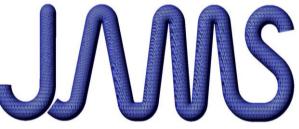
Advanced Fiber Reinforced Polymer Materials Guidelines for Aircraft Design Certification Process

Presented by:

Rachael Andrulonis Royal Lovingfoss

WSU-NIAR



JAMS Technical Review

September 29, 2021

Federal Aviation Administration

Joint Centers of Excellence for Advanced Materials

Introduction

- **Title**: Discontinuous Fiber Thermoplastic Polymer Composite Materials Guidance for Aircraft Design Certification Process and Control
- Project Participants
 - John Tomblin Executive Director
 - Royal Lovingfoss NCAMP Director
 - Rachael Andrulonis Sr. Research Engineer
- FAA Technical Monitor Curtis Davies
- Other FAA Personnel Cindy Ashforth (primary), Several others involved
- Industry Partnerships/Other Collaborations University of Washington, Solvay, Sekisui, Several through industry participants and Steering Committees
- Source of matching contribution for the current award Kansas Aviation Research and Technology (KART)

Advanced Fiber Reinforced Polymer Materials Guidelines for MAR WICHITA STATE **Aircraft Design Certification Process** NATIONAL INSTITUTE FOR AVIATION RESEARCH

Overall Goals

- Develop a framework for the qualification of new and innovative thermoplastic composite material systems including guidelines and recommendations for their characterization. testing, design and utilization.
- Secondary goal: To transition the test data and guidelines generated in this program into shared databases, such as CMH-17.

Research Outputs

- Trial tests provide valuable lessons learned on temperature effects of key mechanical properties, test methods best suited for thermoplastic composites and effects of key process parameters
- First public qualification of a continuous fiber thermoplastic composite with material and process specifications СМНЯ
- Key aspects of material and process control documented
- · Lessons learned, guidelines, and data made available to CMH-17
- · Qualification framework for chopped fiber thermoplastic composites

Qualification Program Status

Material selected based on industry input: Continuous Fiber Thermoplastic

- Toray TC1225 unidirectional tape
- · Thermoplastic semi-crystalline engineered polyarlyetherketone resin

Status:

- Screening trials and full qualification now complete
- All documents have been reviewed by Industry Steering Committee and were released in 2020
- Equivalencies on unsized fiber and continuous compression molding process are underway

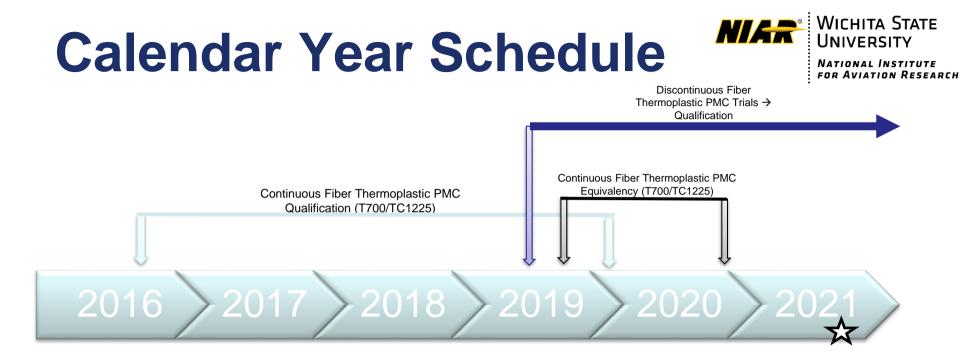
Statistical Allowables Generated

Discontinuous Fiber Trials Status (Pre-Qualification)

Objectives:

- Coordinate with industry experts to develop a set of trial tests for multiple chopped fiber forms
- Develop a framework for future gualification of chopped fiber composites

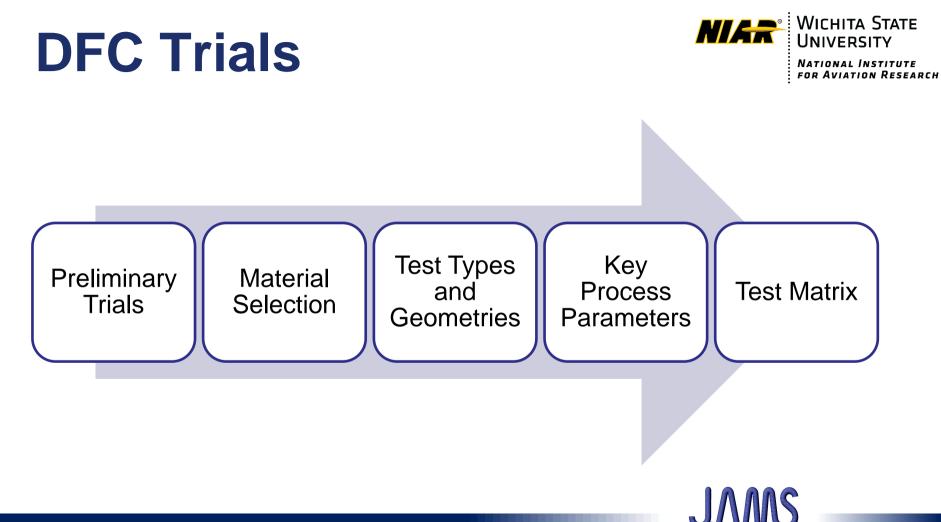
Status:


- Preliminary screening trials were completed
- · Multiple thicknesses and chip sizes included in the trials
- · Additional trials are currently being sc

panels and C-Scan example

Rachael Andrulonis – WSU-NIAR

JAMS Technical Review – September 29, 2021


Technical Approach

- Develop a framework to advance thermoplastic DFC materials into the aerospace industry.
- Utilize the experience and framework of the NCAMP composite program as an • example of process sensitive material characterization.
 - For more info on NCAMP:

https://www.wichita.edu/research/NIAR/Research/ncamp.php

Joint Centers of Excellence

Preliminary Trials

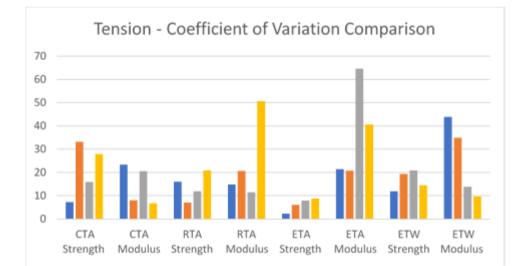
- Three Suppliers
- Thermoplastic discontinuous composites
- All using Chip size: 0.5" x 0.5"
- 12" x 12' panels
- C-Scan
- Density and void content
- Mechanical Properties at CTA, RTA, 250F/A and 180F/W
 - Tension
 - Compression
 - In-Plane Shear
 - Short Beam Shear
 - Flexure
 - Bearing
 - Compression After Impact

WICHITA STATE

NATIONAL INSTITUTE FOR AVIATION RESEARCH

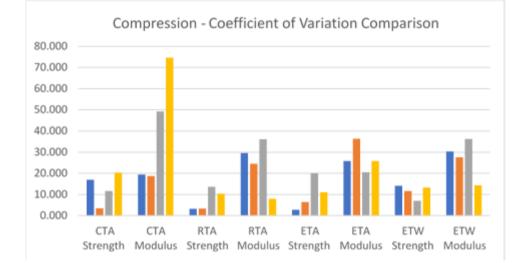
Example Results - Tension

TENSION - ASTM D3039-17


TENSILE PROPERTIES OF POLYMER MATRIX COMPOSITE MATERIALS

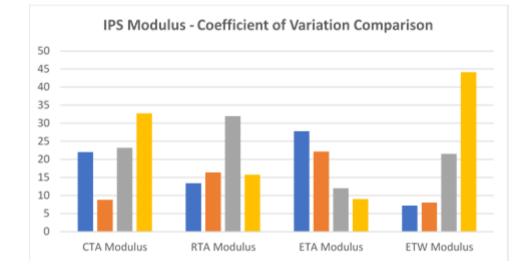
		С	ГА	R	ГА	A 250F/A		180F/W		
		Ultimate		Ultimate		Ultimate		Ultimate	Modulus	
	-	-	Strength [ksi]	Modulus [Msi]	Strength [ksi]	Modulus [Msi]	Strength [ksi]	Modulus [Msi]	Strength [ksi]	[Msi]
Supplier 1	TRIAL 1	Mean	29.237	6.371	30.063	6.138	31.535	5.685	28.998	5.356
		cv	7.276	23.339	16.024	14.822	2.312	21.448	11.915	43.934
	TRIAL 2	Mean	33.201	8.003	40.866	5.957	36.459	5.256	36.262	6.027
Supplier 1		cv	15.990	20.479	7.096	20.705	6.125	20.803	19.394	34.920
		Mean	27.907	6.749	33.631	5.184	27.857	7.827	22.787	4.797
Supplier 2	TRIAL 1	cv	22.625	37.866	11.911	11.507	7.961	64.662	20.844	13.905
Supplier 3		Mean	25.270	5.958	23.959	6.832	28.575	6.791	29.477	5.020
	TRIAL 2	cv	9.669	19.948	20.849	50.676	8.774	40.646	14.536	9.614

