

Resin Infused Fiber Reinforced Materials Guidelines for Aircraft Design and Certification Process *April 2023 UPDATE*

Federal Aviation Administration

Presented by:

John Tomblin Rachael Andrulonis Michelle Man Royal Lovingfoss

April 19, 2023

Wichita State

Introduction

- Resin Infused Fiber Reinforced Materials Guidelines for Aircraft Design and Certification Process
- Project Participants
 - Dr. John Tomblin, Rachael Andrulonis, Royal Lovingfoss, Michelle Man
- FAA Technical Monitor: Dave Stanley
- FAA Sponsors: Cindy Ashforth, Larry Ilcewicz
- Industry Partnerships/Other Collaborations
 - Solvay, Teijin, Fiber Dynamics, several other industry committee members

JAMAS DE LA CALENCIA DE LA CALENCIA

Motivation and Key Issues

- Interest in resin infused fiber reinforced composite materials are growing
- Resin infusion process would be ideal for low volume medium to large scale applications
- Complex geometric parts as a unitized structure; optimizing production
- Reduces capital and ongoing cost of large structure manufacturing
- Easier to manipulate dry reinforcements over tooling
- Currently there is no resin infused qualification data in NCAMP database or CMH17

Background

Objective and Scope

- Primary goal: To develop a <u>framework for the qualification</u> of resin infused fiber reinforced materials including guidelines and recommendations for their characterization, testing, design and utilization using the NCAMP process.
- Secondary goal: To transition the test data and guidelines generated in this program into <u>shared databases</u>, such as CMH-17.

Technical Approach Overview

- ✓ Survey OEM designers, manufacturers/user and experts on material selection
- ✓ Committee Review Group established Industry users, suppliers, FAA
- \checkmark Material selection narrowed
 - ✓ Resin: Solvay PRISM[™] EP 2400
 - ✓ Reinforcement: Tenax[™]-E IMS65 Non-Crimp Reinforcement (Stitched); UD Fabric, Bi-axial (0/90), and Bi-diagonal (+/-45)
- ✓ Processing Method VARTM
- ✓ Trials to determine project needs, challenges, critical process control parameters
- \checkmark Set framework for Material Qualification
- ✓ Develop M&P Specifications
- ✓ Develop Mechanical, Physical, and Chemical requirements
- Qualification test data sufficient for developing statistical guidelines and allowables
- Data and Guidelines

ULSE

Milestones & Timeline

Material Forms

Wichita State University

• Reinforcement: Tenax[™]-E IMS65 Non-Crimp Reinforcement

• Material Forms:

- Biaxial (BA) carbon fibers in 0°/90° or 90°/0°
- Bidiagonal (BD) carbon fibers in +45°/-45° or -45°/+45° (also in ±30° and ±60°)
- UD (woven with yarn)
- **Toughening veil:** TA1903s (polyamide veil) used to improve material toughness.
- Powder binder: Hexion EP05311 binder resin improves material cutting and handling and aids in preforming and tacking two layers of textile together.
- Stitching Yarns:
 - NČF: K-203 (EP1390) 33 dtex a co-polyamide yarn
 - UD Woven: polyester and co-polyamide Z-85 combifuseable bonding yarn, 200 dtex.
- Resin:
 - Solvay PRISM[™] EP 2400
 - One-part toughened epoxy resin
 - 2 hour cure at 356°F cure
 - Intended service temp >250°F
 - Superior toughness, low viscosity, and extended pot-life

Detail Construction of Bidiagonal NCF

Effect of Veil

Teijin NCF Manufacturing Facility

2020.05.20.

Reinforcement – Stitching Techniques

- Tricot Pillar Stitch
 - Compromise between performance and drapeability
 - Used in Bidiagonal NCF

Reinforcement – Stitching Techniques

- Tricot Stitch
 - Best drapeability
 - Additional improvements possible

 stitching length and loop stitch
 - Used in Biaxial NCF (tricot loop)

Reinforcement – UD (woven)

- UD Woven
 - Warp Carbon fibers
 - Weft Combi-fuseable yarn woven into the fibers
 - Provide localized reinforcement
 - Veil and Fiber
 - Increasing crossing point improves permeability
 - Balance between crossing point and mechanical performance

Trial Phase

- Panel fabrication
 - 26 Panels fabricated at Fiber Dynamics
- Properties evaluated
 - Mechanical: Tension, Compression, Flex, and Shear tests conducted
 - Physical: Fiber volumes, resin contents, voids, etc.
- General processing challenges
 - Identifying variables that need to be controlled
- Manufacturing process differences
 - Vacuum Assisted Resin transfer Molding vs Resin Transfer Molding (VARTM vs RTM)
 - Qualification vs. equivalency; challenges, feasibility

