paired with 0° compression lamina CV's. However,

if the laminate CV is larger than the corresponding lamina CV, the larger laminate CV value is used.

The LVM B-basis value is then computed as:

LVM Estimated B-Basis =
$$\overline{X}_1 - K_{(N_1,N_2)} \cdot \overline{X}_1 \cdot \max(CV_1,CV_2)$$
 Equation 62

When used in conjunction with the modified CV approach, a minimum value of 8% is used for the CV.

 $\begin{tabular}{ll} \begin{tabular}{ll} \be$

 \overline{X}_1 the mean of the laminate (small dataset)

N₁ the sample size of the laminate (small dataset)

N₂ the sample size of the lamina (large dataset)

CV₂ is the coefficient of variation of the lamina (large dataset)

 $K_{(N_1,N_2)}$ is given in Table 2-5

	1	N1													
		2	3	4	5	6	7	8	9	10	11	12	13	14	15
	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	3	4.508	0	0	0	0	0	0	0	0	0	0	0	0	0
	4	3.827	3.607	0	0	0	0	0	0	0	0	0	0	0	0
l [5	3.481	3.263	3.141	0	0	0	0	0	0	0	0	0	0	0
l [6	3.273	3.056	2.934	2.854	0	0	0	0	0	0	0	0	0	0
l [7	3.134	2.918	2.796	2.715	2.658	0	0	0	0	0	0	0	0	0
l [8	3.035	2.820	2.697	2.616	2.558	2.515	0	0	0	0	0	0	0	0
l [9	2.960	2.746	2.623	2.541	2.483	2.440	2.405	0	0	0	0	0	0	0
1 [10	2.903	2.688	2.565	2.484	2.425	2.381	2.346	2.318	0	0	0	0	0	0
l [11	2.856	2.643	2.519	2.437	2.378	2.334	2.299	2.270	2.247	0	0	0	0	0
1 [12	2.819	2.605	2.481	2.399	2.340	2.295	2.260	2.231	2.207	2.187	0	0	0	0
l [13	2.787	2.574	2.450	2.367	2.308	2.263	2.227	2.198	2.174	2.154	2.137	0	0	0
1 [14	2.761	2.547	2.423	2.341	2.281	2.236	2.200	2.171	2.147	2.126	2.109	2.093	0	0
	15	2.738	2.525	2.401	2.318	2.258	2.212	2.176	2.147	2.123	2.102	2.084	2.069	2.056	0
	16	2.719	2.505	2.381	2.298	2.238	2.192	2.156	2.126	2.102	2.081	2.063	2.048	2.034	2.022
	17	2.701	2.488	2.364	2.280	2.220	2.174	2.138	2.108	2.083	2.062	2.045	2.029	2.015	2.003
	18	2.686	2.473	2.348	2.265	2.204	2.158	2.122	2.092	2.067	2.046	2.028	2.012	1.999	1.986
	19	2.673	2.459	2.335	2.251	2.191	2.144	2.108	2.078	2.053	2.032	2.013	1.998	1.984	1.971
	20	2.661	2.447	2.323	2.239	2.178	2.132	2.095	2.065	2.040	2.019	2.000	1.984	1.970	1.958
N1+N2-2	21	2.650	2.437	2.312	2.228	2.167	2.121	2.084	2.053	2.028	2.007	1.988	1.972	1.958	1.946
NITINZ-Z	22	2.640	2.427	2.302	2.218	2.157	2.110	2.073	2.043	2.018	1.996	1.978	1.962	1.947	1.935
	23	2.631	2.418	2.293	2.209	2.148	2.101	2.064	2.033	2.008	1.987	1.968	1.952	1.938	1.925
	24	2.623	2.410	2.285	2.201	2.139	2.092	2.055	2.025	1.999	1.978	1.959	1.943	1.928	1.916
	25	2.616	2.402	2.277	2.193	2.132	2.085	2.047	2.017	1.991	1.969	1.951	1.934	1.920	1.907
	26	2.609	2.396	2.270	2.186	2.125	2.078	2.040	2.009	1.984	1.962	1.943	1.927	1.912	1.900
	27	2.602	2.389	2.264	2.180	2.118	2.071	2.033	2.003	1.977	1.955	1.936	1.920	1.905	1.892
	28	2.597	2.383	2.258	2.174	2.112	2.065	2.027	1.996	1.971	1.949	1.930	1.913	1.899	1.886
	29	2.591	2.378	2.252	2.168	2.106	2.059	2.021	1.990	1.965	1.943	1.924	1.907	1.893	1.880
	30	2.586	2.373	2.247	2.163	2.101	2.054	2.016	1.985	1.959	1.937	1.918	1.901	1.887	1.874
	40	2.550	2.337	2.211	2.126	2.063	2.015	1.977	1.946	1.919	1.897	1.877	1.860	1.845	1.832
	50	2.528	2.315	2.189	2.104	2.041	1.993	1.954	1.922	1.896	1.873	1.853	1.836	1.820	1.807
	60	2.514	2.301	2.175	2.089	2.026	1.978	1.939	1.907	1.880	1.857	1.837	1.819	1.804	1.790
	70	2.504	2.291	2.164	2.079	2.016	1.967	1.928	1.896	1.869	1.846	1.825	1.808	1.792	1.778
	80	2.496	2.283	2.157	2.071	2.008	1.959	1.920	1.887	1.860	1.837	1.817	1.799	1.783	1.769
	90	2.491	2.277	2.151	2.065	2.002	1.953	1.913	1.881	1.854	1.830	1.810	1.792	1.776	1.762
	100	2.486	2.273	2.146	2.060	1.997	1.948	1.908	1.876	1.849	1.825	1.805	1.787	1.771	1.757
	125	2.478	2.264	2.138	2.051	1.988	1.939	1.899	1.867	1.839	1.816	1.795	1.777	1.761	1.747
	150	2.472	2.259	2.132	2.046	1.982	1.933	1.893	1.861	1.833	1.809	1.789	1.770	1.754	1.740
	175	2.468	2.255	2.128	2.042	1.978	1.929	1.889	1.856	1.828	1.805	1.784	1.766	1.750	1.735
	200	2.465	2.252	2.125	2.039	1.975	1.925	1.886	1.853	1.825	1.801	1.781	1.762	1.746	1.732
ahla 2-	. D D	! - £.	4	£	II -	-4	4		le : l	4 £			!!.a.a. I.a		-4

Table 2-5: B-Basis factors for small datasets using variability of corresponding large dataset

3. Summary Tables

The basis values for all tests are summarized in the following tables. The recommended B-basis values all meet the requirements of CMH-17 Rev G and are compiled in Table 3-1 and Table 3-2. However, not all test data meets those requirements. All B-basis values and B-estimates of basis values are shown in the Table 3-3 and Table 3-4. When the data does not meet the requirements of CMH-17 Rev G, the basis values are shown in shaded boxes and labeled as estimates. Basis values computed with the modified coefficient of variation (CV) are presented whenever possible. Basis values computed without that modification are presented for all tests. The modified CV basis values are recommended for use when available.

3.1 NCAMP Recommended B-basis Values

The following rules are used in determining what B-basis value, if any, is included in tables Table 3-1 and Table 3-2 of recommended values.

- 1. Recommended values are NEVER estimates. Only B-basis values that meet all requirements of CMH-17 Rev G are recommended.
- 2. Modified CV basis values are preferred. Recommended values will be the modified CV basis value when available. The CV provided with the recommended basis value will be the one used in the computation of the basis value.
- 3. Only normalized basis values are given for properties that are normalized.
- 4. ANOVA B-basis values are not recommended since only three batches of material are available and CMH-17 Rev G recommends that no less than five batches be used when computing basis values with the ANOVA method.
- 5. Caution is recommended with B-basis values calculated from STAT17 when the B-basis value is 90% or more of the average value. Basis values of 90% or more of the mean value imply that the CV is unusually low and may not be conservative. Such values will be indicated.
- 6. If the data appear questionable (e.g. when the CTD-RTD-ETW trend of the basis values are not consistent with the CTD-RTD-ETW trend of the average values), then the B-basis values will not be recommended.

NCAMP Recommended B-basis Values for ACG - MTM45-1/ Style 6781 S2 Glass

All B-basis values in this table meet the standards for publication in CMH-17G Handbook Values are for normalized data unless otherwise noted

Lamina Strength Tests

	Ī						IP	S*		
Environment	Statistic	WT	WC	FT	FC	SBS*	0.2% Offset	5% Strain		
	B-basis	84.675	92.394	79.525	78.047	10.925	6.402	10.856		
CTD (-65°F)	Mean	92.341	102.884	90.056	85.807	12.510	7.250	12.293		
	CV	6.000	7.362	6.000	6.975	6.339	6.000	6.000		
	B-basis	73.792	72.942	NA:A	61.268	8.791	4.808	8.090		
RTD (75°F)	Mean	81.458	83.433	80.501	69.072	9.789	5.445	9.161		
	CV	6.000	6.885	4.733	6.864	6.490	6.000	6.000		
	B-basis				51.982	6.836				
ETD (200°F)	Mean				59.702	7.876				
	CV				8.118	6.779				
	B-basis	49.997	47.798	NA:A	39.962	6.064	2.981	4.977		
ETW (200°F)	Mean	57.663	58.289	57.225	47.865	6.577	3.376	5.636		
	CV	6.000	7.029	4.002	6.002	6.280	6.000	6.000		
	B-basis	49.845	NA:A	49.057	33.189	4.486	2.353	4.034		
ETW2 (250°F)	Mean	57.511	50.971	55.319	41.092	5.140	2.665	4.569		
	CV	6.000	9.214	6.000	6.648	6.528	6.000	6.000		

Notes: The modified CV B-basis value is recommended when available.

The CV provided corresponds with the B-basis value given.

NA implies that tests were run but data did not meet NCAMP recommended requirements.

"NA: A" indicates ANOVA with 3 batches, "NA: I" indicates insufficient data,

Shaded empty boxes indicate that no test data is available for that property and condition.

Table 3-1: NCAMP recommended B-basis values for lamina test data

^{*} Data is as measured rather than normalized

^{**} indicates the Stat17 B-basis value is greater than 90% of the mean value.

NCAMP Recommended B-basis Values for ACG - MTM45-1/ Style 6781 S2 Glass

All B-basis values in this table meet the standards for publication in CMH-17G Handbook Values are for normalized data unless otherwise noted

Laminate Strength Tests

	ate ou e	ingui re	,515							
Lay-up	ENV	Statistic	ОНТ	ОНС	FHT	FHC	UNT	UNC	PB 2% Offset	LSBS*
55	077	B-basis	35.070		36.268		64.047			
	CTD	Mean	38.931		41.071		72.416			
	(-65°F)	CV	6.000		6.000		6.000			
	RTD	B-basis	28.200	32.741	NA:I	NA:I	58.383**	62.489	74.025	8.027
2/03		Mean	32.064	37.020	34.467	56.053	63.704	70.765	82.726	9.456
25/50/25	(75°F)	CV	6.000	6.000	1.969	2.256	6.000	6.000	6.005	4.960
	ETW2	B-basis	21.490	20.732		30.132	NA:I	NA:A	55.005	4.708**
	(250°F)	Mean	24.336	23.478		35.208	46.686	39.732	63.819	5.107
		CV	6.000	6.000		7.485	1.701	5.611	7.612	6.009
	CTD (-65°F)	B-basis	33.527							
		Mean	37.967							
		CV	6.000							
10	RTD (75°F)	B-basis	NA:I	NA:I						
10/80/10		Mean	30.844	31.557						
10/		CV	1.179	1.713						
	ETW2 (250°F)	B-basis	NA:I	17.464						
		Mean	20.076	20.142						
	(2301)	CV	0.678	6.822						
	CTD	B-basis	39.528							
	(-65°F)	Mean	44.694							
	(-051)	CV	6.000							
/40	RTD	B-basis	NA:I	NA:I						
40/20/40	(75°F)	Mean	38.334	41.079						
40	(751)	CV	2.367	1.278						
	ETW2	B-basis	NA:I	22.866						
	(250°F)	Mean	25.999	26.053						
	(250 F)	CV	1.923	6.276						

Notes: The modified CV B-basis value is recommended when available.

