

Non-Destructive Evaluation Methods for Detecting Major Damage in Internal Composite Structural Components

Hyonny Kim, Professor, Dept. Structural Engineering University of California San Diego

JAMS 2015 Technical Review March 31 – April 1, 2015

Aircraft Airworthiness & Sustainment Conference 2015 Baltimore Marriott Waterfront, Baltimore MD

Non-Destructive Evaluation Methods for Detecting Major Damage in Internal Composite Structural Components

- Principal Investigators & Researchers
 - Co-PIs: Professors Hyonny Kim and Francesco Lanza di Scalea
 - Graduate Students
 - PhD: Eric Hyungsuk Kim, Margherita Capriotti, Thompson Nguyen
 - MS: n/a
- FAA Program Monitor
 - David Westlund
- Other FAA Personnel Involved
 - Rusty Jones
 - Larry Ilcewicz
- Industry Participation
 - Boeing, United Airlines, Delta Airlines

Motivation

- damage from ground service equipment (GSE) can be difficult to visually detect
 - blunt impact damage problem
- key interest: presence of major damage to internal structure (frame, shear tie, stringer)
 - cracks usually not detectable by typical one-sided NDE from external skin
- need quick NDE tool to decide if further inspection/action needed

Objectives

- establish detection method for finding major damage to internal structure:
 - severely cracked frames •
 - damaged shear ties
 - stringer heel crack
- detection performed only from exterior skin-side
- system must be "ramp friendly"
- longer-term: relate NDE-measurements with damage location, mode, and size/severity

Approach

- pitch-catch guided wave approach
- structures of interest form waveguide paths
- C-frame is like 1D waveguide wave transmission along length affected by damage
 - excitation → through skin → in through shear tie → travel along frame → out through various shear ties → through skin → sensor
 - broken shear tie and frame will attenuate/modify signal
- key issues:
 - dominant frequencies associated with waves/modes sensitive to damage
 - complex geometry, many interfaces
- stringer heel crack wave propagation through skin and stringer paths

Summary of Activity

Since project start in June 2014:

- survey of damage to previously-tested specimens
- guided wave tests on damaged C-frames
- C-frame specimens new fabrication
- wave transmission measurement methodology excitation, sensors, dispersion curve
- FE wave propagation simulation development

Outline

- Composite Panel and Frame GUW Inspections
- Wave Propagation Methodology Development
- Conclusions, Benefits to Aviation, and Future Work

Test Specimens

Use Existing Damaged Specimens

- previously-tested specimens from FAA project "Impact Damage Formation on Composite Aircraft Structures"
- FrameXX panel series
 - C-frame crack
 - shear ties crushed
- StringerXX panel series (stringer-only panels)
 - stringer-skin disbonding
 - stringer heel crack
 - shear ties crushed

New Specimens

- C-frames pristine stand-alone frames
 - 3 new frames fabricated
 - 1 previously-fabricated "spare"
- shear ties qnty ~16 available "new" untested

Existing Specimens – Damage Survey

Blunt Impact Damage in Existing Specimens – use for NDE Tests

- partially-cracked frame available in panel Frame02
- cracked/crushed shear ties in all specimens (Frame01 to Frame04)
- stringer disbonds in panel Stringer02
- stringer heel crack in panel Stringer05

Partially-cracked frames – from specimen Frame02

Seeking equipment allowing assembly of "ramp-friendly" portable system.

Equipment: Signal Measurement Comparison

Part of project effort is to be sure methodology is compatible with "ramp-friendly" operations.

→ seeking field-portable portable set of equipment

Comparison of dynamic signals measured by:

- National Instruments PXI 5122 Digitizer*
- Picoscope 4824

* NI PXI system large and costly bench/cart based system requiring 120 VAC power and powerful computer able to run Labview software.

Both measured signals identical \rightarrow all dynamic measurements made by Picoscope oscilloscope.

