

Impact Damage Formation on Composite Aircraft Structures

Hyonny Kim, Associate Professor Department of Structural Engineering University of California San Diego

July 21-22, 2009 FAA Joint Advanced Materials and Structures Center of Excellence Meeting NIAR/WSU, Wichita KS **FAA Sponsored Project Information**

- Principal Investigators & Researchers
 - Hyonny Kim, Associate Professor, UCSD PI
 - Prof. Tom Hahn, UCLA PI sending subcontract to UCSD
 - Gabriella DeFrancisci, Graduate Student, UCSD
 - Daniel Whisler, Graduate Student, UCSD (completed MS June 09)
 - Jennifer Rhymer, Graduate Student, UCSD
 - Zhi Chen, Graduate Student, UCSD (starting Aug 09)
- FAA Technical Monitor
 - Curt Davies
- Other FAA Personnel Involved
 - Larry Ilcewicz
- Industry Participation
 - Airbus, Boeing, Bombardier, Cytec, Northwest Airlines, San Diego Composites, United Airlines
 - Govt lab: Sandia National Labs

Project Focus: Blunt Impacts

Blunt Impacts
blunt impact damage (BID) can exist with little or no exterior visibility
sources of interest are those that affect <u>wide area</u> or multiple structural

elements

Hail Ice Impact

- upward & forward facing surfaces
- low mass, high velocity

Ground Vehicles & Service Equipment

- side & lower facing surfaces
- high mass, low velocity
- wide area contact
- damage possible at locations away from impact

Parallel Project Activities

Low-Velocity High-Mass Wide-Area Blunt Impact

 ground vehicles and ground service equipment (GSE) impacts

High Velocity Hail Ice Impact

Low-Velocity High-Mass Wide-Area Blunt Impact Project Overview

- Project Partners
 - Team Members: Bombardier, Cytec, Sandia, San Diego Composites
 - Consultants: JC Halpin (aircraft), Jack Bish (automobile crash)
 - Other Participants: Airbus, Boeing, Northwest Airlines, United Airlines
- Overarching Objectives of Blunt Impact Project (Multi-Year Effort)
 - Identify which blunt impact scenarios are:
 - » commonly occurring
 - » of major concern to airlines, OEM
 - Develop Methodology for Blunt Impact Threat Characterization and Prediction
 - » establishing relationship between full-barrel vs. "small" panel BC's
 - » identification of key phenomena and parameters that are related to damage formation
 - how affected by bluntness?
 - failure initiation thresholds
 - » focus: what conditions relate to <u>development of massive damage</u> occurring <u>with minimal or</u> <u>no exterior visual detectability</u>?
 - can this always be a *self evident* event? (self reported or system-based)
 - Damage tolerance assessment of blunt impact damaged structures
 - » loss of limit load capability?
 - » ID structural configurations and details more prone to this loss of capability

Logic Diagram for Low Velocity High-Mass Wide-Area "Blunt" Impacts

Achieved by Conducting Tests:

Test specimens are starting to be built by UCSD & SDC

Test Specimen Types

Frame Specimen Loading

Frame Specimen Details

Frame Specimen Details

 \overline{S}

Stringer Specimens

Logic Diagram for Low Velocity High-Mass Wide-Area "Blunt" Impacts

Blunt Impact Threat Characterization

- Surveys to industry conducted in 2008
- Blunt Impact Workshop held at UCSD campus January 23, 2009
 - presentations from airlines identified ground service vehicles as key source
- LAX observation March 19, 2009
 - direct observation of ground operations at United Airlines ramps
 - » quantitative information extracted from photos, video documentation
 - » discussion with personnel
 - much thanks to Eric Chesmar and United Airlines for hosting activity

GSE bumpers and walkway bumper

LAX Video Analysis: TUG Belt Loader Approach

TUG Vehicle Weight: 6680 lb (3030 kg)

Velocities as high as 2 mph are realistic within close proximity of the aircraft

Kinetic Energy:

- 1515 J at 1 m/s (1117 ft-lbf at 2.24 mph)
- 379 J at 0.5 m/s (280 ft-lbf at 1.12 mph)

Logic Diagram for Low Velocity High-Mass Wide-Area "Blunt" Impacts

Simulation Tools

- Use of detailed FE modeling is critical for understanding
 - relationship between "small" panel vs. full barrel behavior
 - » how to interpret results from "small" panel test to full barrel
 - » how to scale up
 - whether failure modes are relevant and what are each test's weaknesses
 - how to establish correct boundary conditions so that realistic stress state in "small" panel is achieved