Tension Results



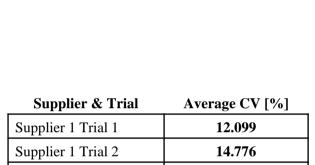
Supplier & Trial	Average CV [%]
Supplier 1 Trial 1	17.634
Supplier 1 Trial 2	18.781
Supplier 2	20.907
Supplier 3	22.469

Compression Results



Supplier & Trial	Average CV [%]
Supplier 1 Trial 1	17.772
Supplier 1 Trial 2	16.513
Supplier 2	24.264
Supplier 3	22.222

In-Plane Shear Results

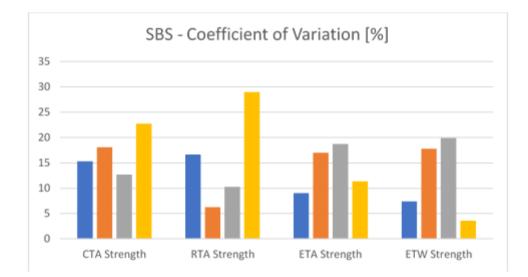


Supplier & Trial	Average CV [%]
Supplier 1 Trial 1	17.597
Supplier 1 Trial 2	13.860
Supplier 2	22.184
Supplier 3	25.402

Short Beam Shear Test Results

Supplier 2

Supplier 3

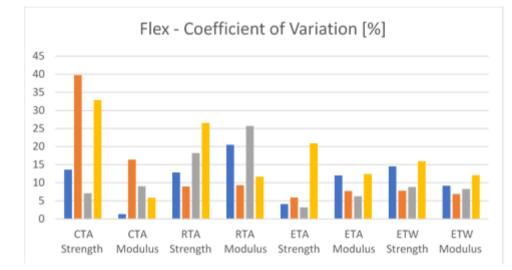

NAR

WICHITA STATE

UNIVERSITY NATIONAL INSTITUTE FOR AVIATION RESEARCH

15.397

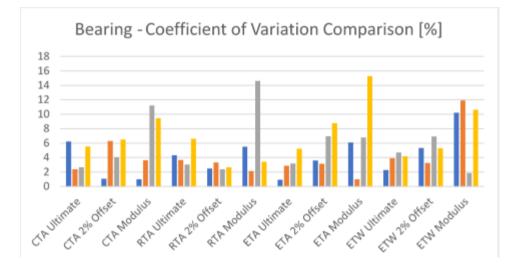
16.670


J	M	NS
Joint Centers of Ex	cellence for A	dvanced Materials

Rachael Andrulonis – WSU-NIAR

JAMS Technical Review - September 29, 2021

Flexure Test Results

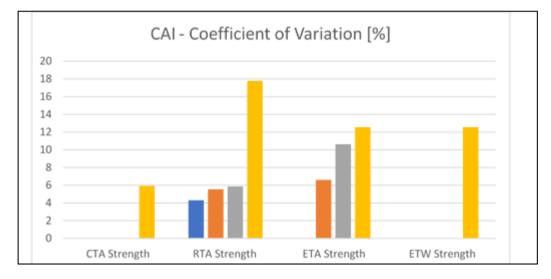


Supplier & Trial	Average CV [%]
Supplier 1 Trial 1	11.008
Supplier 1 Trial 2	12.840
Supplier 2	10.816
Supplier 3	17.297


Bearing Test Results

WICHITA STATE UNIVERSITY NATIONAL INSTITUTE FOR AVIATION RESEARCH

Supplier & Trial	Average CV [%]
Supplier 1 Trial 1	4.079
Supplier 1 Trial 2	3.959
Supplier 2	5.697
Supplier 3	6.962


Joint Centers of Excellence for Advanced Material

Rachael Andrulonis – WSU-NIAR

JAMS Technical Review - September 29, 2021

CAI Results

WICHITA STATE UNIVERSITY NATIONAL INSTITUTE FOR AVIATION RESEARCH

Supplier & Trial	Average CV [%]
Supplier 1 Trial 1	1.079
Supplier 1 Trial 2	3.043
Supplier 2	4.125
Supplier 3	12.202

Material Selection Considerations

- Synergy with JAMS partner UW
 - Characterizing the same material will provide a more complete data set and opportunities for developing guidelines documents
- Consistent quality
 - C-Scan results
- Coefficient of variation
 - Very high across all materials for many test methods
 - Supplier 1 overall had lower CV
- Industry relevance
 - Material used for aerospace parts