Easily portable Picoscope 4824 oscilloscope

Panel and Frame Initial GUW Tests

Guided ultrasonic wave (GUW) measurement through:

- pristine stand-alone C-frame
 - no damage or holes/geometric effects \rightarrow get baseline
- damaged C-frame (installed in panel ID: Frame02)
 - cracks, fasteners, contact/connection to other members

Sensors located 305 mm (12 in.) from Excitation.

Excitation: 5cycle sinusoidal burst sent at various frequencies.

> Frame Crack Through Flange

and Partially

in Web

Results: Panel and Frame Initial GUW Tests

Frequency sweep conducted to find dominant frequencies (80 kHz shown below). Expect: presence of damage \rightarrow attenuation of signal.

Pristine stand-alone C-frame:

 small difference measured for left vs. right sensor – due to internal layup/splice effects (needs further investigation)

Next Steps: (i) fundamental studies to estimate damage info (mode, size), (ii) excite/sense through skin - account for complex geometry, fasteners.

Damaged C-frame installed in panel:

- significant attenuation (55%) through damaged path
- cracked C-frame flange detectable for sensors directly mounted to frame – need to test sensing through skin

Outline

- Composite Panel and Frame GUW Inspections
- Wave Propagation Methodology Development
- Conclusions, Benefits to Aviation, and Future Work

Wave Propagation Measurement Methodology successful damage detection by GUW influenced by: Address for each equipment choice; sensor deployment/positioning details stage of increasing dominant wave modes in structure and accompanying complexity frequencies method of excitation – defines frequency content signal processing algorithms systematic build-up of complexity Stand-Alone Frame Various Damage Levels Along Wave Path Stand-Alone Shear Tie Assembled Frame + Shear Tie **Need stable** methodology: develop on simple well-Assembled known Frame + Shear Tie + Skin structural platform (aluminum **LECV** plate)

Wave Propagation Measurement Methodology Aluminum Plate Baseline

- Establish methods using wellknown simple baseline structure
 → then apply methods to complex composite C-frame components and assemblies.
- Excitation type
 - miniature impulse hammer (Piezotronics)
 - pencil lead break
- Sensors
 - PICO sensors (Mistras)
 - air-coupled sensors (MicroAcoustics) – noncontact

Miniature Impulse Hammer

Excitation - Impulse Hammer

- excitation: PCB Piezotronics
 Miniature Impulse Hammer
 - 4.8 g mass
 - measures force vs. time pulse
- wave-measurement sensors:
 - PICO
 - air-coupled
- impact force vs. time pulse defines frequency content of excitation
 - affected by both hammer and target dynamics
 - more compliant target → longer-duration pulse (lower frequency content)
- summary:
 - excitation up to 20 kHz (for aluminum panel impact)
 - air-coupled measurement attenuated above 10 kHz
 - use direct-contact sensors

17

Excitation Pencil Lead Break

- excitation: mechanical pencil lead: 0.3 and 0.5 mm HB hardness
- wave-measurement sensors:
 - PICO
 - air-coupled
- breaking lead onto structure imparts broadband excitation
- summary:
 - excitation broadband up to 300 kHz
 - issue: low intensity
 - limits distance of wave travel
 - too low for aircoupled sensors

CECAN

18

Dispersion Curve Measurement I

- seeking to experimentally measure dispersion curves
 - describes fundamental guided wave behavior through structure
 - propagating modes
 - frequencies
 - attenuations
- 1st establish best practice/technique with well-known simple structure (aluminum plate)

Dispersion Curve Measurement II

Time domain measurement from PICO sensors (wave transit time visible).

Symmetric and antisymmetric dispersion curves of Lamb waves in Aluminum **Dispersion Curve** 9.0 8.0 Measurement Phase Velocity (km / sec.) 7.0 6.0 Results 5.0 4.0 3.0 2.0

Fundamental flexural mode Ao extracted by phase-difference method.

