

Durability & Damage Tolerance Testing and Analysis Protocols for Composite Structures

Life Factor, Load-Enhancement Factors, and Fatigue Life

Waruna P. Seneviratne, *PhD* John S. Tomblin, *PhD*

National Institute for Aviation Research Wichita State University Wichita, KS

FAA Joint Advanced Materials and Structures (JAMS) 5th Annual Technical Review Meeting July 21-22, 2009 Wichita, Kansas

FAA Sponsored Project Information

- National Institute for Aviation Research
 - John Tomblin, *PhD* (Executive Director)
 - Waruna Seneviratne, *PhD* (Research Scientist)
- Federal Aviation Administration
 - Curtis Davies
 - Program Manager
 - FAA William J. Hughes Technical Center, NJ
 - Larry Ilcewicz, PhD
 - FAA Chief Scientific and Technical Advisor for Composite Materials
 - FAA/Seattle Aircraft Cert. Office
 - Peter Shyprykevich
 - Consultant (Ret. FAA)

Workshops for Composite Damage Tolerance & Maintenance

2009 FAA/CACRC/EASA – Tokyo, Japan 2008 AIRBUS – Toulouse, France 2008 CMH-17: Cocoa Beach, FL and Ottawa, Canada 2007 FAA/CACRC/EASA - Amsterdam, Netherlands 2006 FAA Workshop - Chicago, IL

Wichita State University

NATIONAL INSTITUTE FOR AVIATION RESEARCH

Research Program Objectives

Wichita State University

Primary Objective

Develop a probabilistic approach to synthesize life factor, load factor and damage in composites to *determine fatigue life of a damage tolerant aircraft*

Secondary Objectives

- Extend the current certification approach to explore extremely improbable high energy impact threats, i.e. damages that reduce residual strength of aircraft to limit load capability
 - Investigate realistic service damage scenarios
 - Inspection & repair procedures suitable for field practice
- Incorporating certain **design changes** into full-scale substantiation without the burden of additional time-consuming and costly tests

Wichita State University

Scatter Analysis of Composite

Static Scatter Fatigue Scatter Life Factor Load Enhancement Factors

Load-Enhancement Factor Approach

 Increase applied loads in fatigue tests so that the same level of reliability can be achieved with a shorter test duration

Load (Scatter) Factor

 Load Enhancement Factor (LEF)

$$LEF(N) = \frac{\Gamma\left(\frac{\alpha_L + 1}{\alpha_L}\right)^{\alpha_L / \alpha_R}}{\begin{cases} -\ln(R) \cdot N^{\alpha_L} \\ \overline{\chi_{\gamma}^2(2n) / 2n} \end{cases}}$$

Material Databases

Wichita State University

– LEF

- » AS4/E7K8 (457/17)
- » T700/#2510 PW (240/7)
- » 7781/#2510 8HS (204/7)

- Laminate Data

- » T700/#2510 UNI (853/47)
- » T700/#2510 PW (863/48)
- » T700/E765 UNI (834/47)
- » T300/E765 PW (722/48)
- » AS4C/MTM45 UNI (1151/86)
- » AS4C/MTM45 8HS (1083/78)

- Adhesive Fatigue (390 spec./12 data sets)

- » Loctite Paste
- » PTM&W paste (2 bondline thicknesses)
- » EA 9696 film
- Adhesive Effects of Defects
 - » T700/#2510 PW & EA9394 PFS (70/6)
 - » T700/3900-2 PW & EA9394 (SLS) (20)
 - » T800/3900-2 UNI & EA9394 (SLS) (20)
 - » 7781/NB321 8HS & EA9394 (SLS) (20)

Sample S-N Curves (contd..)

Fatigue Scatter Analysis Techniques

Individual Weibull

NATIONAL INSTITUTE FOR AVIATION RESEARCH

Adhesive Fatigue Scatter

26.310

2nd Generation Weibull Shape Parameters

Wichita State University

Maximum Likelihood

Estimation

α.Sendeckyj α.Sendeckyj αIndividual Weibull αJointWeibull (w/static) (w/o static) (w/o static) (w/o static) Pooled - Composite MLE 3.342 1.826 1.8255 1.910 α 2.408 3.291 4.6023 3.435 2.131 2.165 2.980 2.330 α Moda 2.674 RRX 3.900 2.8007 2.896 α 2.371 3.150 4.3619 3.280 ß 2.198 2.644 3.725 2.834 α_{Moda} 3.656 RRY 2.320 2.2853 2.452 α 2.394 3.251 4.5609 3.396 2.193 2.550 3.546 2.743 α _{Modal} Pooled - Composite+Adhesive MLE 2.070 1.698 1.5651 1.647 α 1.968 2.917 3.7258 2.822 6 1.430 1.729 1.943 1.600 α _{Moda} RRX 2.000 2.206 2.1304 2.221 α 1.961 2.826 3.5564 2.708 ß 1.387 2.150 2.641 2.069 α Modal RRY 1.951 2.063 1.8875 1.991 α 1.975 2.876 3.6786 2.788 ß 1.964 1.366 2.086 2.466 α Modal