NA

WICHITA STATE

NATIONAL INSTITUTE FOR AVIATION RESEARCH

UNIVERSITY

APC THERMOPLASTIC TAPE Unique processing characteristics

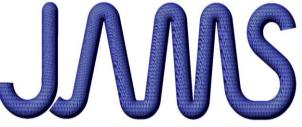
NATIONAL INSTITUTE FOR AVIATION RESEARCH

APC Cross Section

APC: Aromatic Polymer Composite tapes have unique characteristics, including:

- Resin rich surface, which is a great assistance in processing
- Improved melt flow
- High level of impregnation
- Superior toughness and damage tolerance
- Excellent environmental resistance
- Capable of oven consolidation
- Extensive qualification database

APC has unique characteristics for cost efficient part manufacturing processes

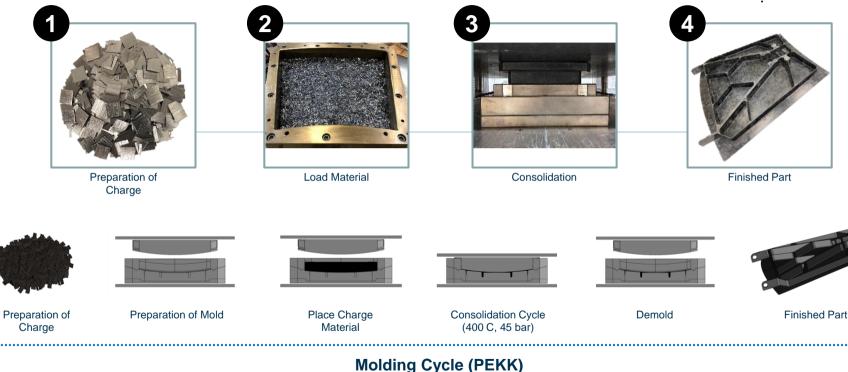

APL

by Solvay

Federal Aviation Administration

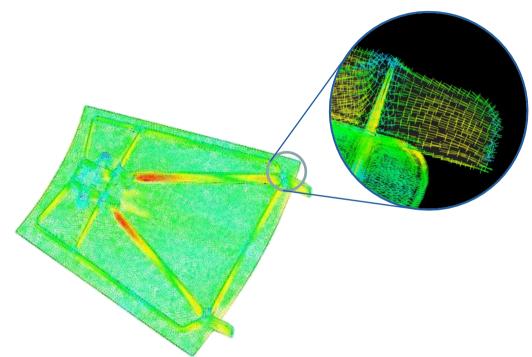
Chopped Fiber Thermoplastic Processing

Joint Centers of Excellence for Advanced Materials



QForge® Molding Process

NATIONAL INSTITUTE FOR AVIATION RESEARCH

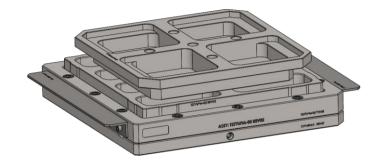


Joint Centers of Excellence for Advanced Materia

JAMS Technical Review - September 29, 2021

Tool Design and Fiber Alignment

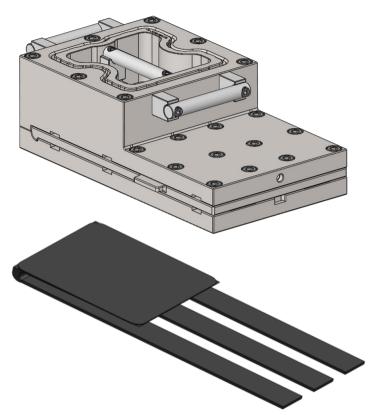
- Melt flow control can be achieved through tool design
- Able to tailor specific strengths at key structural locations by encouraging fiber alignment
- Achieve quasi-isotropic properties and encourage anisotropy where desirable based on prescribed loading conditions



Low Flow Tool

Flow Characteristics: Low Flow

- Platelets typically remain intact throughout the consolidation cycle
- The relative movement of platelets from cycle-start to -finish is negligible
- Panel Size: 12.125" x 12.125"
- Max. Thickness: .300"
- Min. Recommended Thickness: .070"



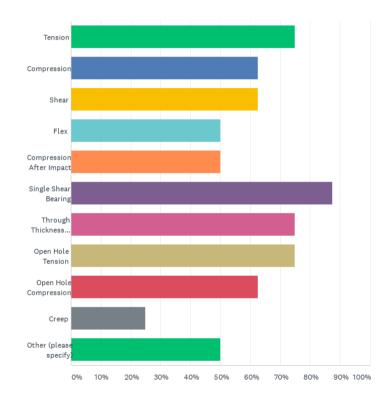
High Flow Tool

Flow Characteristics: High Flow

- Platelets are forced from the charge cavity into the part or mold cavity
- Fibers constituting individual platelets typically disperse during pressure application and fiber alignment is dependent on the flow type (convergent or divergent)
- Coupon Size: 13.85" x 1.50" or 7" x 7"
- Min./Max. Thickness: .150"
- The addition of shims into coupon cavity can allow for thinner coupons