The CV provided corresponds with the B-basis value given.

NA implies that tests were run but data did not meet NCAMP recommended requirements.

Shaded empty boxes indicate that no test data is available for that property and condition.

Table 3-2: Recommended B-basis values for laminate test data

[&]quot;NA: A" indicates ANOVA with 3 batches, "NA: I" indicates insufficient data,

^{*} Data is as measured rather than normalized

^{**} indicates the Stat17 B-basis value is greater than 90% of the mean value.

ACG - MTM45-1/ 6781 S2 Glass

Lamina Properties Summary

3.2 Lamina and Laminate Summary Tables

Material: Advanced Composites Group - MTM45-1/ Style 6781 S2 Glass

Prepreg: MTM45-1/6781-35%RW

Fiber: JPS Glass (fabric)/AGY (fiber): SCG75 1/0 1.0Z 636 7636

Resin: MTM45-1

Material Specification: NCAMP Material Specification NMS 451/12 Material Specification

Process Specification: NCAMP Process Specification NPS 81451 with baseline "MH" cure cycle

Tg(dry): 391.47 °F Tg(wet): 341.86 °F Tg METHOD: DMA (SRM 18-94)

Date of fiber manufactureOctober 2005 - November 2005Date of testing07/11/2007 - 03/2009

 Date of resin manufacture
 November 2005 - January 2006
 Date of data submittal
 3/27/2009

Date of prepreg manufacture

November 2005 - January 2006

Date of composite manufacture

April 2006-September 2006

Date of analysis

December 2008 - June 2009

LAMINA MECHANICAL PROPERTY B-BASIS SUMMARY

Data reported: As measured followed by normalized values in parentheses, normalizing tply: 0.0101 in

Values shown in shaded boxes do not meet CMH-17G requirements and are estimates only These values may not be used for certification unless specifically allowed by the certifying agency

	CTD			RTD			ETD				ETW	990	ETW2		
		Modified CV			Modified CV			Modified			Modified CV			Modified	
	B-Basis	B-basis	Mean	B-Basis	B-basis	Mean	B-Basis	CV B-basis	Mean	B-Basis	B-basis	Mean	B-Basis	CV B-basis	Mean
F ₁ ^{tu}	83.557	81.970	90.047	67.589	71.839	79.916				53.432	48.034	56.111	40.017	NA	56.182
(ksi)	(88.033)	(84.675)	(92.341)	(77.151)	(73.792)	(81.458)				(53.355)	(49.997)	(57.663)	(43.043)	(49.845)	(57.511)
E₁t			4.208			4.136						3.798			3.684
(Msi)			(4.315)			(4.216)						(3.902)			(3.772)
F ₂ ^{tu}	83.243	77.856	88.167	51.835	68.922	78.918				43.412	49.282	56.073	46.776	47.975	54.098
(ksi)	(83.609)	(79.525)	(90.056)	(55.468)	70.512	(80.501)				(46.278)	50.531	(57.225)	(47.580)	(49.057)	(55.319)
E_2^{t}			4.058			3.991						3.690			3.533
(Msi)			(4.143)			(4.071)						(3.766)			(3.617)
F ₁ ^{cu}	61.357	(85.133)	100.033	73.622	72.453	81.406				48.897	47.729	56.681	18.164	NA	49.767
(ksi)	(93.623)	(92.394)	(102.884)	(74.172)	(72.942)	(83.433)				(49.028)	(47.798)	(58.289)	(23.752)	NA	(50.971)
E ₁ ^c			4.230			4.117						3.980			3.923
(Msi)			(4.350)			(4.220)						(4.091)			(4.020)
V ₁₂ ^c			0.140			0.138						0.116			0.101
F ₂ ^{cu}	49.924	NA	83.226	57.753	NA	67.078	44.086	NA	57.852	33.897	39.935	46.146	35.369	34.357	39.821
(ksi)	(79.019)	(78.047)	(85.807)	(62.245)	(61.268)	(69.072)	(52.949)	(51.982)	(59.702)	(40.951)	(39.962)	(47.865)	(34.179)	(33.189)	(41.092)
E ₂ ^c			4.115			3.901			3.819			3.815			3.915
(Msi)			(4.245)			(4.017)			(3.943)			(3.958)			(4.038)
V21 ^c			0.133			0.129			0.115			0.108			0.098
F ₁₂ ^{s5%} (ksi)	11.246	10.856	12.293	8.322	8.090	9.161				4.981	4.977	5.636	3.563	4.034	4.569
F ₁₂ ^{s0.2%}															
(ksi)	7.070	6.402	7.250	5.159	4.808	5.445				3.078	2.981	3.376	2.306	2.353	2.665
G ₁₂ s															
(Msi)			0.711			0.553						0.341			0.268
SBS															
(ksi)	10.925	NA	12.510	8.791	NA .	9.789	7.023	6.836	7.876	6.064	NA Data	6.577	4.151	4.486	5.140

Table 3-3: Summary of Test Results for Lamina Data

ACG MTM45-1/ 6781 S2 Glass Laminate Properties Summary

Material: Advanced Composites Group - MTM45-1/ Style 6781 S2 Glass

Prepreg: MTM45-1/6781-35%RW

Fiber: JPS Glass (fabric)/AGY (fiber): SCG75 1/0 1.0Z 636 7636

Resin: MTM45-1

Material Specificaton: NCAMP Material Specification NMS 451/12 Material Specification

Process Specification: NCAMP Process Specification NPS 81451 with baseline "MH" cure cycle

Tg(dry): 391.47 °F Tg(wet): 341.86 °F Tg METHOD : DMA (SRM 18-94)

Date of fiber manufacture October 2005 - November 2005 Date of testing 07/11/2007 - 03/2009

Date of resin manufacture November 2005 - January 2006 Date of data submittal 3/27/2009

Date of prepreg manufacture November 2005 - January 2006
Date of composite manufacture April 2006-September 2006

Date of analysis December 2008 - June 2009

LAMINATE MECHANICAL PROPERTY B-BASIS SUMMARY Data reported as normalized used a normalizing t_{ply} of 0.0101 in

Values shown in shaded boxes do not meet CMH17 Rev G requirements and are estimates only These values may not be used for certification unless specifically allowed by the certifying agency

			Layup:	Quasi	sotropic 2	5/50/25	"S	oft" 10/80/	10	"Ha	ard" 40/20	/40
Test	Property	Test Condition	Unit	B-basis	Mod. CV B- basis	Mean	B-basis	Mod. CV B- basis	Mean	B-basis	Mod. CV B- basis	Mean
		CTD	ksi	37.910	35.070	38.931	36.832	33.527	37.967	38.608	39.528	44.694
OHT (normalized)	Strength	RTD	ksi	31.040	28.200	32.064	28.826	25.682	30.844	35.880	32.056	38.334
	Outligat	ETW	ksi	23.224	20.341	24.430						
		ETW2	ksi	21.442	21.490	24.336	18.535	16.789	20.076	23.959	21.648	25.999
OHC (normalized)		RTD	ksi	34.227	32.741	37.020	27.748	26.275	31.557	36.121	34.204	41.079
	Strength	ETW	ksi	22.966	21.898	26.299						
(IIOIIIIaiizeu)		ETW2	ksi	22.519	20.732	23.478	17.927	17.464	20.142	23.742	22.866	26.053
	Strength	CTD	ksi	68.086	64.047	72.416						
	Modulus		Msi			3.422						
UNT	Strength	RTD	ksi	58.383	NA	63.704						
(normalized)	Modulus		Msi			3.129						
	Strength	ETW2	ksi	43.101	39.041	46.686						
	Modulus		Msi			2.778						
UNC (normalized)	Strength	RTD	ksi	67.838	62.489	70.765						
	Modulus		Msi			3.299						
	Poisson's Ratio					0.298						
	Strength	ETW	ksi	40.864	38.963	46.794						
	Modulus		Msi			3.092						
	Poisson's Ratio					0.353						
	Strength	ETW2	ksi	27.817	34.462	39.732						
	Modulus		Msi			3.285						
	Poisson's Ratio					0.362						
FHT	Strength	CTD	ksi	39.511	36.268	41.071						
(normalized)		RTD	ksi	32.212	28.699	34.467						
,		ETW2	ksi									
FHC	Strength	RTD	ksi	49.287	46.672	56.053						
(normalized)		ETW2	ksi	30.483	30.132	35.208						
Pin Bearing	2% Offset	RTD	ksi	75.707	74.025	82.726						
(normalized)	Strength	ETW2	ksi	56.709	55.005	63.819						
LSBS		RTD	ksi	8.027	NA	9.456						
(as meas)	Strength	ETW	ksi	5.561	5.312	6.380						
,		ETW2	ksi	4.708	NA	5.107						
CAI (normalized)	Strength	RTD	ksi			31.866						
ILT	Strength	RTD	ksi			6.130						
(as meas)	Strength	ETW2	ksi			2.601						
CBS	Strength	RTD	lbs			251.245						
(as meas)	Strength	ETW2	lbs	-		102.965						

Table 3-4: Summary of Test Results for Laminate Data

4. Lamina Test Results, Statistics, Basis Values and Graphs

Test data for fiber dominated properties was normalized according to nominal cured ply thickness. Both normalized and as measured statistics were included in the tables, but only the normalized data values were graphed. Test failures, outliers and explanations regarding computational choices were noted in the accompanying text for each test.

All individual specimen results are graphed for each test by batch and environmental condition with a line indicating the recommended basis values for each environmental condition. The data is jittered (moved slightly to the left or right) in order for all specimen values to be clearly visible. The strength values are always graphed on the vertical axis with the scale adjusted to include all data values and their corresponding basis values. The vertical axis may not include zero. The environmental conditions were graphed from left to right and the batches were identified by the shape and color of the symbol.

When a dataset fails the Anderson-Darling k-sample (ADK) test for batch-to-batch variation an ANOVA analysis is required. In order for B-basis values computed using the ANOVA method, data from five batches is required. Since this qualification dataset has only three batches, the basis values computed using ANOVA are considered estimates only. However, the basis values resulting from the ANOVA method using only three batches may be overly conservative. The ADK test is performed again after a transformation of the data according to the assumptions of the modified CV method (see section 0 for details). If the dataset still passes the ADK test at this point, modified CV basis values are provided. If the dataset does not pass the ADK test after the transformation, estimates may be computed using the modified CV method per the guidelines in section 8.3.10 of CMH-17 Rev G.

4.1 Warp (0°) Tension Properties (WT)

The as measured and the normalized ETW2 data and the as measured RTD data did not pass the Anderson-Darling k-sample test (ADK test) for batch-to-batch variation. This means those datasets require the ANOVA method to compute basis values which may result in overly conservative estimates of the basis values. The normalized ETW2 data does pass the ADK test with the modified CV transform, so modified CV values are provided for that datasets. The as measured ETW2 data does not pass the ADK test even after the modified CV transform and it does not pass the normality test so no modified CV basis values or estimates can be provided.

The normalized CTD, RTD and ETW data could be pooled. Although the CTD and RTD data fail the normality test, the pooled dataset for those three conditions passes the normality test. There was one outlier, before pooling the batches but not after, in the as measured data from the RTD environment. It was on the low side of batch one. It was retained for this analysis.

Statistics, estimates and basis values are given for the WT strength data in Table 4-1. Statistics for the modulus data are given in Table 4-2. The normalized data, B-estimates and B-basis values or the normalized data are shown graphically in Figure 4-1.