Trial Phase

USU

Lamina Table, All test at RTA									
Layup	Approx Target Thickness (in)	# of NCF layers	D3039 Tension	D6641	D3518 In-Plane Shear	D2344 Short Beam Shear	D790 Flex		
[45/-45]3s	0.087 - 0.090	6	5 (rotated panel)	5*	5		5		
[0/90]3s	0.087 - 0.090	6	5	5 in 0 and 5 in 90	5 (rotated panel)		5		
[45/-45]6s	0.174 - 0.180	12				5			
[0/90]6s	0.174 - 0.180	12				5			
* additional 5 for Do	gbone D695 ge	ometry							

Laminate Table,	All test at RTA				
Layup	Approx Target Thickness (in)	# of NCF layers	D6484 Open Hole Compression	D5766 Open Hole Tension	D7136/D7137 CAI
[45/-45/0/90]2s	0.116	8	5	5	5

TTANT

Determining Processing Method

Determining Processing Method

- ✓ VARTM more consistent, easier to work with, better process control
- ✓ Better panel quality
- ✓ Comparable results to RTM
- ✓ VARTM selected

RTM, [0/90]

R

VARTM, [0/90]

Tension Specimens Post-Test for RTM and VARTM

Processing Challenges

- Porosity, Improving Permeability
- Controlling fiber volume
- Initial weft density resulted in porosity and high infusion times.
- Varying weft density & changed flow media

Tool Plate Side (Bottom)

Infusion time: 85 minutes

Dark areas are resin infused, but peel ply texture did not transfer

VARTM Uni-Fabric Panel *Courtesy of Fiber Dynamics, Inc.*

Process Optimization

- NIAR and Teijin visited Fiber Dynamics
- Modification made to bagging scheme:
 - Varying flow media
 - Increased resin infusion temp.
 - Made port adjustments to improved infusion process
 - Adjusted tubing placement
 - Optimizing Infusion time and process
 - More repeatable FV
 - Target is 57% ± 3%
 - Weft density construction of UD material

Weft Density

Compared data and panel quality.

Selected 1.5 threads/cm

Setting the Qualification Framework

- Specifications are organized for versatility and future use/expansion
- Properties will be generated from 5 products:
 - Two forms of BA
 - Two forms of BD
 - One form of UD
- Lamina and laminate properties
 - Individual form
 - Combined forms

Specification Series

- <u>NMS 241F</u> Base Fabric Specification (defines requirements for the dry reinforcements)
 - <u>NMS 241F/1</u> Biaxial DRNF
 - <u>NMS 241F/2</u> Bidiagonal DRNF
 - <u>NMS 241F/3</u> UD Woven DRWF
- <u>NMS 241R</u> Base Resin Specification (defines requirements for the resin)
 - <u>NMS 241R/1</u> EP2400
- <u>NMS 241</u> Base Laminate Specification (defines requirement for the finished laminates)
 - <u>NMS 241/1</u> Biaxial Laminates
 - <u>NMS 241/2</u> Bidiagonal Laminates
 - <u>NMS 241/3</u> UD Woven Laminates
- <u>NPS 82401</u> Process specification describes the methods of fabricating test panels using a vacuum assisted resin transfer molding process with PRISM[™] EP2400 Resin System.

Test Plan

- Test plan lamina and laminate testing
 - Lamina properties for Biaxial, Bidiagonal and Unidirectional
 - Laminate properties for combination of materials
 - Quasi, Soft, Hard

Wichita State University

• -65°F, RTD, 180°F, 250°F

Test Plan – Lamina (BA, BD, UD)

Fiber	Test	Test Type	Property	Number of Batches x Number of Panels x Number of Test Specimens Test Temperature/Moisture Condition					
Layup	urection			CTA (4)	RTA	ETA	ETW1	ETW2	
[0/90] _{4S}	<mark>0</mark> °	ASTM D3039 Tension	Strength, Modulus, and Poisson's Ratio	3x2x3	3x2x3 (3)	3x2x3	3x2x3		
[0/90] ₄₅	0°	ASTM D6641 Compression	Strength and Modulus		3x2x3 (1)	3x2x3	3x2x3	1x2x3	
[0/90] ₄₅	90°	ASTM D3039 Tension	Strength and Modulus	3x2x3	3x2x3 (3)	3x2x3	3x2x3		
[0/90] _{4S}	90°	ASTM D6641 Compression	Strength and Modulus		3x2x3 (1)	3x2x3	3x2x3	1x2x3	
[45/-45] _{3S} (rotated out of 0/90 and 90/0)	<mark>0</mark> °	ASTM D3518 In- Plane Shear (2)	Strength and Modulus	3x2x3	3x2x3 (3)	3x2x3	3x2x3		
[0/90] ₈₅	0°	ASTM D2344 Short Beam	Strength	3x2x3	3x2x3	3x2x3	3x2x3	1x2x3	
[0/90] ₄₅	0°	ASTM D7264 Flex (5)	Strength and Modulus		3x2x3				

