

Adhesive Bond Qualification Guidance for Aircraft Design and Certification

Waruna Seneviratne, John Tomblin, <u>Upul Palliyaguru</u>, and Anushi Amaranayake
National Institute for Aviation Research (NIAR)
Wichita State University (WSU)

JAMS – Technical Review September 09,2021

Adhesive Bond Qualification Guidance for Aircraft Design and Certification

- Principal Investigators & Researchers
 - John Tomblin, *PhD*, and Waruna Seneviratne, *PhD*
 - Upul Palliyaguru, and Anushi Amaranayake
- FAA Technical Monitor
 - Ahmet Oztekin, PhD
- Other FAA/CMH-17 Personnel Involved
 - Larry Ilcewicz, *PhD, Cindy Ashforth, and* Curtis Davies
- DoD & Industry Participation
 - AFRL, Boeing, Bell Helicopter, Henkel, Honda Aircraft Co., Lockheed Martin, MMM, MTech Engineering Services, NAVAIR, Solvay Industries, Textron Aviation, Boom Aerospace

Road Map

- Bond Process Qualification (BPQ)
 - Develop an acceptance criteria
 - Requirements (based on information in AC's and FAR's , etc.)
 - Applicability of existing standards and/or develop new standards
 - Select known bond system failures
 - Simulate and investigate the BPQ methodology flags the "bad" bonds
 - <u>Develop Protocols</u>
 - Quantify process reliability
 - Assess repeatability/maturity

Bonded Joint Certification Approach

Seneration	Structure & Maintenance
•	•

Structural Certification of Bonded Structure & Maintenance

- 1. Screening of bond system
- 2. Long term durability
- . Substrate & adhesive characterization
- 4. Bonded joint characterization
- 5. Durability & environmental
- Damage tolerance and crack growth

Maintenance

- 1. Inspection methodology development
- 2. Inspection methodology for bond strength degradation.
- 3. Identification of inspection level and frequency

ſ		Test Method										
ı	Joint Property Under	Bond System Component Under Investigation										
l			Surface P	Adhesive and Cu	re Processing							
	Investigation	Surface Preparation Method	Composites	Surface Preparation Method	Metallic	Surface Preparation	Test Method (Composites & Metals)					
	Peel		ASTM D5528	-	ASTM D3167	Phosphoric Acid	ASTM D3167					
	Shear		ASTM D3165		ASTM D1002	Anodization & Bond Primer ¹	ASTM D1002					
1	Tensile		N/A		ASTM D897		ASTM D897					
	Fracture Toughness/Mode I	Variable	ASTM D5528	Variable	ASTM D3433	Atmospheric Plasma Treatment ¹	ASTM D5528(Metals) /D3433 (Composites)					

Bond Process Qualification (Critical Factors)

Critical Parameters in the Bonding Process

Surface Preparation

Manual and machine assisted abrasion:

- Grit size
- Type of grit

 (aluminum oxide, glass oxide etc.)
- Duration of sanding
- Frequency of sand paper change
- Direction of sanding
- Number of sanding passes
- Type of sander (for machine assisted)
 (Belt, Disc, Orbital, Random Orbital)
- Post treatment cleaning process
- Training level of technician

Grit Blasting

- Grit Size
- Grit Type
- Angle of application
- Nozzle configuration
- Pressure
- Number of passes
- Standoff distance
- Blasting configuration (Wet/dry)
- Post treatment cleaning process

Surface Preparation (Peel Ply)

- Peel ply specification
- Peel ply resin content (Dry/Wet)
 - o Dry
 - Released
 - Unreleased
 - o Wet
 - Resin type
- Material type
 - o Polyester
 - o Nylon
 - Glass
 - o Kevlar
- Peel ply thickness
- Weave pattern
- Peel ply location on laminate (top
- Removal direction
- Removal time frame
- Post-removal cleaning
 - Solvent wipe
 - Compressed air
- · Post-removal treatment
 - o Abrasion
 - o Chemical treatment

Surface Preparation (Plasma)

Atmospheric Plasma Treatment

- Plasma recipe
- Plasma nozzle type and configuration
- Nozzle height from the substrate
- Nozzle speed during plasma application
- Number of plasma passes
- Overlap of each plasma pass

Gas Plasma Treatment

- Plasma recipe
- Plasma nozzle type and configuration
- Nozzle height from the substrate
- Nozzle speed during plasma application
- Number of plasma passes
- Overlap of each plasma pass
- Type of gases utilized
- Gas flow rate
- Mix ratio of each gas

Substrate Cleaning

- Solvent type
- Solvent application
- Type of wipes/medium
- Frequency of wipe change
- Direction of the wipe
- Number of passes
- Satisfactory cleaning completion criteria

