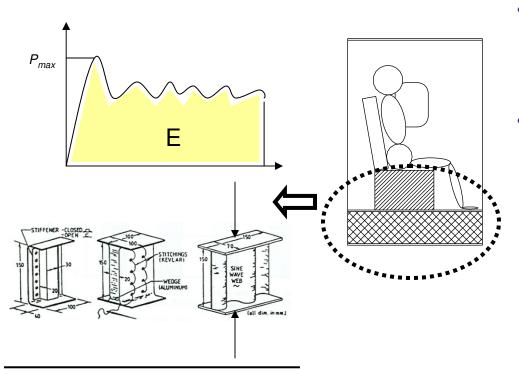


CRASHWORTHINESS OF COMPOSITE FUSELAGE STRUCTURES – MATERIAL DYNAMIC PROPERTIES

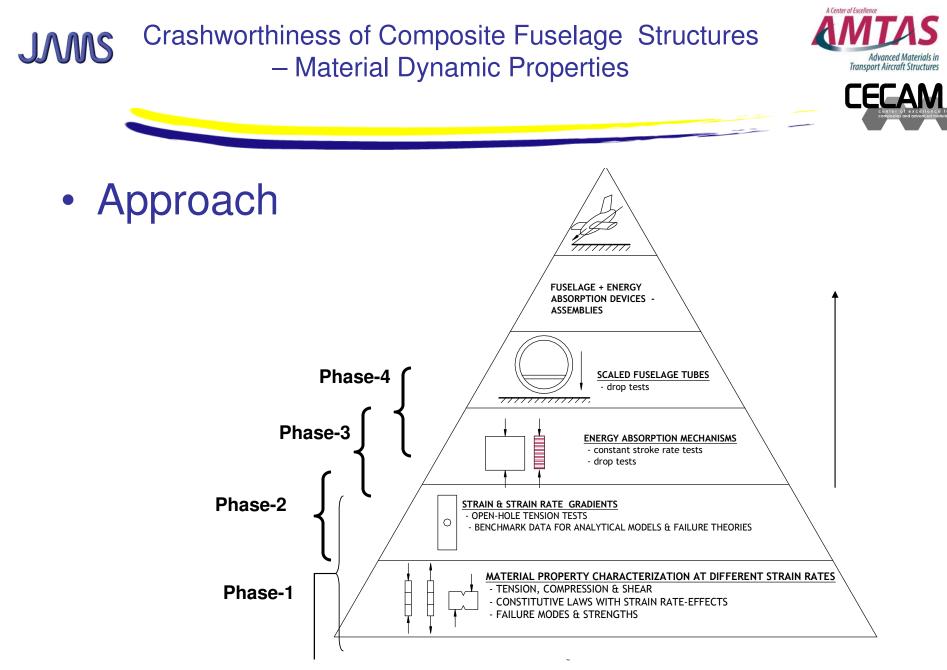
K.S. Raju Department of Aerospace Engineering



Crashworthiness of Composite Fuselage Structures – Material Dynamic Properties

Motivation and Key Issues

- Crashworthiness
 - maintain survivable volume
 - dissipate kinetic energy \rightarrow alleviate occupant loads
- Energy absorption
 - Composite structures /energy absorption (EA) devices
 - Controlled failure modes
 - Maximize damage volume
 - Provision for sustained stability
 - Influencing factors
 - EA device geometry
 - Material
 - Rate sensitivity (?)


Hull D (1991) Comp. Sci Tech, 40.

Bannerman & Kindervater (1984) in Structural Impact and Crashworthiness

Bolukbasi & Laananen (1995) Composites, 26.

Carruthers, Kettle & Robinson (1998) Appl Mech Rev, 51.

Wichita State University

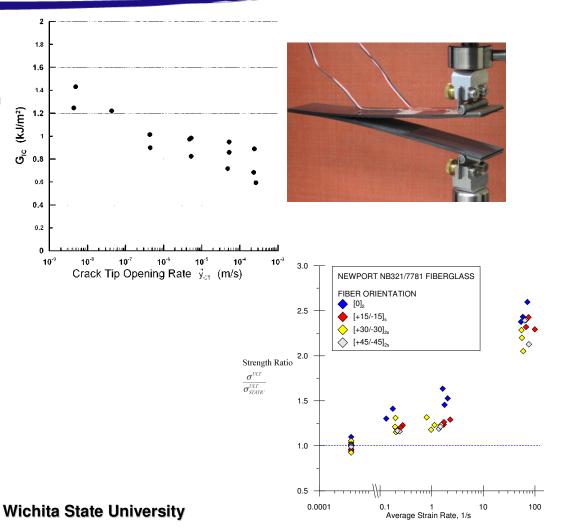
The Joint Advanced Materials and Structures Center of Excellence