Goals of Trials

- Critical for success of subsequent qualification that provides value to industry
- Understand the effects of key processing parameters to establish a robust processing specification
- Understand variability and how many specimens are needed
- Understand failure modes and size effects
- Test methods which ones will give appropriate failure modes consistently, which ones need to be modified
- Test temperatures does moisture conditioning degrade properties? what is the max use temperature and what temperatures should allowables be derived?
- What information should be included in a material specification and process specification?

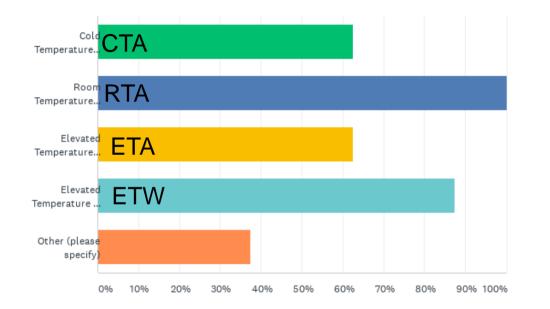


DFC Trial Test Matrix – Survey Results

• Wednesday, May 19, 2021

Q1: Please check off properties of interest for the trial test matrix:

Further characterization of size effects (W hole or other damage size metrics, and in microstructure.	, .
Also consider DIC investigations that show concentrations are interacting with specime	
- Thru-Thickness Tension should be done curved beam ASTM D6415 type test	e with the
- Also need some tension tests for a) rang thicknesses, b) comparing specimen mac larger panel vs net molded specimens	·
Ensure all specimens have width at least largest platelet dimension (including diago	
finite hole size effects, e.g., OHT at $D = 0$.	.375, 0.50,

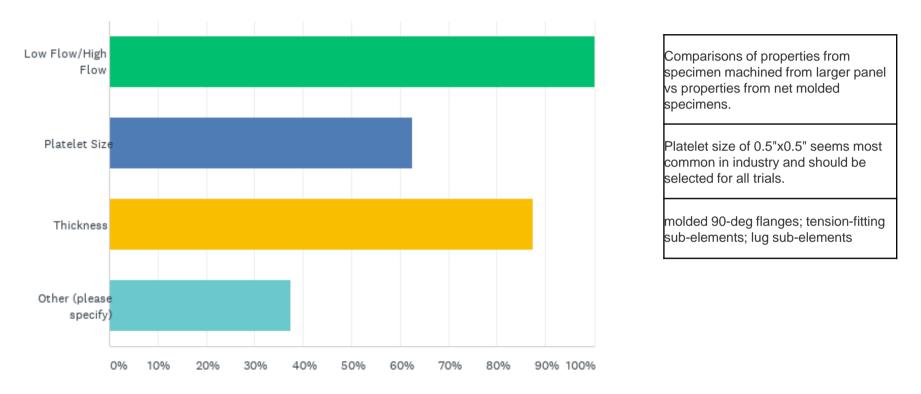


Rachael Andrulonis – WSU-NIAR

JAMS Technical Review - September 29, 2021

0.75, 1.00, etc.

Q2: The following conditions are planned for the next set of trials. Please indicate which conditions are of interest:


add -65F if a property is more critical vs RTA; add 240F/amb, 300F/amb; add 240F/wet and 300F/wet if previous data shows wet effect is significant

250°F ambient - Needed for engine applications

ETW at T = wet Tg - 50F

Q3: Please indicate which parameters you would like to see evaluated in the trials:

JAMS Technical Review – September 29, 2021

Other Survey Comments

As stated before, need to come up with some generic-ish 3D geometry parts that can be used to validate analysis methods using material properties from flat coupons. Tee-joint fittings; bathtub fittings, etc.

For high flow condition, need to investigate through thickness variation in fiber alignment due to skin-core-skin effects (flow shear effects) & effect of thickness on this.