Advanced Composites Group - MTM45-1/ Style 6781 S2 Glass Warp Tension Strength Normalized

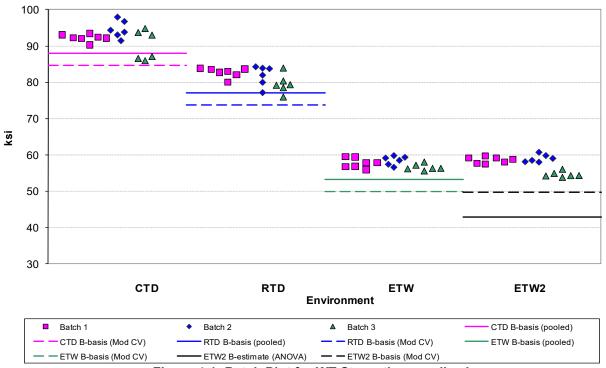


Figure 4-1: Batch Plot for WT Strength normalized

	Warp Tension Strength Basis Values and Statistics										
		Norm	alized			As Me	easured				
Env	CTD	RTD	ETW	ETW2	CTD	RTD	ETW	ETW2			
Mean	92.341	81.458	57.663	57.511	90.047	79.916	56.111	56.182			
Stdev	3.119	2.547	1.361	2.158	3.129	2.523	1.375	2.365			
cv	3.377	3.127	2.360	3.751	3.475	3.157	2.450	4.209			
Mod CV	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.105			
Min	85.975	75.979	55.670	53.912	83.317	74.104	53.748	52.218			
Max	98.000	84.330	59.868	60.784	94.341	82.985	58.827	59.223			
No. Batches	3	3	3	3	3	3	3	3			
No. Spec.	19	19	19	19	19	19	19	19			
		Ва	sis Values	and/or Es	timates						
B-basis Value	88.033	77.151	53.355		83.557		53.432				
B-estimate				43.043		67.589		40.017			
A-estimate	85.145	74.263	50.468	32.714	76.620	58.796	51.530	28.477			
Method	pooled	pooled	pooled	ANOVA	Weibull	ANOVA	Normal	ANOVA			
Modified CV Basis Values and/or Estimates											
B-basis Value	84.675	73.792	49.997	49.845	81.970	71.839	48.034	NA			
A-estimate	79.594	68.712	44.917	44.765	76.556	66.425	42.620	NA			
Method	pooled	pooled	pooled	pooled	pooled	pooled	pooled	NA			

Table 4-1: Statistics, Basis values and/or Estimates for WT Strength data

	Warp Tension Modulus Statistics									
		Norm	alized		As Measured					
Env	CTD	RTD	ETW	ETW2	CTD	RTD	ETW	ETW2		
Mean	4.315	4.216	3.902	3.772	4.208	4.136	3.798	3.684		
Stdev	0.043	0.024	0.038	0.028	0.061	0.056	0.070	0.059		
CV	0.988	0.570	0.971	0.743	1.457	1.353	1.839	1.590		
Mod CV	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000		
Min	4.243	4.185	3.807	3.721	4.098	3.994	3.653	3.604		
Max	4.412	4.265	3.968	3.825	4.337	4.230	3.924	3.773		
No. Batches	3	3	3	3	3	3	3	3		
No. Spec.	19	19	19	19	19	19	19	19		

Table 4-2: Statistics from WT modulus data

4.2 Warp (0°) Compression Properties (WC)

The as measured CTD and the as measured and normalized ETW2 data did not pass the Anderson-Darling k-sample test (ADK test) for batch-to-batch variation. This means those datasets require the ANOVA method to compute basis values which may result in overly conservative estimates of the basis values. These data sets did not pass with the modified CV transform of the data, so modified CV values are not provided for those datasets. An override of the ADK test results was not deemed appropriate due to the same batch (3) having the lowest mean value in all cases. Estimates based on the normal distribution and using the modified CV method are provided. Since the ETW2 datasets had a CV greater than 8%, the modified CV method could not be applied. Instead, estimates computed using normal distribution are provided for that condition.

The as measured RTD and ETW data could be pooled and for the normalized data, CTD, RTD and ETW could be pooled. There were no outliers.

Statistics, estimates and basis values are given for the WC strength data in Table 4-3. Statistics for the modulus data are given in Table 4-4. The normalized data, B-estimates and B-basis values and estimates are shown graphically in Figure 4-2.

Advanced Composites Group - MTM45-1/ Style 6781 S2 Glass Warp Compression Strength Normalized

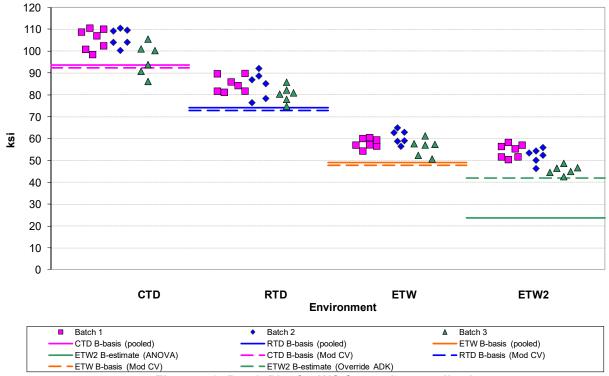


Figure 4-2: Batch Plot for WC Strength normalized

	Warp Compression Strength Basis Values and Statistics									
		Norm	alized			As Me	easured			
Env	CTD	RTD	ETW	ETW2	CTD	RTD	ETW	ETW2		
Mean	102.884	83.433	58.289	50.971	100.033	81.406	56.681	49.767		
Stdev	6.918	4.814	3.531	4.696	7.287	5.018	3.475	5.108		
CV	6.724	5.770	6.058	9.214	7.285	6.164	6.130	10.263		
Mod CV	7.362	6.885	7.029	9.214	7.642	7.082	7.065	10.263		
Min	86.228	74.867	50.738	42.675	83.174	72.168	48.980	41.055		
Max	110.577	92.168	64.994	58.342	110.032	90.015	62.312	58.007		
No. Batches	3	3	3	3	3	3	3	3		
No. Spec.	19	19	19	19	19	19	19	19		
	Basis Values and/or Estimates									
B-basis Value	93.623	74.172	49.028			73.622	48.897			
B-estimate				23.752	61.357			18.164		
A-estimate	87.415	67.964	42.820	4.328	33.762	68.304	43.579	NA		
Method	pooled	pooled	pooled	ANOVA	ANOVA	pooled	pooled	ANOVA		
		Modified	CV Basis	Values and	d/or Estima	ates				
B-basis Value	92.394	72.942	47.798			72.453	47.729			
B-estimate					85.133					
A-estimate	85.361	65.909	40.765		74.568	66.337	41.612			
Method	pooled	pooled	pooled		Normal	pooled	pooled			
Override of ADK test										
B-estimate				41.817				39.811		
A-estimate				35.327				32.752		
Method				Normal				Normal		

Table 4-3: Statistics, Basis Values and/or Estimates for WC Strength

	Warp Compression Modulus Statistics									
		Norm	alized			As I	<i>l</i> leasured			
Env	CTD	RTD	ETW	ETW2	CTD	RTD	ETW	ETW2		
Mean	4.350	4.220	4.091	4.020	4.230	4.117	3.980	3.923		
Stdev	0.157	0.094	0.076	0.179	0.208	0.127	0.134	0.224		
CV	3.611	2.225	1.867	4.456	4.914	3.083	3.360	5.714		
Mod CV	6.000	6.000	6.000	6.228	6.457	6.000	6.000	6.857		
Min	4.050	4.073	3.951	3.860	3.903	3.930	3.775	3.712		
Max	4.556	4.354	4.203	4.707	4.537	4.351	4.184	4.734		
No. Batches	3	3	3	3	3	3	3	3		
No. Spec.	19	19	19	19	19	19	19	19		

Table 4-4: Statistics from WC modulus data

4.3 Fill (90°) Tension Properties (FT)

The Fill Tension data is not suitable for pooling so single point analysis methods must be used. The analysis results for the normalized and as measured data were the same. Only the CTD data passed the ADK test. The RTD, ETW and ETW2 datasets did not pass the ADK test and require the ANOVA method to compute basis values, but with data from only three batches, these values are considered estimates and may result in overly conservative basis values. The ETW2 data failed the ADK test but passed with the modified CV transformation, so modified CV basis values are provided for the ETW2 data. The RTD and ETW data failed the ADK test even after the modified CV transform, but they did pass the normality test with that transform so Bestimates are provided for the RTD and ETW conditions.

There were two outliers for the normalized data, one of which was also an outlier for the as measured data. They were both from batch two, both on the high side and both were outliers before but not after pooling the three batches. One was in the CTD environment and it was the only outlier in the as measured data. The other was in the ETW2 environment.

Statistics, estimates and basis values are given for the FT strength data in Table 4-5. Statistics for the modulus data are shown in Table 4-6. The normalized data, B-estimates and B-basis values for the data are shown graphically Figure 4-3.

Advanced Composites Group - MTM45-1/ Style 6781 S2 Glass Fill Tension Strength Normalized

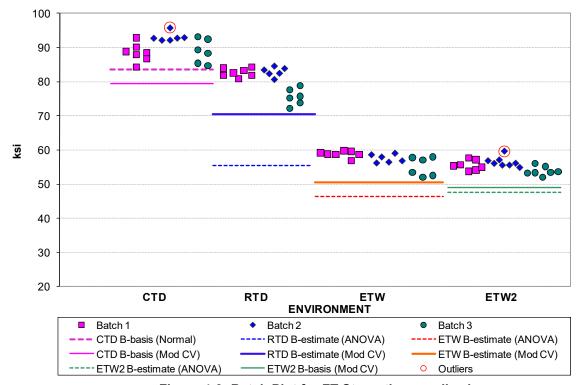


Figure 4-3: Batch Plot for FT Strength normalized

	Fill Tension Strength Basis Values and Statistics										
		Norm	alized			As Me	easured				
Env	CTD	RTD	ETW	ETW2	CTD	RTD	ETW	ETW2			
Mean	90.056	80.501	57.225	55.319	88.167	78.918	56.073	54.098			
Stdev	3.309	3.810	2.290	1.744	2.526	3.944	2.482	1.720			
CV	3.674	4.733	4.002	3.152	2.866	4.998	4.427	3.179			
Mod CV	6.000	6.367	6.001	6.000	6.000	6.499	6.213	6.000			
Min	84.239	72.214	52.091	52.032	82.984	70.917	50.785	50.795			
Max	95.810	84.598	59.769	59.615	92.947	83.630	59.080	57.269			
No. Batches	3	3	3	3	3	3	3	3			
No. Spec.	19	19	19	22	19	19	19	22			
		Ва	sis Values	and/or Es	stimates						
B-basis Value	83.609				83.243						
B-estimate		55.468	46.278	47.580		51.835	43.412	46.776			
A-estimate	79.030	37.598	38.471	42.055	79.747	32.500	34.380	41.547			
Method	Normal	ANOVA	ANOVA	ANOVA	Normal	ANOVA	ANOVA	ANOVA			
		Modified	CV Basis '	Values and	d/or Estima	ates					
B-basis Value	79.525			49.057	77.856			47.975			
B-estimate		70.512	50.531	·		68.922	49.282				
A-estimate	72.057	63.429	45.786	44.587	70.546	61.833	44.467	43.603			
Method	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal			

Table 4-5: Statistics, Basis Values and/or Estimates for FT Strength data

	Fill Tension Modulus Statistics									
		Norm	alized			As M	leasured			
Env	CTD	RTD	ETW	ETW2	CTD	RTD	ETW	ETW2		
Mean	4.143	4.071	3.766	3.617	4.058	3.991	3.690	3.533		
Stdev	0.053	0.054	0.071	0.081	0.083	0.080	0.083	0.098		
CV	1.274	1.323	1.876	2.230	2.046	2.013	2.260	2.780		
Mod CV	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000		
Min	4.068	4.005	3.673	3.469	3.926	3.861	3.534	3.365		
Max	4.267	4.186	3.922	3.783	4.181	4.107	3.855	3.720		
No. Batches	3	3	3	3	3	3	3	3		
No. Spec.	19	19	19	24	19	19	19	24		

Table 4-6: Statistics, Basis Values and/or Estimates for FT Modulus data

4.4 Fill (90°) Compression Properties (FC)

The as measured CTD and ETW datasets did not pass the Anderson-Darling k-sample test (ADK test) for batch-to-batch variation. This means those datasets required the ANOVA method to compute basis values which may result in overly conservative estimates of the basis values. The ETW data passes the ADK test after the modified CV transform, so modified CV values are provided for that dataset.