Fatigue Scatter Factor	1.250	2.131
NF	13.558	4.259
# of Lives (N)	NAVY	NIAR
1.00	1.177	1.125
1.50	1.148	1.088
2.00	1.127	1.063
2.50	1.111	1.044
3.00	1.099	1.029
3.50	1.088	1.016
4.00	1.079	1.005
4.25	1.075	1.000
4.50	1.071	
5.00	1.064	
6.00	1.052	
7.00	1.042	
8.00	1.034	
9.00	1.026	
13.60	1.000	

Static Scatter Factor

20.000

Application of LEF/N_F

Must preserve the stress ratios

(a) Combined load-life test

Hybrid Structural Substantiation

Metals:

severe flight loads result in crack-growth retardation

Composites:

severe flight loads significantly contribute to flaw growth in composite structures and reduce the fatigue life

Wichita State University

Load-Life-Damage Hybrid Approach

LLD Overview Load-Life Shift Application of LLD

Load-Life Shift

Wichita State University

• Example calculation of desired Test Duration:

No Damage	(LEF=1.033)	LID (LEF=1.014)		Total
Desired	Test	Desired	Test	TOLAI
3.0	2.0	2.5	0.8	2.8

Load-Life Shift

Wichita State University

Composite Test Issues

Progressive Failure Flow Growth Fatigue & Damage Tolerance

Damage-Tolerance Element Tests

- Scatter analysis or flaw growth threshold
- Scaling
 - Primary load path (LC)
 - Load redistribution (SC)
- Flaw-growth measurements
 - Compliance change
 - Stable or critical growth
- Loading mode
 - Stress ratio

Strair

NATIONAL INSTITUTE FOR AVIATION RESEARCH

Effects of Damage on α

NATIONAL INSTITUTE FOR AVIATION RESEARCH Wichita State University **Full-Scale Validation** Static **Damage Tolerance** Element ST001, ST002, ST003 NDI Static Tests (CAT1) **Full-scale Impact Tests** BDLL \rightarrow NRLL CAT2 & CAT3 ST004(R) ST001(R) ST004 **Fatigue Test** Static Test (CAT2) Fatigue Test (CAT2) (CAT3→2) ST005 **ST006** Static Test (CAT3) Fatigue Test (CAT3) Repair **Durability** LLD Load-Hybrid Life Shift Approach

CAT2 – Aft Spar (FWS 45)

Wichita State University

ST004 DaDT (Impact Damage)

CAT3 – Front Spar (FWS 65)

Wichita State University

• ST006 DaDT

Wichita State University

Static Summary

CAT 2 Residual Strength

Wichita State University

Damage progression along aft spar (top skin) of ST004 (CAT2 damage) during residual strength test after 2-DLT cyclic test with LEF

Large Damage growth across CAT impact damage occur just pass ultimate load (NRUL)

Wichita State University

CAT 3 Residual Strength

8000 a ۲ (FD) FWS (in) 20 30 40 50 60 70 100 RO AR RIT (PH) 0 10 80 90 Ab 7 0 6000 H001174 +NRLL -500 A7 **(ii** -1000 -1500 -2000 **____** 50.0% Res **——**60.0% - 70.0% 4000 75.0% **— * —** 80.0% 85.0% Strain + 90.0% -2500 -92.0% **—** 94.0% 2000 Leading edge Axial 3 Load Redistribution -3000 **→** 95.5% buckling -3500 m ic rostrain -4000 0 14000 🥇 2000 8000 10000 12000 16000 4000 6000 +NRLL -200 - 50.0% Axial Strain (microstrain) **---** 60.0% -400 70.0% -2000 75.0% * 80.0% -600 85.0% + 90.0% 92.0% -800 **---** 94.0% -4000 95.5% -1000 **Damage Propagation** - A1 - A2 Skin delamination along - A4 A3 -1200 aft spar (starting from A5 ----- A6 -6000 Fracture across CAT 3 damage just before limit load - A7 - A8 root -A4, A5, and A7) - A12 during residual strength after 1/2 DLT fatigue test

Load (lbf)

-8000

Wichita State University

– Summary – Load Enhancement Factor

- 2nd Generation Weibull shape parameters
 - Static Strength: $20.0 \rightarrow 26.0$
 - − Fatigue Life: 1.25 → 2.00
- Address evolution/maturity of material systems, manufacturing processes, test techniques, etc.
 - Reduced test matrix and Shared database concept
- Integrate design specific details gained from coupon and subelement tests into the LEF approach
 - Layup, loading modes/R ratios, Environments, ..
 - Bonded joints, interlaminar shear, sandwich, ..
- Realistic analysis approach for scatter
 - Appropriate analysis techniques for diverse design details
 - User-friendly automated procedures
 - Notch effects on scatter for damage tolerance testing
- Adhesive scatter is a concern (reliability!!!)
- Application of LEF
 - Hybrid structures

Wichita State University

– Summary – Load-Life-Damage Approach

- Incorporation of damage into scatter analysis
 - Investigate large VID damage
 - Scaling
 - Detectability
- Load-Life Shift
 - Investigate different categories of damages/repairs in the same full-scale test article damage
 - Design change substantiation, i.e. gross weight increase
 - LEF during certification vs. improved LEF
 - Life extension or determination of retirement life
- Damage Threats and Inspections
 - Probability of threats/occurrences
 - Probability of detectability
 - Mitigate risks of unintentional failure
 - Inspection intervals using CFU model (cost and reliability)
 - Strategic placement of health monitoring equipments
 - Progressive damage analysis (NLFEA) or scaled component tests

Wichita State University

Questions/Notes