Adhesive Preparation, Mixing and Curing

- Storage environment and tolerances
- Duration of thawing after removing from cold storage
- Adhesive application temperature
- Minimum and maximum adhesive quantities to mix
- Mix ratio of multi part adhesive by weight or volume percent
- Adhesive mixing methodology
- Adhesive mixing duration and speed
- Trapped air removal mechanism
- Bondline thickness control
- Panel mating and pressure application
- Initial cure cycle & Post curing

Bonding Process Limit Determination

Facility (Working Environmental Conditions)

Surface preparation and quality assurance

Adhesive preparation/mixing and application

Bonding, pressure application and curing

Effects of cure cycle and post cure (thermal exposure) on paste adhesive systems

Task 1 - Evaluation of Degree of Cure of Adhesives and Effects of Degree of Cure on Static and Durability Performance of Adhesive Joints

Task 1

1a - Evaluation of test methods to measure T_g

1b - Evaluation of static response of bonded joints with various degrees of cure and environmental conditions above T_g

1c - Evaluation of the effects of long term thermal exposure (above T_{g)}

1d - Evaluation of the durability of adhesives with varying degrees of cure 1e - Equivalency comparison of modified degree of cure using post curing methods

C2 - 150°F for 90 minutes at 12 psi

C3 - 190°F for 90 minutes at 12 psi

Task 1a – Glass Transition Temperature - Bulk Adhesive - 0.10"

Tg Test Method	_	i nickness	Cure	Onset of	Storage I [°F]	Modulus	Peak o	f Tan Del	ta [°F]	Onset	of Exother	rm [°F]	Peak of	f Exother	rm [°F]	Chang Dimension	ge in CTF on Chang [°F]			
Method	Туре	[in]	Cycle	Average	Max Error	Min Error	Average	Max Error	Min Error	Average	Max Error	Min Error	Average	Max Error	Min Error	Average	Max Error	Min Error		
	Dulle		C1	137.71	0.29	0.28	175.14	0.50	0.97							Note: T	MA only red	cords a		
DMA	Bulk adhesive	1 010	C2	187.01	1.05	0.75	228.84	0.68	0.87								there is no			
				C3	232.32	0.50	0.32	270.72	0.53	0.56							peak. Ti	he change is	s closest	
					C1							144.34	0.88	1.33	217.63	0.71	0.52		nset values	
DSC		0.10*	C2							205.90	0.23	0.41	237.90	0.10	0.17		ita is includ Inset graph.	-		
	Bulk		C3							235.12	0.64	0.32	266.97	0.11	0.21	in the O	niset graph.			
	adhesive 0.10	adhesive	adhesive		C1													144.39	0.71	0.55
TMA		0.10	C2													185.68	6.56	4.55		
			C3													218.82	2.29	2.97		

Sample DSC graph

2.3"

DMA specimen – 0.10"

Task 1a – Glass Transition Temperature - Bulk Adhesive and Bonded Joint - DMA

psi

0.18"

Task 1a – Glass Transition Temperature - Bulk Adhesive and Bonded Joint - 0.01"

Tg Test	Specimen	Adhesive Thickness			Cure	Onset of	Storage I [°F]	Modulus	Peak o	of Tan Del	ta [°F]	Onset	of Exother	rm [°F]	Peak o	f Exother	m [°F]
Method	Туре	[in]	Cycle	Average	Max Error	Min Error	Average	Max Error	Min Error	Average	Max Error	Min Error	Average	Max Error	Min Error		
	D 1.1		C1	161.41	1.18	0.66	184.63	1.32	0.68								
DMA	Bonded joint	0.01	C2	212.77	1.82	1.19	233.65	1.27	0.98								
	John		C3	237.11	1.46	1.06	277.99	3.00	2.36								
	Bulk adhesive	- II		C1							153.78	0.28	0.22	214.17	1.48	1.79	
DSC		0.01	C2							201.10	1.07	0.64	239.70	0.60	0.61		
			C3							244.25	1.12	1.34	339.02	0.60	1.20		

Cure Cycle

-0.063" Al 2024 T3

Task 1a – Glass Transition Temperature

- DMA Bulk Adhesive 0.10 in Onset Storage Modulus
- ■DSC Bulk Adhesive 0.10 in Onset Exotherm
- DSC Bulk Adhesive 0.01 in Onset Exotherm
- ☑ DMA Bonded Joint 0.01 in Onset Storage Modulus
- TMA Bulk Adhesive 0.10 in
- DMA Bulk Adhesive 0.10 in Peak Tan Delta ■ DSC - Bulk Adhesive - 0.10 in - Peak Exotherm
- DSC Bulk Adhesive 0.01 in Peak Exotherm
- DMA Bonded Joint 0.01 in Peak Tan Delta

Task 1a – Degree of Cure

- Degree of Cure
 - The 0.10" and 0.05" specimens were hand sanded to approximately 0.04". This was due to the height limitations of the DSC machine.
 - Precautions were taken to minimize the heat generation during the machining process.
 - Additional specimens from the C1 0.10" and 0.05" panels were tested 101 days after the initial cure.