Dispersion Curve AlumPlate PencilLeadBreak and Pico sensors

A2

5.0

Frequency Thickness Product [f(MHz)×d(mm)]

<u>4</u>n

Expected Dispersion Curves

per Rayleigh-Lamb Theory

(Rose, 1999).

7.0

6.0

82

9.0

10.

8.0

S1

3.0

So

Aο

1.0

0.0

Finite Element Simulation of Wave Propagation I

- seeking to establish FE based simulation to:
 - study wave propagation through complex geometry
 - find dominant
 frequencies and
 associated modes (to
 select for best
 sensitivity to damage
 location)
 - attenuation of wave due to damage
- 1st set up model of wellknown simple structure (aluminum plate) → apply to composite C-frame & assembled panel

Model Details:

- Abaqus/Explicit dynamic simulation
- S4R thin shell with 1.59 mm element size for 610 x 610 mm overall plate dimensions

Finite Element Simulation of Wave Propagation II

- compare acceleration data from model vs. experiment
 - magnitude and general trend matches
 - improvement needed: model details of hammer impact
- FFT comparison: matches up to ~10 kHz
 - accelerometer limited to 10 kHz max frequency

Outline

- Composite Panel and Frame GUW Inspections
- Wave Propagation Methodology Development
- Conclusions, Benefits to Aviation, and Future Work

Conclusions

- Proposed methodology found capable of detecting major damage in frame
 - guided wave tests showed significant acoustic wave attenuation (55%) for cracked C-frame structure
 - need to build stronger foundational understanding of response especially in order to relate measurements with damage information (damage mode, size estimate)
- Guided wave testing methodology established using aluminum plate as wellknown simple baseline → to be applied for complex composite structures
 - excitation and sensing methods testing
 - setup and procedures validated
- Experimentally-determined dispersion curves for Ao (asymmetric flexural) mode matches with theoretical expectations
 - methods for higher-order modes detection to be established these can play role at higher frequencies in complex structural assemblies
- FE model correlates with experiments for frequency up to 10 kHz
 - more improvement needed
 - next apply modeling procedures to more complex structures

Benefits to Aviation

- A method for detecting damage to internal structures is needed since typical ultrasonic one-sided inspection can't detect these damage modes.
- Relatively quick and non-invasive detection method can be applied following event involving contact with GSE.
 - is there significant damage present?
 - does additional (more invasive) inspection need to be performed?
 - can aircraft remain in operation until next service check involving removal of aircraft interior?
- Inspection method can prospectively provide enhanced detection capability: find smaller-sized damage, weakening of structure (degradation affecting stiffness, continuity)
 - possibly can be supplement to visual inspection (cracks difficult to see on black carbon/epoxy)
 - could be incorporated into scheduled inspection procedures

Looking Forward

- Near-term:
 - Identify significant frequencies sensitive to detecting C-frame cracks.
 - Achieve improved simulation capability and apply to modeling stand-alone C-frame and assembled complex panel structure.
 - Differentiate wave attenuation behavior caused by holes, stringers, fasteners, cracks, etc. This is needed since all of these geometric features are present in the panel.
 - Establish improved dispersion curves extraction methods (e.g., using different theoretical methods, gating intervals).
 - Extract So mode dispersion curve and Attenuation and Group Velocity curves.
- Long-term:
 - Identify wave behavior changes from various types of damage modes (e.g., fiber discontinuity, small to large cracks, and more).
 - Compose methodology for combining the response of individual components subjected to guided ultrasonic wave testing into an assembly of components, i.e., complex structure.
 - Determining suitable "ramp-friendly" equipment to be used for exciting and sensing acoustic signals. Challenge: defining portable broadband excitation source providing high enough amplitude and desired frequency range.
 - Relate measurements to additional information about the damage, namely: damage mode, location, and an estimate of size/severity.

JOINT ADVANCED MATERIALS & STRUCTURES CENTER OF EXCELLENCE