Fiber Layup	Test direction	Test Type	Property	Number of Batches x Number of Panels x Number of Test Specimens Test Temperature/Moisture Condition				
				CTA (4)	RTA	ETA	ETW1	ETW2
[0/90] _{4S} (BD rotated by 45°)	0°	ASTM D3039 Tension	Strength, Modulus, and Poisson's Ratio	3x2x3	3x2x3 (3)	3x2x3	3x2x3	
[0/90] _{4S} (BD rotated by 45°)	0°	ASTM D6641 Compression	Strength and Modulus		3x2x3 (1)	3x2x3	3x2x3	1x2x3
[45/-45] ₃₈	0°	ASTM D3518 In-Plane Shear (2)	Strength and Modulus	3x2x3	3x2x3 (3)	3x2x3	3x2x3	
[0/90] ₈₅ (BD rotated by 45°)	0°	ASTM D2344 Short Beam	Strength	3x2x3	3x2x3	3x2x3	3x2x3	1x2x3
[0/90] _{4S} (BD rotated by 45°)	0°	ASTM D7264 Flex (5)	Strength and Modulus		3x2x3			

Bidiagonal Lamina Mechanical Test Matrix

Biaxial Lamina Mechanical Test Matrix

Test Plan – Lamina (UD)

T ¹	T	Test Type	Property	Number of Batches x Number of Panels x Number of Test Specimens					
Layup	l est direction			Test Temperature/Moisture Condition					
				CTA (4)	RTA	ETA	ETW1	ETW2	
[0/90] ₄₅	<mark>0</mark> °	ASTM D3039 Tension	Strength, Modulus, and Poisson's Ratio	3x2x3	3x2x3 (3)	3x2x3	3x2x3		
[0/90] ₄₅	0°	ASTM D6641 Compression	Strength and Modulus		3x2x3 (1)	3x2x3	3x2x3	1x2x3	
[0] ₈	0°	ASTM D3039 Tabbed Tension	Strength and Modulus	3x2x3	3x2x3 (3)	3x2x3	3x2x3	1x2x3	
[0] ₁₆	0°	ASTM D6641 Compression	Modulus		3x2x3 (1)	3x2x3	3x2x3	1x2x3	
[45/-45] ₃₈	0°	ASTM D3518 In- Plane Shear (2)	Strength and Modulus	3x2x3	3x2x3	3x2x3	3x2x3		
[0]32	0°	ASTM D2344 Short Beam	Strength	3x2x3	3x2x3	3x2x3	3x2x3	1x2x3	
[0/90] _{4S}	0°	ASTM D7264 Flex (5)	Strength and Modulus		3x2x3				

UD Woven Lamina Mechanical Test Matrix

Laminate Mechanical Properties

- The construction of the laminates are done using a combination of the non-crimp and woven fabric forms to produce the desired quasi, soft, and hard orientation.
- The layup angles 0/90, 90/0, 45/-45 and -45/45 refer to the specific DRNF, i.e. biaxial (0/90 or 90/0) and bidiagonal (45/-45 or -45/45) reinforcement fabric.
- The stacking sequences were chosen based on several factors:
 - to assess the scope of material properties from a soft, quasi and hard construction
 - to assess the interactions of the different preforms
 - to assess the process ability of the different preforms when used jointly.

Properties include:

- Unnotched Tension
- Unnotched Compression
- Short Beam Shear
- Open Hole Tension
- Filled Hole Tension
- Open Hole Compression
- Filled Hole Compression
- Single Shear Bearing
- Interlaminar Tension
- Compression After Impact

Fluid Screening:

- Woven Fabric
- Short Beam Shear
- 13 fluids + controls
- RT and ET testing

JMS

CECAM

Lessons to Learn

Surface picture of Panel A-C2-2 number 330688

Most severe creases of all panels

MST

CECAM

Lessons to Learn

26

Ongoing Activity

Qualification Documents

• Approved by project AER and released

Qualification Panels

- Raw materials (resin and fiber) received mid/late 2022
- Panel production began Dec 2022
- Batch A in progress
 - Batch B and C to follow
- 44 panels received
 - 28 scanned/machined

Challenges

- Processing
 - Vacuum leak rates
- Surface porosity/dry
 - Adjustments to bagging media
- Wrinkling
 - Teijin worked with Fiber Dynamics for resolution
 - Efforts ongoing
 - 4 panels affected
 - Lessons Learned Report
 - Processing
 - Material Property data effects

Publications

- FAA Annual Reports submitted: 2020, 2021
- Upcoming Tech Report submission: ECD May 31, 2023
 - Detail pre-qualification trials
 - Reference qualification
- Planned Reports:
 - Qualification Reports NCAMP, FAA
 - Specifications NCAMP
 - Material Specification Guidelines FAA
 - Lessons Learned Report NCAMP, FAA