Low Flow Tool

Flow Characteristics: Low Flow

- Platelets typically remain intact throughout the consolidation cycle
- The relative movement of platelets from cycle-start to -finish is negligible
- Panel Size: 12.125" x 12.125"
- Max. Thickness: .300"
- Min. Recommended Thickness: .070"

High Flow Tool

Flow Characteristics: High Flow

- Platelets are forced from the charge cavity into the part or mold cavity
- Fibers constituting individual platelets typically disperse during pressure application and fiber alignment is dependent on the flow type (convergent or divergent)
- Coupon Size: 13.85" x 1.50"
- Min./Max. Thickness: .150"
- The addition of shims into coupon cavity can allow for thinner coupons

SEKISU

Rachael Andrulonis - WSU-NIAR

JAMS Technical Review - September 29, 2021

Discussion Topics

• Tension: ASTM D3039/D638

- For D3039 vs D638, it seems that industry recommends D638 for discontinuous fiber composites as strain gauges are not of much value for discontinuous fiber.
- D638 will need to use extensioneters to gather modulus data, the only drawback is that we can't get ultimate strain with an extensioneter.
- Consider D3039 with DIC
- Through Thickness Tension: D6415
 - There are many differences between high and low flow, but one major difference is the fiber orientation through the thickness of the coupon/component; with low flow being resin dominate through thickness and high flow being more "isotropic".
 - There may being other standards for quantifying this difference.
- Creep

٠

- Elevated temperature creep in tension properties this has been a question for multiple potential applications.
- This test can also be added as additional information, but not for deriving B-basis allowables.
- Not much interest in the survey

Discussion Topics

Coupon Widths

- Coupons widths to accommodate a "flakes" full length (fiber direction) should only be of concern for low flow coupons where the flakes and fibers maintain their original shape during the consolidation cycle.
- Best to treat low flow and high flow with the same methods.
- Platelet Size
 - Stick with industry standard 0.5 x 0.5 inch for trials?
 - Options: 0.5 x 1/16 in. or 0.5 x 0.5 in. square
- Thickness
 - The thickness effect saturates after 0.15". Recommend 0.1" and 0.15" range.
 - UW tested a 0.065" thickness, which showed lower strength and higher variability.

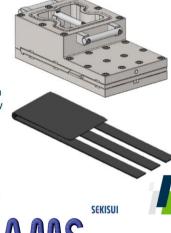
Parameters of Interest

- Flow
- Platelet Size
- Thickness

Low Flow Tool

Flow Characteristics: Low Flow

- Platelets typically remain intact throughout the consolidation cycle
- The relative movement of platelets from cycle-start to -finish is negligible
- Panel Size: 12.125" x 12.125"
- Max. Thickness: .300"
- Min. Recommended Thickness: .070"



High Flow Tool

Flow Characteristics: High Flow

- Platelets are forced from the charge cavity into the part or mold cavity
- Fibers constituting individual platelets typically disperse during pressure application and fiber alignment is dependent on the flow type (convergent or divergent)
- Coupon Size: 13.85" x 1.50" Or 7" x 7"
- Min./Max. Thickness: .150"
- The addition of shims into coupon cavity can allow for thinner coupons

Test Iterations

WICHITA STATE UNIVERSITY NATIONAL INSTITUTE FOR AVIATION RESEARCH

Iteration	Flow	Thickness	Platelet Size
1	High	Thickness 1	Platelet Size 1
2	High	Thickness 1	Platelet Size 2
3	High	Thickness 2	Platelet Size 1
4	High	Thickness 2	Platelet Size 2
5	Low	Thickness 1	Platelet Size 1
6	Low	Thickness 1	Platelet Size 2
7	Low	Thickness 2	Platelet Size 1
8	Low	Thickness 2	Platelet Size 2

Cannot do this combination Reduced Matrix Full Matrix

Thickness 1 = 0.250 in Thickness 2 = 0.150 in Platelet Size 1 = $0.5 \times 1/16$ in Platelet Size 2 = 0.5×0.5 in

Low Flow - $12" \times 12"$ panel, longitudinal or transverse does not matter, thickness is 0.075 to 0.300 inch.

High Flow - 13" x 1.5" panel, longitudinal, thickness is only 0.150 inch.

High Flow - 7" x 7" panel, transverse, thickness is only 0.150 inch.

