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Crashworthiness of Composite Fuselage  Structures 
– Material Dynamic Properties

• Motivation and Key Issues 

P
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• Crashworthiness
– maintain survivable volume

– dissipate kinetic energy → alleviate 
occupant loads

• Energy absorption 

– Composite structures /energy 

absorption (EA) devices

� Controlled failure modes

� Maximize damage volume

� Provision for sustained stability

– Influencing factors

� EA device geometry

� Material 

� Rate sensitivity (?)
Hull D (1991) Comp. Sci Tech, 40.

Bannerman & Kindervater (1984) in Structural Impact and Crashworthiness

Bolukbasi & Laananen (1995) Composites, 26.

Carruthers, Kettle & Robinson (1998) Appl Mech Rev, 51.
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Crashworthiness of Composite Fuselage  Structures 
– Material Dynamic Properties

• Approach

MATERIAL PROPERTY CHARACTERIZATION AT DIFFERENT STRAIN RATES

 - TENSION, COMPRESSION & SHEAR

 - CONSTITUTIVE LAWS WITH STRAIN RATE-EFFECTS

 - FAILURE MODES & STRENGTHS

 

STRAIN & STRAIN RATE  GRADIENTS

 - OPEN-HOLE TENSION TESTS

  - BENCHMARK DATA FOR ANALYTICAL MODELS & FAILURE THEORIES

ENERGY ABSORPTION MECHANISMS

 - constant stroke rate tests

 - drop tests

SCALED FUSELAGE TUBES

 - drop tests

FUSELAGE + ENERGY 

ABSORPTION DEVICES  - 

ASSEMBLIES

Phase-2

Phase-1

Phase-3

Phase-4
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Crashworthiness of Composite Fuselage  Structures 
– Material Dynamic Properties

• Objective(s)
– Literature Review

– Material property characterization at different strain 
rates (10-4 s-1 to 103 s-1 )

– Phase-1 : Tension, Compression & Shear

– Phase-2 : Open Hole Tension, Interlaminar Shear, Pin Bearing

– Phase-3 :  Fracture Toughness (mode I & II)

– Phase-4 : Characterization of EA device, Scaling effects (in 
progress)
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FAA Sponsored Project 
Information

• Principal Investigators & Researchers
– K.S. Raju

– J.F. Acosta, N. Pratap, K.Y. Tan, S. Elyas, M. Siddiqui

• FAA Technical Monitor
– Alan Abramowitz

• Other FAA Personnel Involved
– Curtis Davis

• Industry Participation
– CMH-17
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Background..Rate Sensitivity

• Material Systems

NEWPORT material systems
� NB321/3k70 Plain Weave Carbon 

Fabric (PWCF)

� NB321/7781 Fiberglass

TORAY material systems
� T800S/3900-2B[P2352W-19] 

BMS8-276 Rev-H- Unitape

� T700G-12K-50C/3900-2 Plain 

Weave Carbon Fabric (PWCF)

• Rate Sensitivity
– Dependent on material 

– Dependent on loading type ( tension, 

compression, shear)

– Fracture toughness exhibits trend 

opposite to that of in-plane properties
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Ongoing Work..

• Rate sensitivity of Energy Absorption (EA) 
Device

– Corrugated beams (stable configuration)

– Failure modes

– Correlation with rate sensitivity of material 

properties ( compression, fracture toughness)

• Scaling Studies

– Tension , compression
� Observed rate sensitivity in sub-scale coupons applicable at 

larger scales?*

MATERIAL PROPERTY CHARACTERIZATION AT DIFFERENT STRAIN RATES

 - TENSION, COMPRESSION & SHEAR

 - CONSTITUTIVE LAWS WITH STRAIN RATE-EFFECTS

 - FAILURE MODES & STRENGTHS

 

STRAIN & STRAIN RATE  GRADIENTS

 - OPEN-HOLE TENSION TESTS

  - BENCHMARK DATA FOR ANALYTICAL MODELS & FAILURE THEORIES

ENERGY ABSORPTION MECHANISMS

 - constant stroke rate tests

 - drop tests

SCALED FUSELAGE TUBES

 - drop tests

FUSELAGE + ENERGY 

ABSORPTION DEVICES  - 

ASSEMBLIES

* K.E. Jackson et. al, J.Comp. Matls., Vol.26, 1992

J.G. Carillo & Cantwell, Comp.Sci.Tech. Vol.67, 2007.
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Rate Sensitivity of EA device

• Corrugated beam geometry

• Stable configuration

• Easy to fabricate

• Captures failure mechanisms observed in tubes

• 45°chamfered edge to trigger failure

• Material Systems
• Newport NB321/7781 fiberglass

• Toray T700G-12K-50C/3900-2 Plain Weave 

Carbon Fabric 

• Stacking sequences

• [0]n and  [±45]n, where n=4,8 and 12

Farley, G. L., J. American Helicopter Society, October, 1987. 
S. Hanagud et.al., J.Comp. Matls, Vol.23, May 1989.
P. Feraboli, J. Comp. Matls, Vol.42, No.3, 2008.
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Rate Sensitivity of EA device

• Test Apparatus

• Fixture

• Specimen compressed between 

aluminum platens

• Clamped-edge support along one 

edge of the specimen

• Quasi-static tests

• 44kN MTS electromechanical 

loadframe

• Strain gage based load cell

• Dynamic tests 

• 25.5mm/s and higher

• 24kN MTS high rate servo m/c

• Piezoelectric load cell

• Data acquisition

• Force, stroke and strain
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Preliminary Results..

• NB321/7781 material;  [0]4 & [±45]4
– Crush loads decrease at higher speeds

– Splaying mode accompanied by tearing 
of plies observed in [0]4 specimens.

� Delaminations

– Shear cracking observed in [±45]4
specimens

� Splaying mode /tearing not established

� Separation of laminate fragments from 
specimen
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Scaling Studies

MATERIAL  
STACKING 

SEQUENCE 
SCALE λ L (mm) W (mm) 

NB321/7781 fiberglass,  

T700G-12K-50C/3900-2 PWCF  

[0]4  

 [+45/-45]S 

1/4* 50.8 12.7 

1/2 101.6 25.4 

1 203.2 50.8 

Toray T800S/3900-2B unitape  
 

[0]4  
 

1/4* 50.8 12.7 

1/2 101.6 12.7 

1 203.2 12.7 

[+45/-45]S 

1/4* 50.8 12.7 

1/2 101.6 25.4 

1 203.2 50.8 

*Specimen size used in phase-I 

 

��

λ�λ�

• Material Systems: NB321/7781; Toray Plain weave; Toray Unitape

• Aerial (2D) Scaling (fabrics)

• Length (1D) Scaling (unitape) 
• Reduced load capability of test apparatus

• Strain rate range  ~ quasi-static to ~10s-1
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Status/Ongoing work

• High speed testing of EA device

– Specimen fabrication using Toray 

material under progress

– Testing of 8 and 12 ply specimens

• Scaling studies

– Test specimen fabrication
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A Look Forward

• Benefit to Aviation
– Rate sensitive test data for candidate material systems 

– Scaling effects

– Rate sensitivity of EA devices

� Material properties(toughness?) governing rate effects

• Future Needs
– Implementation of existing constitutive models for rate sensitivity for 

the materials investigated  at coupon level
� Extraction of rate sensitive parameters  from experimental data 

� Identify model restrictions/limitations

– Use rate sensitive constitutive models for analyzing EA device(s)