Prospective Failure Modes

- Impactor location between stringers – similar response with R3" and R12" impactors
- Buckling and rolling of frame causes severe bending of shear tie
 - shear tie pull-off / fastener pullout from both skin and frame
 - interlaminar tension in shear tie radius due to opening moments
- Bulging of skin under stringers – mode l debonding

R12" radius impactor- S11

Full Barrel Models

Status of Ongoing Activities

	Status:			
		Ongoing:	Not	. .
Activity	Completed	% Complete	Started	Notes
Blunt Impact Threats	×			Surveys. Jan09 Workshop. LAX observation
Definition				w/UAL.
Lab Saala Impact Tasta		000/		Basic studies w/ 1, 4, 12 in. dia. impactors
Lab-Scale impact resis		00 %		(+rubber pad) onto glass/epoxy plates.
Modeling - Blunt Impact	V			Studies w/ generic geometry. Models of lab-
Studies	×			scale impact test specimens.
Modeling - FEA of		E0 0/		Linear matl behavior. Determine high stress &
Specimens		50%		deformation regions. Definition of BCs.
Modeling - FEA of Full		E00/		Linear matl behavior. Use to determine BCs
Barrel/BCs		50%		for specimen.
Lower-Order Models		100/		3 to 4 dof spring & mass models for
Development		10%		estimation of forces, displ.
Specimen Design	Х			Phase I frame and stringer panels.
Mold/Tooling Design	Х			
Mold/Tooling Fabrication		75%		Molds for: skin, frame, shear tie, stringer.
Test Fixtures Design		50%		
Test Fixtures Fabrication			Х	
Specimen Fabrication			Х	
Test Plan Development		80%		
Specimen Instrumentation			Х	
Test Setup			Х	
Conduct Tests			Х	Quasi-static indentation tests for Phase I.

Basic Study: Lab Scale Blunt Impact Experiments

- Objectives:
 - Investigate impact damage formation as function • of tip radius (i.e., bluntness)
 - Establish database for model development
- Low Velocity Pendulum Impact System
 - instrumented tip, 5.5 kg mass, 150 J capacity •

Test Matrix:

Glass/Epoxy	Number of panels tested for tip radius					
Panel Thk (mm)	12.7mm	50.8mm	152.4mm			
3.18	9	10	8			
6.35	9	7	7			

Peak Contact Force

Contact Area & Pressure

Damage Initiation (Delam.) Threshold

FTE1 for each panel thickness T, impactor tip radius R					
	R 12.7mm	R 50.8mm	R 152.4mm		
T 3.18mm	2.44J	4.44J	10.3J		
T 6.35mm	6.47J	7.45J	10.8J		

Cracking/Fiber Rupture Threshold

	-			1	
FTE2 for each panel thickness T, impactor tip radius R					
	R 12.7mm	R 50.8mm	R 152.4mm		
T 3.18mm	7.04J	10.3J	N/A	501	
T 6.35mm	17.0J	25.5J	N/A	3 300	

- Blunter impactor requires significantly higher energy impact to initiate damage – must hit harder
 - higher total force (despite lower contact pressure)
 - » more internal deflection with higher energy
 - » possible to produce more internal damage?
 - LOWER contact pressure developed less propensity for surface marking?

Hail Ice Impact

1.5 in. Dia ice at 417 ft/s on 0.032 in. 4-Ply Woven IM7/8552

High Velocity Hail Ice Impact:

- Investigate impact damage initiation and formation to composite panels, including those of skin-stiffened and sandwich construction.
- Develop unified treatment methodology for predicting damage initiation by variety of high speed impactor projectile types – e.g., bird, hail, tire fragment, runway debris, lost access panel, etc.
- Project partner: Dennis Roach, Sandia Natl. Labs

		Number of Panels Needed for Each Condition *						Material	
Panel Thickness	Quasi-Isotropic Layup	Hail Dia 1 12x12	Hail Dia 2 12x12	Hail Dia 2 (angle) 12x12	Hail Dia 3 12x12	Low Veloc Dia 1 6x10	Low Veloc Dia 2 6x10	Low Veloc Dia 3 6x10	T800/ 3900-2
8 plies	[0/45/90/-45]_s	9	9	9	9	9	9	9	1
16 plies	[0/45/90/-45]_2s	10	10	10	10	10	10	10	1
24 plies	[0/45/90/-45]_3s	9	9	9	9	9	9	9	
Total		28	28	28	28	28	28	28	196