Crashworthiness of Composite Fuselage Structures – Material Dynamic Properties

- Objective(s)
 - Literature Review
 - Material property characterization at different strain rates (10⁻⁴ s⁻¹ to 10³ s⁻¹)
 - Phase-1 : Tension, Compression & Shear
 - Phase-2 : Open Hole Tension, Interlaminar Shear, Pin Bearing
 - Phase-3 : Fracture Toughness (mode I & II)
 - Phase-4 : Characterization of EA device, Scaling effects (in progress)

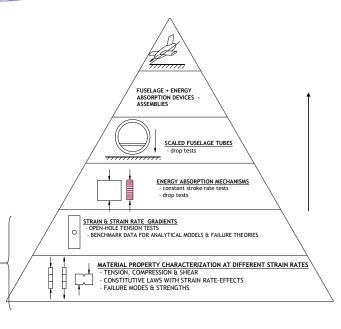
FAA Sponsored Project Information

- K.S. Raju
- J.F. Acosta, N. Pratap, K.Y. Tan, S. Elyas, M. Siddiqui
- FAA Technical Monitor
 - Alan Abramowitz
- Other FAA Personnel Involved
 - Curtis Davis
- Industry Participation
 - CMH-17



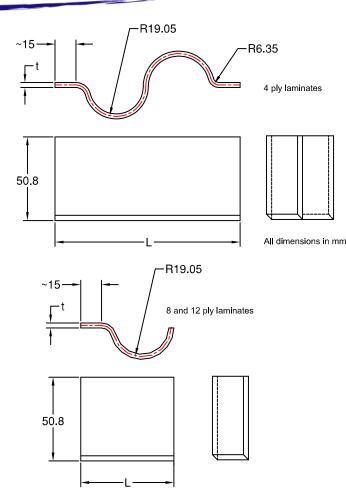
Background..Rate Sensitivity

- Material Systems
 - NEWPORT material systems
 - NB321/3k70 Plain Weave Carbon Fabric (PWCF)
 - NB321/7781 Fiberglass
 - **TORAY** material systems
 - T800S/3900-2B[P2352W-19]
 BMS8-276 Rev-H- Unitape
 - T700G-12K-50C/3900-2 Plain Weave Carbon Fabric (PWCF)
- Rate Sensitivity
 - Dependent on material
 - Dependent on loading type (tension, compression, shear)
 - Fracture toughness exhibits trend opposite to that of in-plane properties



Ongoing Work..

- Rate sensitivity of Energy Absorption (EA) Device
 - Corrugated beams (stable configuration)
 - Failure modes
 - Correlation with rate sensitivity of material properties (compression, fracture toughness)
- Scaling Studies
 - Tension, compression
 - Observed rate sensitivity in sub-scale coupons applicable at larger scales?*



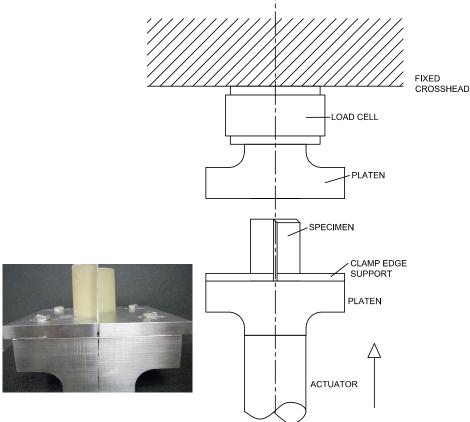
* K.E. Jackson et. al, J.Comp. Matls., Vol.26, 1992 J.G. Carillo & Cantwell, Comp.Sci.Tech. Vol.67, 2007.

