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Reliability-Based Damage Tolerant 

Structural Design Methodology

• Motivation and Key Issues: Composite materials are being used in 

aircraft primary structures such as 787 wings and fuselage. In these 

applications, stringent requirements on weight, damage tolerance, 

reliability and cost must be satisfied. Although currently there are 

MSG-3 guidelines for general aircraft maintenance, an urgent need 

exists to develop a standardized methodology specifically for 

composite structures to establish an optimal inspection schedule

that provides minimum maintenance cost and maximum structural 

reliability. 

• Objective: Develop a probabilistic method for estimating structural 

component reliabilities suitable for aircraft design, inspection, and 

regulatory compliance.
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Technical Approach

� The approach is based on a probabilistic failure analysis with  

the consideration of parameters such as inspection intervals, 

statistical data on damages, loads, temperatures, damage 

detection capability, residual strength of the new, damaged and 

repaired structures.

� The inspection intervals are formulated based on the probability

of failure of a structure containing damage and the quality of a

repair. 

� The approach combines the “Level of Safety” method proposed 

by Lin, et al. and “Probabilistic Design of Composite Structures”

method by Styuart, at al.
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RELACS – Reliability Life-Cycle

Analysis of Composite Structures

Environmental Physics:

1. External Loads

2. Temperatures

3. Damage Source

Operations:

1. Detection Probability

2. Repair Quality

Damage Physics:

1. Damage size and 

Occurrence

2. Residual Strength

3. Damage Growth or 

Fatigue after DamageRELACS

• Quantified Safety

• Better Design

• Optimized 

Maintenance

Experiments 

FEA 

(CAI, progressive damage 
model, VCCT, etc)

Failure Load

Temperature

Damage Detection

Damage Size

Maximum Load

Life time
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Program Capabilities: 

Various Failure Modes

� “Static” failure: load exceeds the strength of damaged 

structures

� Deformation exceeds acceptable level

� Flutter: airspeed exceeds the flutter speed of damaged 

or repaired structure*

� High amplitude limit cycle oscillations: the acceptable 

level of vibrations is exceeded* 

*See the FAA Grant “Combined Local-Global Variability and Uncertainty in the 

Aeroservoelasticity of Composite Aircraft”
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Accomplishments

Work Accomplished: Phase 1 

� Developed the methodology to determine the reliability and maintenance 

planning of damage tolerant structures.

� Developed a user-friendly software (RELACS) for calculating POF and 

inspection intervals.

� Developed software interface (VSTM) with Nastran to facilitate stochastic FEA.

� Implemented stochastic FEA to obtain initial/damaged residual strength 

variance.

Current Research

� Develop analytical methods to analyze disbond and delamination arrest 

mechanisms in bonded structures under mixed mode loading.

� To apply probabilistic methods to assess reliability of bonded structures 

with fasteners. 
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Analysis of Disbond/Delamination

Arrest Mechanisms

� Objectives

- To understand the effectiveness of delamination/disbond  

arrest mechanisms 

- To develop analysis tools for design and optimization

� Tasks

1). Establish FE models in ABAQUS  

2). Develop 1-D(beam) and 2D (plate) analytical capabilities 

3). Implement reliability analysis capability 

4). Conduct sensitivity studies on fastener effectiveness and 
stacking sequence effects
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Bonded Skin/Stiffener with Fasteners 
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Model Description

� 16-ply CFRP ( t = 0.0075” x 16 = 0.12” ) 

� Lay-ups

� Percentage of 0-deg: 25% / 37.5% / 50% / 62.5%

� Fastener

� Ti-Al6-V4 (E = 16.5x106psi)

� d = 0.25 in

� Fastener Flexibility (H. Huth, 1986)
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Model Description

• B-K law for mixed-mode VCCT criteria

• Fastener failure not considered

• Fastener pull-through not considered
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Material Properties (AS4/3501-6)

• E1=127.5GPa

• E2=11.3GPa

• G12=6.0GPa

• ν=0.3

• Xt=2282MPa

• Xc=1440MPa

• Yt=57MPa

• Yc=228MPa

• Sxy=71MPa

• GIC=0.2627N/mm

• GIIC=1.226N/mm

• E1=18.5Msi

• E2=1.64Msi

• G12=0.871Msi

• ν=0.3

• Xt=331ksi

• Xc=208.9ksi

• Yt=8.3ksi

• Yc=33.1ksi

• Sxy=10.3ksi

• GIC=1.5lb/in

• GIIC=7.0lb/in
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Laminate Configuration (16 plies)
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Results: Applied Moment M Only

Mxx vs Crack Length (Mode I)
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Growth of a Disbond Caused by 

Applied Moment M

Normalized Load vs. Crack Length (M only)
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Mode Decomposition: Applied 

Moment M Only

Fracture Energy vs. Crack Length
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Results: Applied Tension N Only

Nx vs Crack Length (Mode II)
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Growth of a Disbond due to 

Applied Tension N

Normalized Load vs. Crack Length (N only)
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Mode Decomposition: Applied 

Tension N Only

Fracture Energy vs. Crack Length
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Crack-Tip Fracture Analysis

• Uses the closed-form solution obtained by Wang 

and Qiao [“Fracture Analysis of Shear Deformable Bi-Material Interface,”

Journal of Engineering Mechanics, pp. 306-316, March 2006.]

• Uses shear deformable beam theory

• Calculates mode-decomposed strain energy release 

rate components, GI and GII
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Comparison with Classical Beam 

Solutions

P vs crack length (ENF)
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Local Crack-tip and Far-field 

Applied Forces and Moments
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Linear Solutions for Fastener Force

• Pure Tension

• Pure Moment
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Nonlinear Beam Analysis
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Comparison Between Linear and 

Nonlinear Beams – Tension Only

Comparison Between Linear and Nonlinear Beams - 

Tensile Load (10,000lb)

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0 5 10 15 20 25

L(in) (t=0.1)

V
e
rt

ic
a
l 
D

is
p
la

c
e
m

e
n
t 
(i
n
)

linear beams

nonlinear beams

Comparison Between Linear and Nonlinear Beams - 

Tensile Load (10,000lb)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 5 10 15 20 25

L(in) (t=0.1)

F
a

s
te

n
e

r 
F

o
rc

e
 -

 s
li

d
e

 

d
ir

e
c

ti
o

n
 (

lb
)

linear beams

nonlinear beams



The Joint Advanced Materials and Structures Center of Excellence

Failure Envelope Between N and M
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Work in Progress / Future Work

• Refine FEA models and procedures

• Develop analysis capabilities

• Understand disbond/delamination propagation 
around the fastener in 3-D

• Consider multiple fasteners and multiple failure 
modes

• Perform parametric/sensitivity studies

• Identify key variables for design and optimization

• Design validation experiments
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A Look Forward

� Benefit to Aviation

– The present method allows engineers to design damage tolerant 
composite structures for a predetermined level of reliability, as 
required by FAR 25.

– The present study makes it possible to determine the 
relationship among the reliability level, inspection interval, 
inspection method, and repair quality to minimize the 
maintenance cost and risk of structural failure.

� Future needs

– A standardized methodology for establishing an optimal 
inspection schedule for aircraft manufacturers and operators. 

– Enhanced damage data reporting requirements regulated by     
the FAA.

– A comprehensive system of characterizing material and 
processing variability for damage tolerant bonded structures.
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Various Failure ModesVarious Failure Modes

Strength/Stiffness vs. TemperatureStrength/Stiffness vs. Temperature
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