The normalized data could be pooled. The only test failure was the ETD data which failed the normality test, but the pooled dataset did not so pooling was acceptable. The ETW and ETW2 datasets have only 16 specimens each. This is insufficient to produce data values using the single point method, but it is a sufficiently large sample when pooling can be used, so the normalized data, which is pooled, meet CMH-17 Rev G standards while the as measured data, which uses the single point method, must be considered estimates for those conditions.

The as measured data could not be pooled due to non-normality of the pooled dataset. Modified CV basis values could not be provided for the CTD, RTD and ETD datasets due to the non-normality of the datasets for those three conditions.

There was one outlier. It was in the ETD data, batch one on the high side and it was an outlier in both the normalized and as measured datasets. It was an outlier before pooling the three batches but not after. It was retained for this analysis.

Statistics and basis values are given for the FC strength data in Table 4-7. Statistics for the modulus data are given in Table 4-8. The normalized data and the B-basis values are shown graphically in Figure 4-4.

Advanced Composites Group - MTM45-1/ Style 6781 S2 Glass Fill Compression Strength Normalized

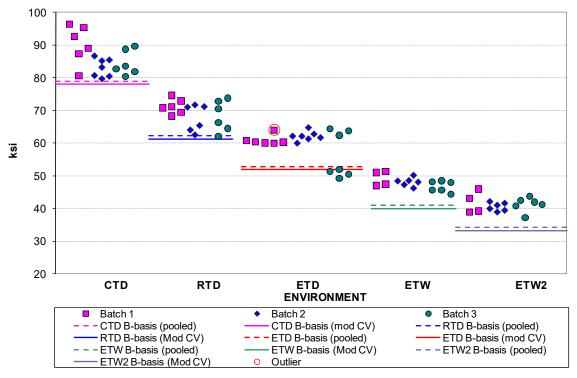


Figure 4-4: Batch Plot for FC Strength normalized

		Fill	Compress	ion Streng	th Basis V	alues and	Statistics			
			Normalized	t			,	As Measure	d	
Env	CTD	RTD	ETD	ETW	ETW2	CTD	RTD	ETD	ETW	ETW2
Mean	85.807	69.072	59.702	47.865	41.092	83.226	67.078	57.852	46.146	39.821
Stdev	5.105	3.956	4.846	1.917	2.176	5.860	4.135	5.032	2.417	2.188
cv	5.950	5.727	8.118	4.005	5.296	7.041	6.164	8.698	5.237	5.495
Mod CV	6.975	6.864	8.118	6.002	6.648	7.521	7.082	8.698	6.619	6.747
Min	79.760	62.086	49.180	44.339	37.151	76.858	59.927	46.818	41.907	35.902
Max	96.419	74.638	64.792	51.358	45.921	95.905	73.686	63.355	50.764	45.446
No. Batches	3	3	3	3	3	3	3	3	3	3
No. Spec.	19	18	20	16	16	19	18	20	16	16
			Ва	asis Values	and/or E	stimates				
B-basis Value	79.019	62.245	52.949	40.951	34.179		57.753	44.086		
B-estimate						49.924			33.897	35.369
A-estimate	74.546	57.777	48.470	36.494	29.722	26.159	48.705	30.963	25.168	32.228
Method	pooled	pooled	pooled	pooled	pooled	ANOVA	Weibull	Non- Parametric	ANOVA	Normal
			Modified	CV Basis	Values an	d/or Estim	ates			
B-basis Value	78.047	61.268	51.982	39.962	33.189		NA	NA		
B-estimate						NA			39.935	34.357
A-estimate	72.933	56.160	46.862	34.867	28.094	NA	NA	NA	35.565	30.512
Method	pooled	pooled	pooled	pooled	pooled	NA	NA	NA	Normal	Normal

Table 4-7: Statistics, Basis Values and/or Estimates for FC Strength data

	Fill Compression Modulus Statistics										
		Normaliz	ed			As Measured					
Env	CTD	RTD	ETD	ETW	ETW2	CTD	RTD	ETD	ETW	ETW2	
Mean	4.245	4.017	3.943	3.958	4.038	4.115	3.901	3.819	3.815	3.915	
Stdev	0.184	0.085	0.064	0.052	0.205	0.202	0.120	0.111	0.107	0.243	
cv	4.344	2.122	1.632	1.313	5.089	4.911	3.074	2.896	2.799	6.212	
Mod CV	6.172	6.000	6.000	6.000	6.544	6.455	6.000	6.000	6.000	7.106	
Min	3.769	3.815	3.812	3.890	3.708	3.611	3.682	3.654	3.687	3.526	
Max	4.436	4.138	4.049	4.068	4.455	4.400	4.068	3.954	3.988	4.344	
No. Batches	No. Batches 3 3 3 3 3							3	3	3	
No. Spec.	19	18	20	16	16	19	18	20	16	16	

Table 4-8: Statistics from FC Modulus data

4.5 In-Plane Shear Properties (IPS)

For the strength at 5% strain measurements, all four environments fail the ADK test but pass with the modified CV transform.

This means those datasets require the ANOVA method to compute basis values which may result in overly conservative estimates of the basis values. All datasets did pass the normality test, and passed the ADK test under the modified CV transformation. While the pooled dataset passes Levene's test, the transformed pooled dataset does not, so pooling is not appropriate for the modified CV basis values.

For the 0.2% offset strength measurements, the CTD dataset passes the ADK test while the other three environments do not. As with the 5% strain measurements, all environments pass the ADK test with the modified CV transformation. This means the RTD, ETW and ETW2 datasets require the ANOVA method to compute basis values which may result in overly conservative estimates of the basis values. As with the 5% strain data, all datasets pass the normality test, and passed the ADK test under the modified CV transformation. After transformation of the data to fit the assumptions of the modified CV method, the pooled dataset does not pass Levene's test, so pooling is not appropriate for the modified CV basis values.

There were two outliers for the 0.2% offset strength data, one was on the low side of batch one in the CTD environment; this was an outlier before but not after pooling the three batches together. The other outlier was one the low side of batch two in the ETW2 environment. This was an outlier both before and after pooling the three batches together. Both outliers were retained for this analysis.

There were two outliers for the strength at 5% strain data. One was on the high side of batch one in the ETW environment; this was an outlier before but not after pooling the three batches together. The other outlier was one the high side of batch three in the ETW2 environment. This was an outlier both before and after pooling the three batches together. Both outliers were retained for this analysis.

Statistics, estimates and basis values are given for the IPS strength data in Table 4-9. Statistics for the modulus data are given in Table 4-10. The data, B-estimates and B-basis values for the 5% strain strength data are shown graphically in Figure 4-5 and for the 0.2% offset strength data in Figure 4-6.

Advanced Composites Group - MTM45-1/ Style 6781 S2 Glass In-Plane Shear Strength at 5% Strain

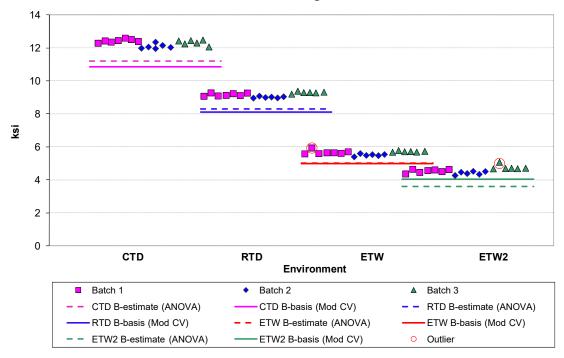


Figure 4-5: Batch plot for IPS 5% Shear Strain

Advanced Composites Group - MTM45-1/ Style 6781 S2 Glass In-Plane Shear 0.2% Offset Strength

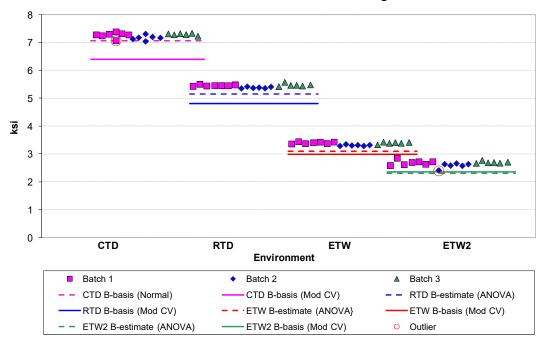


Figure 4-6: Batch plot for IPS 0.2% Offset Strength

	In-Plane Shear Strength Basis Values and Statistics										
	(Strength a	t 5% Strai	n		0.2% Offs	et Strength	1			
Env	CTD	RTD	ETW	ETW2	CTD	RTD	ETW	ETW2			
Mean	12.293	9.161	5.636	4.569	7.250	5.445	3.376	2.665			
Stdev	0.194	0.132	0.123	0.181	0.092	0.053	0.050	0.090			
CV	1.579	1.441	2.183	3.972	1.273	0.974	1.487	3.360			
Mod CV	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000			
Min	11.965	8.963	5.401	4.270	7.047	5.360	3.293	2.418			
Max	12.598	9.385	5.936	5.072	7.390	5.579	3.448	2.855			
No. Batches	3	3	3	3	3	3	3	3			
No. Spec.	19	19	19	19	19	19	19	19			
		Ва	sis Values	and/or Es	timates						
B-basis Value					7.070						
B-estimate	11.246	8.322	4.981	3.563		5.159	3.078	2.306			
A-estimate	10.499	7.722	4.514	2.845	6.943	4.955	2.865	2.050			
Method	ANOVA	ANOVA	ANOVA	ANOVA	Normal	ANOVA	ANOVA	ANOVA			
Modified CV Basis Values											
B-basis Value	10.856	8.090	4.977	4.034	6.402	4.808	2.981	2.353			
A-estimate	9.836	7.330	4.509	3.656	5.801	4.357	2.701	2.132			
Method	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal			

Table 4-9: Statistics, Basis Values and/or Estimates for IPS Strength data

In-l	In-Plane Shear Modulus Statistics									
Env	CTD	RTD	ETW	ETW2						
Mean	0.711	0.553	0.341	0.268						
Stdev	0.016	0.006	0.005	0.010						
cv	2.256	1.067	1.500	3.679						
Mod CV	6.000	6.000	6.000	6.000						
Min	0.690	0.543	0.332	0.244						
Max	0.763	0.563	0.349	0.288						
No. Batches	3	3	3	3						
No. Spec.	19	19	19	19						

Table 4-10: Statistics from IPS Modulus data

4.6 Short Beam Strength Properties (SBS)

The ETW2 data did not pass the Anderson-Darling k-sample test for batch-to-batch variation. This means that dataset requires the ANOVA method to compute basis values which may result in overly conservative basis values. However, the ETW2 data does pass the normality test, and passes the ADK test under the modified CV transformation, so the modified CV values are provided for that dataset.

The CTD, RTD, ETW2 and pooled datasets fail the Anderson Darling normality test both before and after the modified CV transform. This means that pooling across environments is not appropriate and that the modified CV method cannot be used with those datasets. There were no outliers.