Full Matrix – High Flow

	Mechanical Test Matrix (Optimized Iteration) - High Flow (0.150") (Platelet 0.5" x 0.5")								
Test Type	Orientation	Test Method (2)	CTA (-65F)	RTA	180F/A	180F/W	350F/A	350F/W	
Tension	Long to flow	ASTM D3039 (DIC at RT)	6	6	6	6	6	6	
Tension	Transverse to flow	ASTM D3039 (DIC at RT)	6	6	6	6	6	6	
Compression	Long to flow	ASTM D6484 with no hole /D3410	6	6	6	6	6	6	
Compression	Transverse to flow	ASTM D6484 with no hole / D3410	6	6	6	6	6	6	
Shear	Long to flow	ASTM D7078 / D5379		6					
Shear	Transverse to flow	ASTM D7078 / D5379		6					
Flex	Long to flow	ASTM D7264		6					
Flex	Transverse to flow	ASTM D7264		6					
Open Hole Tension	Long to flow	ASTM D5766, hole size 1 (TBD)		6					
Open Hole Tension	Transverse to flow	ASTM D5766, hole size 1 (TBD)		6					
Open Hole Tension	Long to flow	ASTM D5766, hole size 2 (TBD)		6					
Open Hole Tension	Transverse to flow	ASTM D5766, hole size 2 (TBD)		6					
Open Hole Tension	Long to flow	ASTM D5766, hole size 3 (TBD)		6					
Open Hole Tension	Transverse to flow	ASTM D5766, hole size 3 (TBD)		6					
Open Hole Compression	Long to flow	ASTM D6484		6					
Open Hole Compression	Transverse to flow	ASTM D6484		6					
Interlaminar Tension	Long to flow	ASTM D6415		6					
Interlaminar Tension	Transverse to flow	ASTM D6415		6					
Single Shear Bearing	Long to flow	ASTM D5961 procedure C, 0.25"d		6					
Single Shear Bearing	Transverse to flow	ASTM D5961 procedure C, 0.25"d		6					
CAI	Long to flow	ASTM D7136/D7137		6					
CAI	Transverse to flow	ASTM D7136/D7137		6					

Mechanical Test Matrix (Optimized Iteration) - High Flow (0.150") (Platelet 0.5" x 0.5")

Notes

(1) Test matrices to be repeated as shown in separate tab

(2) Scale/oversize coupon so 2 or more platelet across width (may required test method deviation/modification)

JAMS Technical Review – September 29, 2021

High Flow – Reduced Matrix

WICHITA STATE UNIVERSITY NATIONAL INSTITUTE FOR AVIATION RESEARCH

Mechanical Test Matrix (Iteration 3) High Flow (0.150") (Platelet 0.5" x 0.0625")

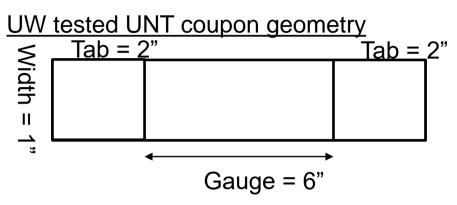
Test Type	Orientation	Test Method (2)	CTA (-65F)	RTA	180F/A	180F/W	350F/A	350F/W
Tension	Long to flow	ASTM D3039 (DIC at RT)		6	6		6	
Tension	Transverse to flow	ASTM D3039 (DIC at RT)		6	6		6	
Compression	Long to flow	ASTM D6484 with no hole		6				
Compression	Transverse to flow	ASTM D6484 with no hole		6				
Shear	Long to flow	ASTM D7078		6				
Shear	Transverse to flow	ASTM D7078		6				
Open Hole Tension	Long to flow	ASTM D5766, hole size 1 (TBD)		6				
Open Hole Tension	Transverse to flow	ASTM D5766, hole size 1 (TBD)		6				

Low Flow – Reduced Matrix

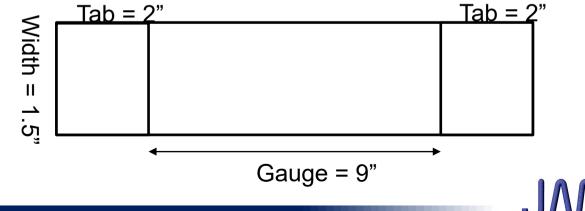
UNIVERSITY NATIONAL INSTITUTE FOR AVIATION RESEARCH

WICHITA STATE

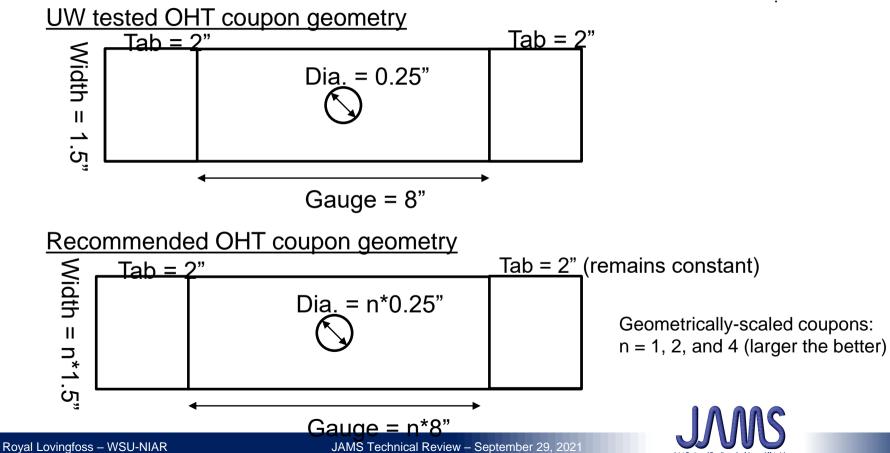
Mechanical Test Matrix (Iteration 5) Low Flow (0.250") (Platelet 0.5" x 0.0625")