Cure Cycle

Task 1b – D1002 Mechanical Test Data

T_g C1 - 138°F C2 - 187°F C3 - 232°F

Task 1b - D5528 Mechanical Test Data

<u>l_g</u>
C1 - 138°F
C2 - 187°F
C3 - 232°F

Exposure	Degree of Cure [%]							
Duration	C1	C2	C3					
Baseline	92.82	91.99	92.88					
Test 1	79.79	85.66	91.37					
Test 2	78.56	85.32	91.18					
Test 3	78.84	85.66	91.89					
Test 4	92.25	92.33	95.59					

Exposure	Degree of Cure [%]							
Duration	C1	C2	C3					
1 day	92.82	91.99	92.88					
7 days	96.50	95.28	95.92					
14 days	98.63	97.85	97.54					
21 days	96.97	96.97	97.19					
28 days	97.93	98.07	98.32					
35 days	98.28	98.00	98.72					
49 days	98.61	98.48	98.97					

Specimens from all three cure cycles have reached at least 98% DoC after 49 days at 160°F

200°F Post-Cure

Exposure	Degree of Cure [%]							
Duration	C1	C2	C3					
Baseline	68.89	87.02	91.17					
1 hour	89.12	87.07	91.32					
2 hours	90.36	88.82	92.20					
4 hours	91.67	91.20	93.35					
24 hours	93.76	93.04	94.30					

Specimens from all three cure cycles have reached at least 93% DoC after 24 hours at 200°F

250°F Post-Cure

Exposure	Degree of Cure [%]							
Duration	C1	C2	C3					
Baseline	68.89	87.02	91.17					
1 hour	96.65	95.66	95.61					
2 hours	97.15	96.42	96.23					
4 hours	98.10	96.83	96.96					
24 hours	99.44	99.20	99.14					

Specimens from all three cure cycles have reached at least 99% DoC after 24 hours at 250°F

Adhesive Mixing and Application

Task 2b – Adhesive Application Methodology

One Thin Layer

One Thick Layer

C-scan showed multiple voids in the bondline – this is most likely due to a lack of adhesive

Configuration	Average Bondline	CoV	Maximum	Minimum	
Comiguration	Thickness [in]	COV	Thickness [in]	Thickness [in]	
One Thin Layer	0.008	7%	0.008	0.007	
One Thick Layer	0.009	2%	0.010	0.009	
Two Thin Layers	0.010	4%	0.011	0.010	
Two Thick Layers	0.010	5%	0.011	0.009	
Thin Laver + Thick Laver	0.009	3%	0.009	0.009	

Two Thin Layers

Two Thick Layers

Thin Layer + Thick Layer

Task 2b – Primer Layer Study

• The data show that as the number of primer layers increase, the shear strength decreases.

Configuration	Average Bondline Thickness [in]	CoV	Maximum Thickness [in]	Minimum Thickness [in]	Average Primer Layer Thickness [in]	CoV	Maximum Thickness [in]	Minimum Thickness [in]
1 Layer	0.009	6%	0.010	0.008	0.00033	11%	0.00030	0.00035
2 Layers	0.010	5%	0.010	0.009	0.00042	11%	0.00035	0.00055
3 Layers	0.010	5%	0.011	0.010	0.00093	24%	0.00060	0.00115

Task 2b – Bondline Control Mechanisms

- The effect of glass bead percentage on single lap shear strength was investigated.
- The amount of adhesive used for each panel was fixed at 23.4g and the amount of 0.01 in glass beads mixed in to the adhesive varied. The configurations were:
 - 0.01% 0.00234 g
 - 0.05% 0.01170 g
 - 1.00% 0.23400 g
 - 2.50% 0.58500 g

Configuration	Average Bondline	CoV	Maximum	Minimum	
Comiguration	Thickness [in]	COV	Thickness [in]	Thickness [in]	
0.01% GB	0.010	46%	0.015	0.005	
0.05% GB	0.011	28%	0.014	0.006	
1.00% GB	0.011	31%	0.016	0.007	
2.50% GB	0.012	26%	0.016	0.007	

Summary and Conclusions

- Adhesive thermal properties measurement techniques needs to well document as different measurement techniques and reporting values can be significantly different
- Determination of the cure cycle, maximum environmental limits is critical as adhesive and joint material properties degrade when tested above Tg.
- Long term thermal exposure to bonded joints alter the degree of cure characteristics. Effects of thermal exposure on mechanical properties needs to be determined when establishing the joint properties
- Critical factors in the bond process and methodologies to determine the bonding processing limits are critical. Processing limit establishments is required to qualify the bond process.

Thank You!

Contacts:

- Waruna Seneviratne (waruna@niar.wichita.edu)
- Upul Palliyaguru (upul@niar.wichita.edu)