Advanced Composites Group - MTM45-1/ Style 6781 S2 Glass Short Beam Strength

Statistics, estimates and basis values are given for the SBS data in Table 4-11. The data, Bestimates and B-basis values are shown in Figure 4-7.

16 14 12 10 $\blacksquare \blacksquare \bullet \bullet \bullet \triangle \triangle$ ŔSi 8 6 4 2 0 CTD RTD **ETD ETW** ETW2 **Environment**

Figure 4-7: Batch plot for SBS Strength

— RTD B-basis (Non-Parametric)

– – ETW B-basis (Non-Parametric)

▲ Batch 3

- - - ETD B-basis (Normal)

ETW2 B-estimate (ANOVA)

Batch 2

Batch 1

CTD B-basis (Non-Parametric)

ETD B-basis (Mod CV)

ETW2 B-basis (Mod CV)

Short	Beam Stre	ength (SBS	S) as meas	sured (ksi)					
Env	CTD	RTD	ETD	ETW	ETW2				
Mean	12.510	9.789	7.876	6.577	5.140				
Stdev	0.793	0.635	0.438	0.413	0.260				
cv	6.339	6.490	5.557	6.280	5.055				
Mod CV	7.169	7.245	6.779	7.140	6.528				
Min	11.303	8.932	7.256	6.128	4.675				
Max	13.504	10.815	8.623	7.385	5.504				
No. Batches	3	3	3	3	3				
No. Spec.	20	19	19	19	19				
	Basis Va	alues and/c	or Estimat	es					
B-basis Value	10.925	8.791	7.023	6.064					
B-estimate					4.151				
A-estimate	8.863	6.797	6.418	4.695	3.446				
Method	Non- Parametric	Non- Parametric	Normal	Non- Parametric	ANOVA				
Mod	Modified CV Basis Values and/or Estimates								
B-basis Value	NA	NA	6.836	NA	4.486				
A-estimate	NA	NA	6.098	NA	4.022				
Method	NA	NA	Normal	NA	Normal				

Table 4-11: Statistics, Basis Values and/or Estimates for SBS Strength data as measured

5. Laminate Test Results, Statistics, Basis Values and Graphs

Many of the laminate tests were performed with one batch only. In those cases, there was insufficient data to produce basis values meeting the requirements of CMH-17 Rev G, so only estimates are provided. When possible, estimates were prepared in the following ways and multiple estimates are provided.

- 1. Using the ASAP program to pool across the available environments. The modified CV values from this program are provided.
- 2. The Lamina Variability method detailed in section 2.4. For properties that use the CV of the WC ETW2 or FC ETD datasets, modified CV values are not available due to the large CV (over 8%) of those datasets.

5.1 Quasi Isotropic Unnotched Tension Properties (UNT1)

The pooled dataset failed the Anderson Darling normality test so pooling across the environments is not appropriate for the normalized data. The RTD data did not fit the normal, Weibull or lognormal distribution, so the non-parametric method of computing basis values was employed. Due to the non-normality of the data, modified CV values were not provided.

The as measured RTD data did not pass the Anderson-Darling k-sample test for batch-to-batch variation. This means that dataset requires the ANOVA method to compute basis values which may result in overly conservative basis values. However, the as measured RTD data does pass the normality test, and passes the ADK test under the modified CV transformation, so the modified CV values are provided for that dataset. Pooling across environments is acceptable for the as measured values using the modified CV method.

There were two outliers. One in the CTD environment, batch 3 on the low side. This was an outlier before, but not after, pooling batches and was an outlier for the as measured data only. The other outlier was in the ETW2 data. It was an outlier in both the normalized and the as measured data.

Statistics, estimates and basis values are given for the UNT1 strength data in Table 5-1. Statistics for the modulus data are given in Table 5-2. The normalized data, B-estimates and B-basis values are shown in Figure 5-1.

Advanced Composites Group - MTM45-1/ Style 6781 S2 Glass Quasi Isotropic Unnotched Tension Strength Normalized (UNT1)

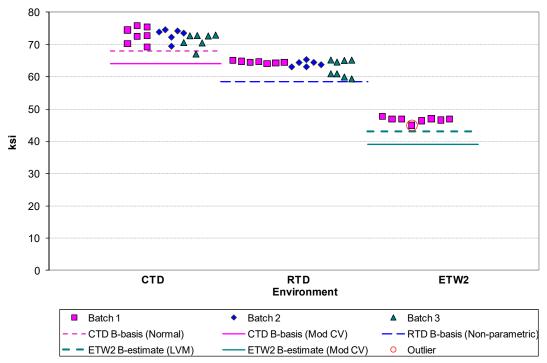


Figure 5-1: Batch plot for UNT1 Strength normalized

Unnotched Tension (UNT1) Strength Basis Values and Statistics									
		Normalized	t	Α	s Measure	ed			
Env	CTD	RTD	ETW2	CTD	RTD	ETW2			
Mean	72.416	63.704	46.686	70.316	61.790	46.224			
Stdev	2.249	1.798	0.794	2.474	2.467	0.976			
CV	3.105	2.822	1.701	3.518	3.993	2.111			
Modified CV	6.000	6.000	8.000	6.000	6.000	6.000			
Min	67.107	59.425	44.979	65.084	57.206	44.142			
Max	75.903	65.367	47.757	75.169	65.095	47.639			
No. Batches	3	3	1	3	3	1			
No. Spec.	20	21	8	20	21	8			
	Bas	sis Values	and/or Est	timates					
B-basis Value	68.086	58.383		65.552					
B-estimate			43.101		48.810	42.241			
A-estimate	65.004	52.445	NA	62.162	39.544	NA			
Method	Normal	Non- Parametric	LVM	Normal	ANOVA	LVM			
	Modified (CV Basis V	alues and	or Estima	tes				
B-basis Value	64.047	NA		63.601	55.104				
B-estimate	·		39.041			38.756			
A-estimate	58.098	NA	NA	59.038	50.535	34.311			
Method	Normal	NA	LVM	pooled	pooled	pooled			

Table 5-1: Statistics, Basis Values and/or Estimates for UNT1 Strength data

	Unnotched Tension (UNT1) Modulus Statistics								
		Normalized		As Measured					
Env	CTD	RTD	ETW2	CTD	RTD	ETW2			
Mean	3.422	3.129	2.778	3.323	3.034	2.751			
Stdev	0.056	0.043	0.062	0.081	0.080	0.077			
CV	1.638	1.381	2.240	2.424	2.621	2.813			
Modified CV	6.000	6.000	6.000	6.000	6.000	6.000			
Min	3.333	3.068	2.669	3.199	2.932	2.619			
Max	3.544	3.240	2.854	3.510	3.174	2.843			
No. Batches	3	3	1	3	3	1			
No. Spec.	20	21	8	20	21	8			

Table 5-2: Statistics from UNT1 Modulus Data

5.2 Quasi Isotropic Unnotched Compression Properties (UNC1)

The as measured data for both the RTD and ETW2 environments did not pass the Anderson-Darling k-sample test for batch-to-batch variation. This means those datasets require the ANOVA method to compute basis values which may result in overly conservative basis values. However, the as measured RTD data does pass the normality test, and passes the ADK test under the modified CV transformation, so the modified CV values are provided for that dataset.

The normalized ETW2 fails ADK test before and after the modified CV transform, so ANOVA values are provided for that dataset. The ETW2 data did pass the normality test, so estimates based on the normal distribution and using the modified CV method are provided.

There were three outliers, all in the ETW2 environment: batch 1 on the high side for both normalized and as measured datasets, batch 2 on the high side for the normalized data only, and batch 3 on the high side for both normalized and as measured datasets. All three were outliers before but not after pooling the three batches.

Statistics, estimates and basis values are given for the UNC1 strength data in Table 5-3. Modulus statistics are given in Table 5-4. The normalized data, B-estimates and B-basis values are shown graphically in Figure 5-2.

Advanced Composites Group - MTM45-1/ Style 6781 S2 Glass Quasi Isotropic Unnotched Compression Strength Normalized (UNC1)

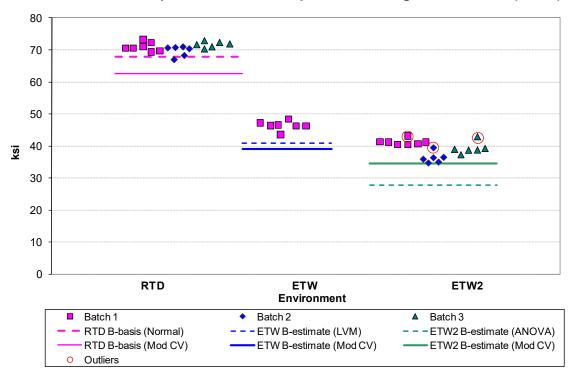


Figure 5-2: Batch plot for UNC1 Strength normalized

Unnotched C	Unnotched Compression (UNC1) Strength Basis Values and Statistics							
Normalized				As Measured				
Env	RTD	ETW	ETW2	RTD	ETW	ETW2		
Mean	70.765	46.794	39.732	69.882	46.387	39.068		
Stdev	1.502	1.447	2.229	1.919	1.458	2.502		
cv	2.122	3.093	5.611	2.746	3.142	6.405		
Modified CV	6.000	8.000	6.806	6.000	8.000	7.202		
Min	67.016	43.912	36.149	64.884	43.547	34.795		
Max	73.207	48.652	43.562	73.017	48.366	43.162		
No. Batches	3	1	3	3	1	3		
No. Spec.	19	7	19	19	7	19		
	Bas	sis Values	and/or Est	timates				
B-basis Value	67.838							
B-estimate		40.864	27.817	60.226	40.438	24.345		
A-estimate	65.759	NA	19.316	53.338	NA	13.838		
Method	Normal	LVM	ANOVA	ANOVA	LVM	ANOVA		
	Modified (CV Basis V	/alues and	or Estima	tes			
B-basis Value	62.489			61.710				
B-estimate		38.963	34.462		38.623	33.584		
A-estimate	56.621	NA	30.725	55.915	NA	29.695		
Method	Normal	LVM	Normal	Normal	LVM	Normal		

Table 5-3: Statistics, Basis Values and/or Estimates for UNC1 Strength data

U	nnotched C	compression	n (UNC1) I	Modulus St	atistics	
		Normalized		F	As Measure	d
Env	RTD	ETW	ETW2	RTD	ETW	ETW2
Mean	3.299	3.092	3.285	3.258	3.065	3.228
Stdev	0.101	0.082	0.208	0.107	0.087	0.199
CV	3.049	2.636	6.340	3.297	2.837	6.179
Modified CV	6.000	6.000	7.170	6.000	6.000	7.089
Min	3.079	2.966	2.752	3.057	2.934	2.702
Max	3.443	3.231	3.614	3.411	3.212	3.578
No. Batches	3	1	3	3	1	3
No. Spec.	19	7	19	19	7	19

Table 5-4: Statistics from UNC1 Modulus data

5.3 Laminate Short Beam Strength Properties (LSBS)

The RTD data and the ETW2 data both fail the Anderson Darling normality test so pooling across the environments is not appropriate. The RTD data did not fit the Weibull or lognormal distribution well enough to use either of them, so the non-parametric method of computing basis values was employed. The Weibull distribution provided an acceptable fit to the ETW2 data. Modified CV values are not provided due to the non-normality of the data. There was one outlier in the ETW data on the high side.

Statistics, estimates and basis values are given for the LSBS strength data in Table 5-5. The normalized data, B-estimates and B-basis values are shown graphically in Figure 5-3.