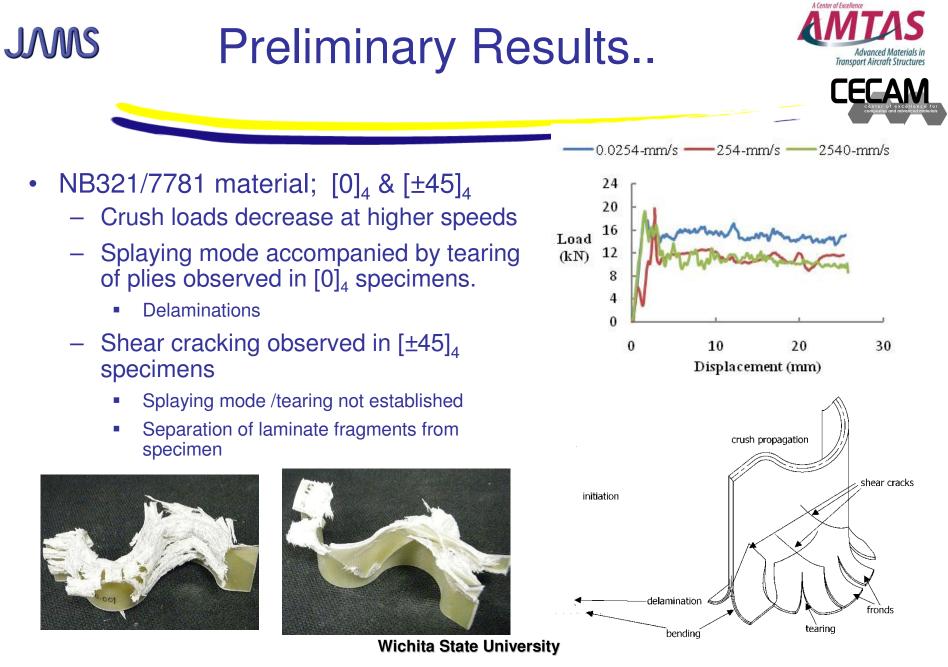
JMS Rate Sensitivity of EA device

- Corrugated beam geometry
 - Stable configuration
 - · Easy to fabricate
 - · Captures failure mechanisms observed in tubes
 - 45° chamfered edge to trigger failure
- Material Systems
 - Newport NB321/7781 fiberglass
 - Toray T700G-12K-50C/3900-2 Plain Weave Carbon Fabric
- Stacking sequences
 - $[0]_n$ and $[\pm 45]_n$, where n=4,8 and 12

Farley, G. L., J. American Helicopter Society, October, 1987.S. Hanagud et.al., J.Comp. Matls, Vol.23, May 1989.P. Feraboli, J. Comp. Matls, Vol.42, No.3, 2008.

A Center of Excellence


Wichita State University



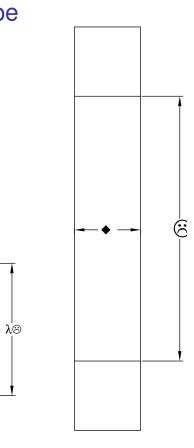
JMS Rate Sensitivity of EA device

- Test Apparatus
 - Fixture
 - Specimen compressed between aluminum platens
 - Clamped-edge support along one edge of the specimen
 - Quasi-static tests
 - 44kN MTS electromechanical loadframe
 - Strain gage based load cell
 - Dynamic tests
 - 25.5mm/s and higher
 - 24kN MTS high rate servo m/c
 - Piezoelectric load cell
- Data acquisition
 - Force, stroke and strain

Wichita State University

•

The Joint Advanced Materials and Structures Center of Excellence


10

- Material Systems: NB321/7781; Toray Plain weave; Toray Unitape
 - Aerial (2D) Scaling (fabrics)
 - Length (1D) Scaling (unitape)
 - Reduced load capability of test apparatus
 - Strain rate range ~ quasi-static to ~10s⁻¹

MATERIAL	STACKING SEQUENCE	SCALE λ	L (mm)	W (mm)
NB321/7781 fiberglass, T700G-12K-50C/3900-2 PWCF	[0] ₄ [+45/-45] _S	1/4*	50.8	12.7
		1/2	101.6	25.4
		1	203.2	50.8
Toray T800S/3900-2B unitape	[0]4	1/4*	50.8	12.7
		1/2	101.6	12.7
		1	203.2	12.7
	[+45/-45] _S	1/4*	50.8	12.7
		1/2	101.6	25.4
		1	203.2	50.8

-λ**•**

*Specimen size used in phase-I

Wichita State University

The Joint Advanced Materials and Structures Center of Excellence

11

Status/Ongoing work

- High speed testing of EA device
 - Specimen fabrication using Toray material under progress
 - Testing of 8 and 12 ply specimens
- Scaling studies
 - Test specimen fabrication

A Look Forward

- Benefit to Aviation
 - Rate sensitive test data for candidate material systems
 - Scaling effects
 - Rate sensitivity of EA devices
 - Material properties(toughness?) governing rate effects

• Future Needs

- Implementation of existing constitutive models for rate sensitivity for the materials investigated at coupon level
 - Extraction of rate sensitive parameters from experimental data
 - Identify model restrictions/limitations
- Use rate sensitive constitutive models for analyzing EA device(s)