Test Type	Test Method (2)	CTA (-65F)	RTA	180F/A	180F/W	350F/A	350F/W
Tension	ASTM D3039 (DIC at RT)		6	6		6	
Compression	ASTM D6484 with no hole		6				
Shear	ASTM D7078		6				
Open Hole Tension	ASTM D5766, hole size 1 (TBD)		6				

Recommended Geometries


Unnotched Tension (ASTM D3039)

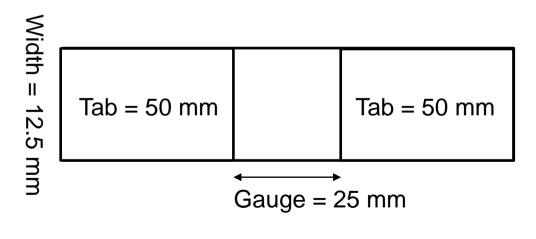
Joint Centers of Excellence


Recommended UNT coupon geometry

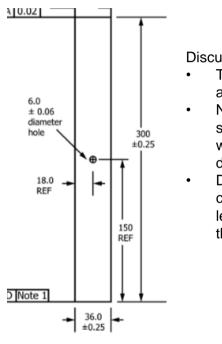
Royal Lovingfoss – WSU-NIAR

JAMS Technical Review – September 29, 2021

Open Hole Tension (ASTM D5766)


Compression

ASTM D3410 - UW tested compression coupon


geometry.

Adjusted coupon geometry to fit into our existing compression fixture.

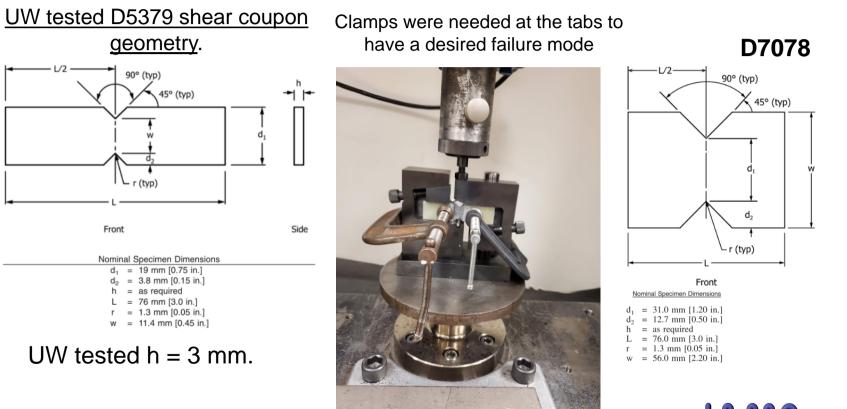
Tested thickness = $3 \sim 4$ mm

D6484 Geometry

Discussion:

The D3410 is smaller and is similar to D6641.

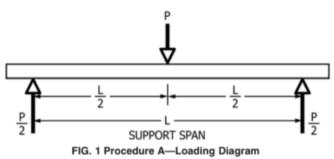
UNIVERSITY


NATIONAL INSTITUTE FOR AVIATION RESEARCH

- NIAR has had many slippage issues with the way the fixture is designed.
- D6484 is wider and we can make sure we get at least one unit cell into the gage width.

In-plane Shear (ASTM D5379)

WICHITA STATE UNIVERSITY NATIONAL INSTITUTE FOR AVIATION RESEARCH


JAMS Technical Review – September 29, 2021

End

Flexure (ASTM D7264)

3-pt bending coupon geometry

- 32:1 span to thickness ratio
- Total length = 1.2 * span length
- Tested 3, 6, 9 mm thicknesses.
- For 3 and 6 mm thickness, width = 13 mm, supporting pins = 1/8" radius.
- For 9 mm thickness, width = 26 mm, supporting pins = 3/8" radius (due to crushing at the pins).

Next Steps and Planned Work

- Continue to finalize test specimen geometry with University of Washington
- Work with Sekisui and Solvay to finalize trial test matrix
- Fabricate test panels
- Perform pre-qualification testing for all test requirements within:
 - NDI
 - Physical Testing
 - Mechanical Testing
 - Mechanical Design Guidance Testing
- Data reduction and reporting
- Develop framework for qualification

Thank you!