Advanced Composites Group - MTM45-1/ Style 6781 S2 Glass Laminate Short Beam Strength As Measured

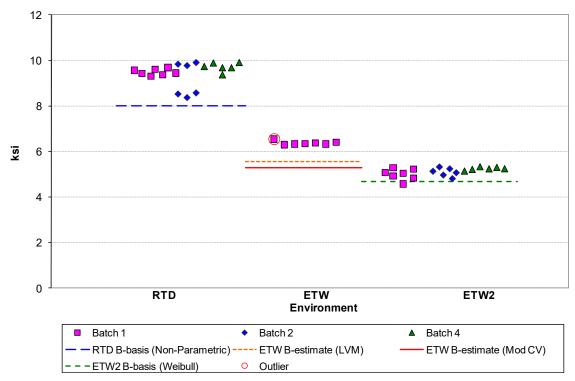


Figure 5-3: Batch plot for LSBS Strength as measured

Laminate Short Beam Strength (LSBS) as							
measured (ksi)							
Env	RTD	ETW	ETW2				
Mean	9.456	6.380	5.107				
Stdev	0.469	0.080	0.205				
CV	4.960	1.257	4.018				
Modified CV	6.480	8.000	6.009				
Min	8.368	6.305	4.578				
Max	9.908	6.545	5.334				
No. Batches	3	1	3				
No. Spec.	19	7	19				
Basis Va	alues and/o	or Estimate	es				
B-basis Value	8.027		4.708				
B-estimate		5.561					
A-estimate	6.575	NA	4.283				
Method	Non- Parametric	LVM	Weibull				
Modified CV Ba	asis Values	and/or E	stimates				
B-estimate	NA	5.312	NA				
A-estimate	NA	NA	NA				
Method	Method NA LVM NA						

Table 5-5: Statistics, Basis Values and/or Estimates for LSBS Strength data

5.4 Open Hole Tension Properties (OHT1, OHT2, OHT3)

5.4.1 Quasi Isotropic Open Hole Tension (OHT1)

The normalized ETW2 data did not pass the Anderson-Darling k-sample test for batch-to-batch variation. This means the ETW2 dataset requires the ANOVA method to compute basis values which may result in overly conservative basis values. However, the data does pass the normality test and passes the ADK test under the modified CV transformation, so the modified CV values are provided for that dataset. Pooling across environments was acceptable for the normalized CTD and RTD environments.

The as measured CTD and ETW2 environments failed ADK test but passed with the modified CV transform, so the modified CV values are provided in addition to the basis values computed using the ANOVA method. Pooling was not acceptable as the pooled transformed data failed both the normality test and Levene's test for equality of variance.

The ETW environment had insufficient data to meet the requirements of CMH-17 Rev G, so only estimates are provided.

There were two outliers, both in the RTD environment. One was on the low side of batch two. This was an outlier in the as measured data but not the normalized data. The other was on the low side of batch three. This was an outlier in both the normalized and the as measured datasets. Both were outliers before but not after pooling the three batches.

Statistics, estimates and basis values are given for the OHT1strength data in Table 5-6. The normalized data, B-estimates and B-basis values are shown graphically in Figure 5-4.

Advanced Composites Group - MTM45-1/ Style 6781 S2 Glass Quasi Isotropic Open Hole Tension (OHT1) Strength Normalized

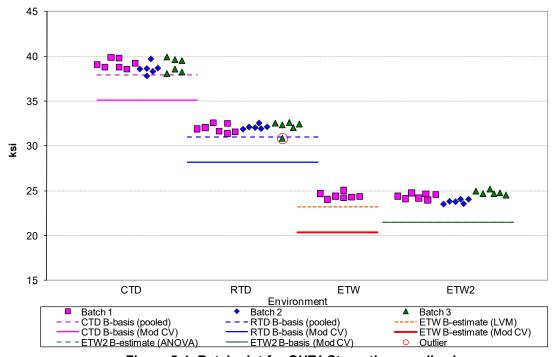


Figure 5-4: Batch plot for OHT1 Strength normalized

Open Hole Tension (OHT1) Strength Basis Values and Statistics									
Normalized					As Measured				
Env	CTD	RTD	ETW	ETW2	CTD	RTD	ETW	ETW2	
Mean	38.931	32.064	24.430	24.336	37.812	31.078	24.258	23.638	
Stdev	0.651	0.465	0.330	0.472	0.851	0.523	0.318	0.532	
CV	1.673	1.451	1.351	1.941	2.251	1.684	1.312	2.250	
Modified CV	6.000	6.000	8.000	6.000	6.000	6.000	8.000	6.000	
Min	37.789	30.851	24.045	23.538	36.494	29.692	23.809	22.555	
Max	39.935	32.618	25.034	25.198	39.819	32.029	24.826	24.658	
No. Batches	3	3	1	3	3	3	1	3	
No. Spec.	19	19	7	19	19	19	7	19	
		Ва	sis Values	and/or Es	timates				
B-basis Value	37.910	31.040				29.262			
B-estimate			23.224	21.442	33.436		23.015	20.627	
A-estimate	37.210	30.350	NA	19.377	30.314	26.646	NA	18.478	
Method	pooled	pooled	LVM	ANOVA	ANOVA	Non- Parametric	LVM	ANOVA	
		Modified	CV Basis	Values and	d/or Estima	ates			
B-basis Value	35.070	28.200		21.490	33.390	NA		20.874	
B-estimate			20.341				20.198		
A-estimate	32.440	25.570	NA	19.472	30.254	NA	NA	18.914	
Method	pooled	pooled	LVM	Normal	Normal	NA	LVM	Normal	

Table 5-6: Statistics, Basis Values and/or Estimates for OHT1 Strength data

40

5.4.2 "Soft" Open Hole Tension 2 (OHT2)

The as measured CTD data did not pass the Anderson-Darling k-sample test for batch-to-batch variation. This means the as measured CTD dataset requires the ANOVA method to compute basis values which may result in overly conservative basis values. However, the data does pass the normality test and passes the ADK test under the modified CV transformation, so the modified CV values are provided for that dataset. There were no outliers.

The RTD and ETW2 environments had insufficient data to meet the requirements of CMH-17 Rev G, so only estimates are provided.

Statistics, estimates and basis values are given for the OHT2 strength data in Table 5-7. The normalized data, B-estimates and B-basis values are shown graphically in Figure 5-5.

Advanced Composites Group - MTM45-1/ Style 6781 S2 Glass "Soft" Open Hole Tension (OHT2) Strength Normalized

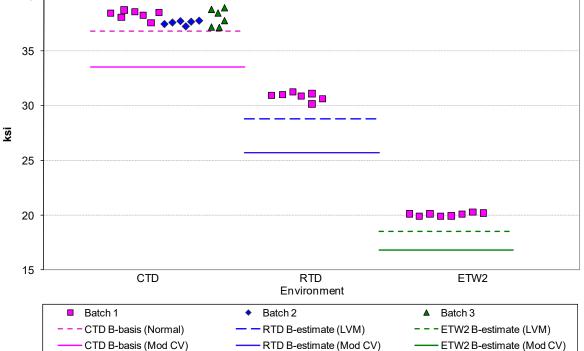


Figure 5-5: Batch plot for OHT2 Strength normalized

Open Ho	Open Hole Tension (OHT2) Strength Basis Values and Statistics							
	Normalized				As Measured			
Env	CTD	RTD	ETW2	CTD	RTD	ETW2		
Mean	37.967	30.844	20.076	36.871	30.397	19.602		
Stdev	0.583	0.364	0.136	0.695	0.258	0.206		
cv	1.534	1.179	0.678	1.884	0.849	1.051		
Modified CV	6.000	8.000	8.000	6.000	8.000	8.000		
Min	37.144	30.150	19.920	35.657	29.946	19.284		
Max	38.927	31.238	20.283	38.006	30.801	19.911		
No. Batches	3	1	1	3	1	1		
No. Spec.	19	7	8	19	7	8		
	Ва	asis Values	and/or Es	timates				
B-basis Value	36.832							
B-estimate		28.826	18.535	33.502	28.389	17.913		
A-estimate	36.026	NA	NA	31.099	NA	NA		
Method	Normal	LVM	LVM	ANOVA	LVM	LVM		
	Modified	CV Basis	Values and	or Estimat	es			
B-basis Value	33.527			32.559				
B-estimate		25.682	16.789		25.309	16.392		
A-estimate	30.379	NA	NA	29.502	NA	NA		
Method	Normal	LVM	LVM	Normal	LVM	LVM		

Table 5-7: Statistics, Basis Values and/or Estimates for OHT2 Strength data

5.4.3 "Hard" Open Hole Tension 3 (OHT3)

The normalized and the as measured CTD data did not pass the Anderson-Darling k-sample test for batch-to-batch variation. This means the CTD data requires the ANOVA method to compute basis values, but with data from only three batches, these values are considered estimates and may result in overly conservative basis values. Both the normalized and as measured CTD data passes the ADK test and the normality test under the modified CV transformation, so modified CV basis values are provided. The RTD and ETW2 environments had insufficient data to meet the requirements of CMH-17 Rev G, so only estimates are provided.

There were no outliers. Statistics, estimates and basis values are given for the OHT3 strength data in Table 5-8. The normalized data and B-estimates values are shown graphically in Figure 5-6.

Advanced Composites Group - MTM45-1/ Style 6781 S2 Glass "Hard" Open Hole Tension (OHT3) Strength Normalized

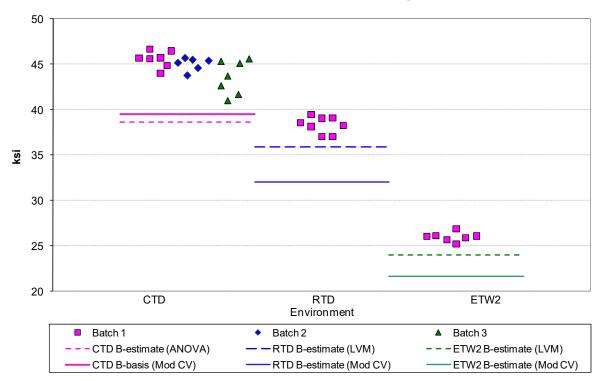


Figure 5-6: Batch plot for OHT3 Strength normalized

Open Hole Tension (OHT3) Strength (ksi) Basis Values and Statistics							
Normalized				As Measured			
Env	CTD	RTD	ETW2	CTD RTD ETW2			
Mean	44.694	38.334	25.999	43.495	37.715	25.776	
Stdev	1.502	0.908	0.500	1.731	0.971	0.693	
CV	3.360	2.367	1.923	3.981	2.574	2.689	
Modified CV	6.000	8.000	8.000	6.000	8.000	8.000	
Min	40.991	37.039	25.220	39.576	36.230	24.741	
Max	46.649	39.461	26.871	46.197	38.804	26.757	
No. Batches	3	1	1	3	1	1	
No. Spec.	20	8	7	20	8	7	
		Basis \	/alue Estin	nates			
B-estimate	38.608	35.880	23.959	33.701	35.278	23.506	
A-estimate	34.267	NA	NA	26.711	NA	NA	
Method	ANOVA	LVM	LVM	ANOVA	LVM	LVM	
Modified CV Basis Values and/or Estimates							
B-basis Value	39.528			38.467			
B-estimate		32.056	21.648		31.539	21.462	
A-estimate	35.857	NA	NA	34.895	NA	NA	
Method	Normal	LVM	LVM	Normal	LVM	LVM	

Table 5-8: Statistics, Basis Values and/or Estimates for OHT3 Strength data normalized

5.5 Open Hole Compression Properties (OHC1, OHC2, OHC3)

5.5.1 Quasi Isotropic Open Hole Compression 1 (OHC1)

The RTD data (both as measured and normalized) did not pass the Anderson-Darling k-sample test for batch-to-batch variation. This means the RTD dataset requires the ANOVA method to compute basis values which may result in overly conservative basis values. However, the data (both as measured and normalized) does pass the normality test and passes the ADK test under the modified CV transformation, so the modified CV values are provided for that dataset.

The pooled dataset (both as measured and normalized) did not pass Levene's test for equality of variances under the modified CV transformation, so the modified CV basis values are provided on a single point basis.

The ETW environment had insufficient data to meet the requirements of CMH-17 Rev G, so only estimates are provided.

There was one outlier. It was in the normalized RTD dataset, batch 4, and was an outlier on the high side. It was an outlier before, but not after, pooling the three batches.

Statistics, estimates and basis values are given for the OHC1 strength data in Table 5-9. The normalized data, B-estimates and B-basis values are shown graphically in Figure 5-7.

Advanced Composites Group - MTM45-1/ Style 6781 S2 Glass Quasi Isotropic Open Hole Compression (OHC1) Strength Normalized

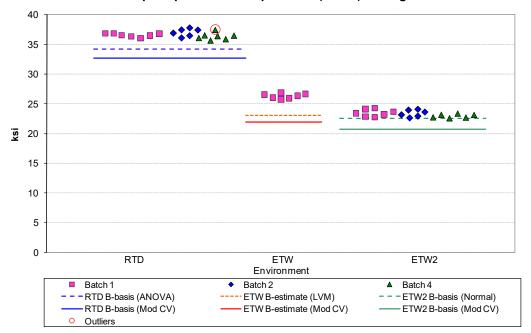


Figure 5-7: Batch plot for OHC1 Strength normalized

Open Hole C	Open Hole Compression (OHC1) Strength Basis Values and Statistics							
	Normalized				s Measure	_		
Env	RTD	ETW	ETW2	RTD	ETW	ETW2		
Mean	37.020	26.299	23.478	36.374	26.261	23.046		
Stdev	0.585	0.408	0.492	0.623	0.453	0.608		
CV	1.581	1.552	2.095	1.712	1.727	2.639		
Modified CV	6.000	8.000	6.000	6.000	8.000	6.000		
Min	36.062	25.748	22.608	35.159	25.492	21.988		
Max	38.257	26.864	24.284	37.433	26.809	24.384		
No. Batches	3	1	3	3	1	3		
No. Spec.	20	7	19	20	7	19		
	Bas	sis Values	and/or Est	timates				
B-basis Value			22.519			21.861		
B-estimate	34.227	22.966		33.829	22.894			
A-estimate	32.234	NA	21.839	32.013	NA	21.019		
Method	ANOVA	LVM	Normal	ANOVA	LVM	Normal		
	Modified (CV Basis V	alues and	or Estima	tes			
B-basis Value	32.741		20.732	32.170		20.351		
B-estimate		21.898			21.866			
A-estimate	29.700	NA	18.785	29.182	NA	18.440		
Method	Normal	LVM	Normal	Normal	LVM	Normal		

Table 5-9: Statistics, Basis Values and/or Estimates for OHC1 Strength data

5.5.2 "Soft" Open Hole Compression 2 (OHC2)

The RTD environment had insufficient data to meet the requirements of CMH-17 Rev G, so only estimates are provided.

There were no outliers in this data. Statistics, estimates and basis values are given for the OHC2 strength data in Table 5-10. The normalized data, B-estimates and B-basis values are shown graphically in Figure 5-8.

Advanced Composites Group - MTM45-1/ Style 6781 S2 Glass "Soft" Open Hole Compression Strength Normalized (OHC2)

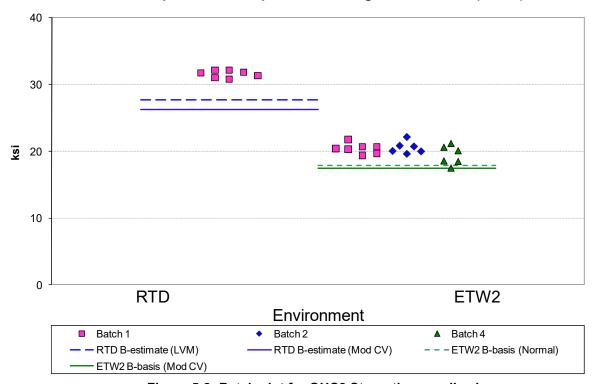


Figure 5-8: Batch plot for OHC2 Strength normalized

Open-Hole Compression (OHC2) Strength Basis Values and Statistics								
Normalized As Measured								
Env	RTD	ETW2	RTD	ETW2				
Mean	31.557	20.142	31.439	19.726				
Stdev	0.541	1.137	0.311	1.266				
CV	1.713	5.643	0.990	6.417				
Modified CV	8.000	6.822	8.000	7.208				
Min	30.770	17.465	30.889	16.820				
Max	32.140	22.185	31.845	21.827				
No. Batches	1	3	1	3				
No. Spec.	7	19	7	19				
Ва	asis Values	and/or Es	timates					
B-basis Value		17.927		17.259				
B-estimate	27.748		27.385					
A-estimate	NA	16.354	NA	15.508				
Method	LVM	Normal	LVM	Normal				
Modified	CV Basis	Values and	or Estimat	es				
B-basis Value		17.464		16.955				
B-estimate	26.275		26.177					
A-estimate	NA	15.565	NA	14.990				
Method	LVM	Normal	LVM	Normal				

Table 5-10: Statistics, Basis Values and/or Estimates for OHC2 Strength data

5.5.3 "Hard" Open Hole Compression 3 (OHC3)

The RTD environment had insufficient data to meet the requirements of CMH-17 Rev G, so only estimates are provided.

There were no outliers in this data. Statistics, estimates and basis values are given for the OHC3 strength data in Table 5-11. The normalized data, B-estimates and B-basis values are shown graphically in Figure 5-9.

Advanced Composites Group - MTM45-1/ Style 6781 S2 Glass "Hard" Open Hole Compression Strength Normalized (OHC3)

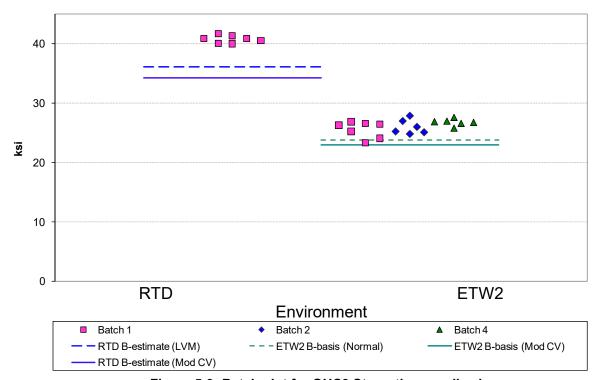


Figure 5-9: Batch plot for OHC3 Strength normalized

Open-Hole Co	Open-Hole Compression (OHC3) Strength Basis Values							
and Statistics								
	Normalized As Measured							
Env	RTD	ETW2	RTD	ETW2				
Mean	41.079	26.053	40.726	25.615				
Stdev	0.525	1.186	0.630	1.235				
CV	1.278	4.552	1.548	4.823				
Modified CV	8.000	6.276	8.000	6.411				
Min	40.532	23.329	39.972	23.057				
Max	41.890	27.804	41.633	27.352				
No. Batches	1	3	1	3				
No. Spec.	7	19	7	19				
В	asis Value	s and/or E	stimates					
B-basis Value		23.742		23.208				
B-estimate	36.121		35.475					
A-estimate	NA	22.101	NA	21.498				
Method	LVM	Normal	LVM	Normal				
Modified	CV Basis	Values an	d/or Estima	ates				
B-basis Value		22.866	33.910	22.414				
B-estimate	34.204	·						
A-estimate	NA	20.607	NA	20.144				
Method	LVM	Normal	LVM	Normal				

Table 5-11: Statistics, Basis Values and/or Estimates for OHC3 Strength data

5.6 Quasi Isotropic Filled Hole Tension Properties (FHT1)

The RTD environment had insufficient data to meet the requirements of CMH-17 Rev G, so only estimates are provided.

There was one outlier. The outlier was in the normalized data from the CTD environment. It was on the low side of batch four and it was an outlier only before pooling the three batches together. Statistics, estimates and basis values are given for the FHT1 strength data in Table 5-12. The normalized data, B-estimates and B-basis values are shown graphically in Figure 5-10.

Advanced Composites Group - MTM45-1/ Style 6781 S2 Glass "Quasi Isotropic" Filled Hole Tension Strength Normalized (FHT1)

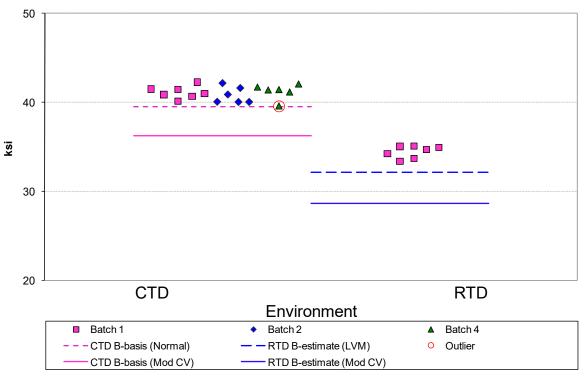


Figure 5-10: Batch plot for FHT1 Strength normalized

Filled-Hole Compression (FHC1) Strength Basis Values								
	and Statistics							
	Norm	alized	As Mea	As Measured				
Env	RTD	ETW2	RTD	ETW2				
Mean	56.053	35.208	55.577	34.429				
Stdev	1.265	2.454	1.387	2.444				
CV	2.256	6.969	2.495	7.099				
Modified CV	8.000	7.485	8.000	7.549				
Min	54.593	31.636	53.926	31.266				
Max	58.345	40.914	57.859	39.750				
No. Batches	1	3	1	3				
No. Spec.	7	20	7	20				
Bas	sis Values	and/or Est	timates					
B-basis Value		30.483		30.811				
B-estimate	49.287		48.411					
A-estimate	NA	27.120	NA	22.520				
Method	LVM	Normal	LVM	Non- Parametric				
Modified (CV Basis V	alues and	or Estima	tes				
B-basis Value		30.132		NA				
B-estimate	46.672		46.276					
A-estimate	NA	26.524	NA	NA				
Method	LVM	Normal	LVM	NA				

Table 5-12: Statistics, Basis Values and/or Estimates for FHT1 Strength data

5.7 Quasi Isotropic Filled Hole Compression Properties (FHC1)

The RTD environment had insufficient data to meet the requirements of CMH-17 Rev G, so only estimates are provided.

There were no outliers in this data. Statistics, estimates and basis values are given for the FHC1 strength data in Table 5-13. The normalized data, B-estimates and B-basis values are shown graphically in Figure 5-11.

Advanced Composites Group - MTM45-1/ Style 6781 S2 Glass "Quasi Isotropic" Filled Hole Compression Strength Normalized (FHC1)

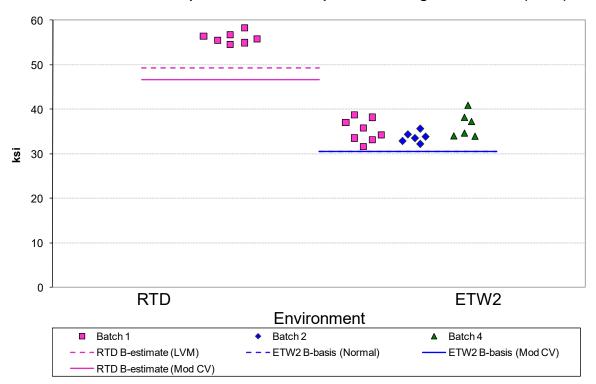


Figure 5-11: Batch plot for FHC1 Strength normalized

Filled-Hole Tension (FHT1) Strength Basis Values and Statistics							
Normalized As Measured							
Env	CTD	RTD	CTD	RTD			
Mean	41.071	34.467	40.304	34.127			
Stdev	0.801	0.679	0.842	0.713			
cv	1.950	1.969	2.089	2.090			
Modified CV	6.000	8.000	6.000	8.000			
Min	39.606	33.422	38.654	33.031			
Max	42.296	35.100	41.638	34.897			
No. Batches	3	1	3	1			
No. Spec.	19	7	19	7			
Bas	sis Values	and/or Es	timates				
B-basis Value	39.511		38.664				
B-estimate		32.212		31.873			
A-estimate	38.402	NA	37.499	NA			
Method	Normal	LVM	Normal	LVM			
Modified (CV Basis V	alues and	or Estima	tes			
B-basis Value	36.268		35.591				
B-estimate		28.699		28.416			
A-estimate	32.863	NA	32.249	NA			
Method	Normal	LVM	Normal	LVM			

Table 5-13: Statistics, Basis Values and/or Estimates for FHC1 Strength data

5.8 Quasi Isotropic Pin Bearing Properties (PB1)

There was one outlier. It was in the as measured RTD 2% offset data in batch one. The outlier was on the high side and was identified as an outlier only after pooling the three batches. Pooling was acceptable across the two environments.

Statistics, estimates and basis values are given for the PB1 strength data in Table 5-14. The normalized data, B-estimates and B-basis values are shown graphically in Figure 5-12.

Advanced Composites Group - MTM45-1/ Style 6781 S2 Glass Quasi Isotropic Pin Bearing 2% Offset (PB1) Strength Normalized

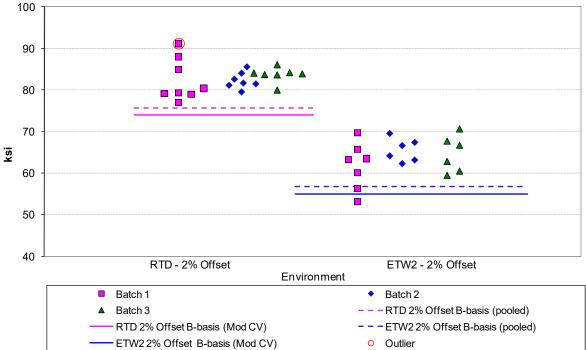


Figure 5-12: Batch plot for PB1 Strength normalized

Pin Bearing (PB1) Strength Basis Values and Statistics					
	Norm	alized	As measured		
Env	RTD	ETW2	RTD	ETW2	
Mean	82.726	63.819	80.852	62.562	
Stdev	3.317	4.610	3.293	4.275	
CV	4.009	7.224	4.073	6.833	
Modified CV	6.005	7.612	6.037	7.417	
Min	77.004	53.103	76.406	52.798	
Max	91.124	70.585	90.010	68.854	
No. Batches	3	3	3	3	
No. Spec.	22	19	22	19	
Basis Values and/or Estimates					
B-basis Value	75.707	56.709	74.166	55.789	
A-estimate	70.848	51.870	69.537	51.180	
Method	pooled	pooled	pooled	pooled	
Modified CV Basis Values and/or Estimates					
B-basis Value	74.025	55.005	72.409	54.009	
A-estimate	68.001	49.007	66.564	48.189	
Method	pooled	pooled	pooled pooled		

Table 5-14: Statistics, Basis Values and/or Estimates for PB1 2% Offset Strength data

5.9 Compression After Impact (CAI)

Basis values are not computed for the compression after impact data. Testing is done only for the RTD condition. Summary statistics are presented in Table 5-15 and the data are displayed graphically in Figure 5-13. There were no outliers. Only one batch of material was tested.

Advanced Composites Group - MTM45-1/ Style 6781 S2 Glass Compression After Impact Normalized Strength

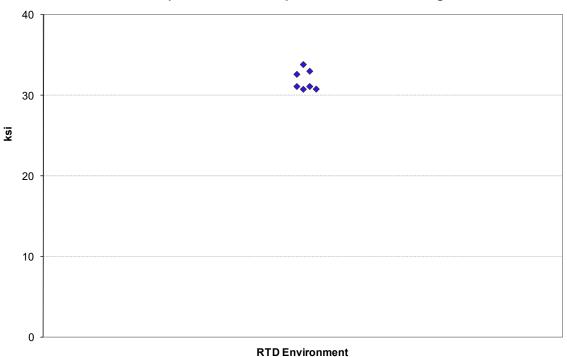


Figure 5-13: Plot for Compression After Impact normalized strength

Compression After Impact Strength (ksi)				
	Normalized	As Measured		
Env	RTD	RTD		
Mean	31.866	31.529		
Stdev	1.255	1.260		
CV	3.940	3.997		
Modified CV	6.000	6.000		
Min	30.727	30.342		
Max	33.830	33.372		
No. Batches	1	1		
No. Spec.	7	7		

Table 5-15: Statistics for CAI Strength data

5.10 Interlaminar Tension (ILT) and Curved Beam Strength (CBS)

The ILT and CBS data is not normalized. Basis values are not computed for these properties. However the summary statistics are presented in Table 5-16 and the data are displayed graphically in Figure 5-14.

Advanced Composites Group - MTM45-1/ Style 6781 S2 Glass Interlaminar Tension Strength (ILT) and Curved Beam Strength (CBS)

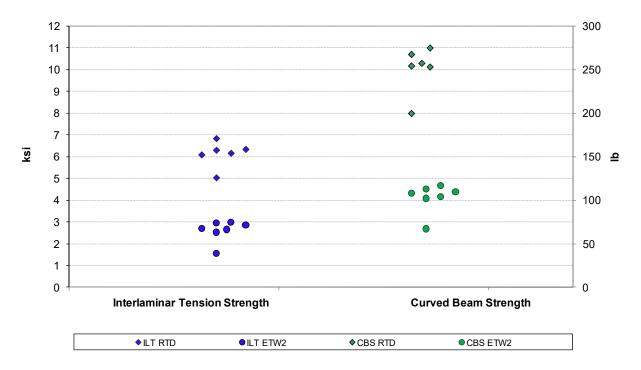


Figure 5-14: Plot for Interlaminar Tension and Curved Beam Strength

Property	ILT (ksi)		CBS (lb)		
Env	RTD	ETW2	RTD	ETW2	
Mean	6.130	2.601	251.245	102.965	
Stdev	0.597	0.492	26.627	16.571	
CV	9.740	18.910	10.598	16.094	
Mod CV	9.740	18.910	10.598	16.094	
Min	5.035	1.548	199.713	67.167	
Max	6.841	2.978	275.080	116.929	
No. Batches	1	1	1	1	
No. Spec.	6	7	6	7	

Table 5-16: Statistics for ILT and CBS Strength data

6. Outliers

Outliers were identified according to the standards documented in section 2.1.5, which are in accordance with the guidelines developed in CMH-17 Rev G section 8.3.3. An outlier may be an outlier in the normalized data, the as measured data, or both. A specimen may be an outlier for the batch only (before pooling the three batches within a condition together) or for the condition (after pooling the three batches within a condition together) or both.

Approximately 5 out of 100 specimens will be identified as outliers due to the expected random variation of the data. This test is used only to identify specimens to be investigated for a cause of the extreme observation. Outliers that have an identifiable cause are removed from the dataset as they inject bias into the computation of statistics and basis values. Specimens that are outliers for the condition and in both the normalized and as measured data are typically more extreme and more likely to have a specific cause and be removed from the dataset than other outliers. Specimens that are outliers only for the batch, but not the condition and specimens that are identified as outliers only for the normalized data or the as measured data but not both, are typical of normal random variation.

All outliers identified were investigated to determine if a cause could be found. Outliers with causes were removed from the dataset and the remaining specimens were analyzed for this report. Information about specimens that were removed from the dataset along with the cause for removal is documented in the material property data report, NCAMP Test Report CAM-RP-2009-001 Rev C.

Outliers for which no causes could be identified are listed in Table 6-1. These outliers were included in the analysis for their respective test properties.

Test	Condition	Batch	Specimen Number	Normalized Strength	Strength As Measured	High/ Low	Batch Outlier	Condition Outlier
WT	RTD	1	ABJJA111A	Not an Outlier	79.314	Low	Yes	No
FT	CTD	2	ABJUB115B	95.810	92.947	High	Yes	No
FT	ETW2	2	ABJUB119D	59.615	Not an Outlier	High	Yes	No
FC	ETD	1	ABJZA11IC	63.991	63.355	High	Yes	No
IPS - 0.2% Offset	CTD	1	ABJNA217B	NA	7.072	Low	Yes	No
IPS - 0.2% Offset	ETW2	2	ABJNB119D	NA	2.418	Low	Yes	Yes
IPS - 5% Strain	ETW	1	ABJNA11GN	NA	5.936	High	Yes	No
IPS - 5% Strain	ETW2	3	ABJNC219D	NA	5.072	High	Yes	Yes
UNT1	CTD	3	ABJAC112B	Not an Outlier	65.084	Low	Yes	No
UNT1	ETW2	1	ABJAA21CD	44.979	44.142	Low	Yes	No
UNC1	ETW2	1	ABJWA21HD	43.198	43.162	High	Yes	No
UNC1	ETW2	2	ABJWB11BD	41.021	Not an Outlier	High	Yes	No
UNC1	ETW2	3	ABJWC116D	43.562	42.831	High	Yes	No
LSBS	ETW	1	ABJqA247N	NA	6.545	High	Yes	No
OHT1	RTD	2	ABJDB113A	Not an Outlier	30.240	Low	Yes	No
OHT1	RTD	3	ABJDC112A	30.851	29.692	Low	Yes	No
OHC1	RTD	4	ABJGD212A	38.257	Not an Outlier	High	Yes	No
FHT1	CTD	4	ABJ4D216B	39.606	Not an Outlier	Low	Yes	No
PB1 - 2% Offset	RTD	1	ABJ1A112A	Not an Outlier	90.010	High	No	Yes

Table 6-1: List of outliers

7. References

- 1. Snedecor, G.W. and Cochran, W.G., *Statistical Methods*, 7th ed., The Iowa State University Press, 1980, pp. 252-253.
- 2. Stefansky, W., "Rejecting Outliers in Factorial Designs," *Technometrics*, Vol. 14, 1972, pp. 469-479.
- 3. Scholz, F.W. and Stephens, M.A., "K-Sample Anderson-Darling Tests of Fit," *Journal of the American Statistical Association*, Vol. 82, 1987, pp. 918-924.
- 4. Lehmann, E.L., *Testing Statistical Hypotheses*, John Wiley & Sons, 1959, pp. 274-275.
- 5. Levene, H., "Robust Tests for Equality of Variances," in *Contributions to Probability and Statistics*, ed. I. Olkin, Palo, Alto, CA: Stanford University Press, 1960.
- 6. Lawless, J.F., *Statistical Models and Methods for Lifetime Data*, John Wiley & Sons, 1982, pp. 150, 452-460.
- 7. Metallic Materials and Elements for Aerospace Vehicle Structures, MIL-HDBK-5E, Naval Publications and Forms Center, Philadelphia, Pennsylvania, 1 June 1987, pp. 9-166,9-167.
- 8. Hanson, D.L. and Koopmans, L.H., "Tolerance Limits for the Class of Distribution with Increasing Hazard Rates," *Annals of Math. Stat.*, Vol 35, 1964, pp. 1561-1570.
- 9. Vangel, M.G., "One-Sided Nonparametric Tolerance Limits," *Communications in Statistics: Simulation and Computation*, Vol. 23, 1994, p. 1137.
- 10. Vangel, M.G., "New Methods for One-Sided Tolerance Limits for a One-Way Balanced Random Effects ANOVA Model," *Technometrics*, Vol 34, 1992, pp. 176-185.
- 11. Odeh, R.E. and Owen, D.B., *Tables of Normal Tolerance Limits, Sampling Plans and Screening*, Marcel Dekker, 1980.
- 12. Tomblin, John and Seneviratne, Waruna, *Laminate Statistical Allowable Generation for Fiber-Reinforced Composites Material: Lamina Variability Method*, U.S. Department of Transportation, Federal Aviation Administration, May 2006.
- 13. CMH-17 Rev G, Volume 1, 2012. SAE International, 400 Commonwealth Drive, Warrendale, PA 15096