Core Materials Qualification Guidance for Aircraft Design and Certification Presented by: **Nicole Stahl** **NIAR – Wichita State University** JAMS Technical Review September 29, 2021 #### Introduction - Core Materials Qualification Guidelines for Aircraft Design and Certification - Project Participants - Principal Investigators John Tomblin, Royal Lovingfoss, Rachael Andrulonis, Nicole Stahl - FAA Technical Monitor Curtis Davies - Industry Partnerships/Other Collaborations - Committee Members 24 different companies and industry partners are represented ## **Background** - Goals - To develop a framework for the qualification of core materials including guidelines and recommendations for their characterization, testing, design and utilization within the aerospace industry - Transition the test data and guidelines generated in this program into shared databases, such as CMH-17. - Survey - 24 different companies/organizations represented in Survey - Honeycomb & Foams - Both currently utilizing in aircraft structures and proposed for future use (5-10 years) - Material - Core: Hexcel, HRH-10-1/8-3.0', Hexcore Material, 0.5" thick, 1/8" cell size, 3pcf, largest used product by far - Facesheet: Hexcel 8552 PW (NCAMP qualified, NMS 128/3) - Adhesive: FM300 film adhesive (in process of being NCAMP qualified). FOR AVIATION RESEARCH - Climbing drum peel will need to have a 2ply, core, 4ply layup. This is so the 2ply facesheet will wrap around the drum. If we try to wrap a 4ply facesheet it will break. - Cure cycle will be a co-cure of the facesheets and core. See below. - 1. Ramp from RT to 350F+/-10F at 3-5F/min. Full vacuum is applied (roughly around 26-27"Hg). Ramp pressure at 2-7psi. - 2. Start vacuum reduction at 15psi+/-5psi, must be fully removed by 22psi+/-5psi. - 3. Max pressure reached at 45psi +/-5psi, hold that pressure through cure cycle until material is cooled down to 140F. - 4. Hold 350F+/-10F for 120 minutes -0 +15 minutes. - 5. Cool down at 2-7F/minute until it reaches 140F. At 140F vent pressure and remove from autoclave. - 1. Debag panel. - Normal bagging scheme will be used Please note that beveled edges will be used to ensure that edge core crush is not seen. Panels will be built 1" larger in each direction to have trim area on the edges which will be removed before machining coupons. ## WICHITA STATE UNIVERSITY NATIONAL INSTITUTE FOR AVIATION RESEARCH | Core Trial Test Matrix | | | | | | | | | |----------------------------|--|-------------------------|---|-------|-------------|--|--|--| | Mechanical Test Properties | | | | | | | | | | Layup (Warp Direction) |) Test Type and Direction | Property | Number of Batches x Number of Panels x
Number of Test Specimens
Test Temperature/Moisture Condition | | | | | | | | | | RTD | | ETW1 (180F) | | | | | N/A | Core Shear (L)
ASTM C273
(0.5" thick core) (1) | Strength and
Modulus | 1x1x5 | 1x1x5 | 1x1x5 | | | | | N/A | Core Shear (W)
ASTM C273
(0.5" thick core) (1) | Strength and
Modulus | 1x1x5 | 1x1x5 | 1x1x5 | | | | | N/A | Bare Compression
ASTM C365
(0.5" thick core) | Strength | 1x1x5 | | | | | | | 4 core 4
(2)(3) | Stabilized Compression
ASTM C365
(0.5" thick core) | Strength and
Modulus | 1x1x5 | 1x1x5 | 1x1x5 | | | | | N/A | Standard Test Method for Node
Tensile Strength of Honeycomb Core
Materials
ASTM C363
(0.5" thick core) | Strength | 1x1x5 | | | | | | | 4 core 4
(2)(3) | Flatwise Tension
ASTM C297
(0.5" thick core) | Strength | 1x1x5 | 1x1x5 | 1x1x5 | | | | | 4 core 4
(2)(3) | Edgewise Compression
ASTM C364 | Strength and
Modulus | 1x1x5 | | | | | | | 4 core 2
(2)(3) | Climbing Drum Peel
ASTM D1781 | Strength | 1x1x5 | | | | | | | 4 core 4
(2)(3) | Core Shear Stress
ASTM C393 | Strength and
Modulus | 1x1x5 | 1x1x5 | 1x1x5 | | | | | 4 core 4
(2)(3) | Long Beam Flex
ASTM D7249 | Strength and
Modulus | 1x1x5 | | | | | | Note 1: The core thickness used for the qual and the thickness correction factor coupons can be changed to match what is Note 2: 4 core 4 corresponds to 4 plies for top facesheet bonded to core with 2 plies of film adhesive and 4 plies for the bottom facesheet bonded to the core with 2 plies of film adhesive. Facesheet layup will be [0,90,90,0] and [0,90]. Note 3: The stacking sequence can be changed to match what is required and/or desired. #### **Trial Test Coupon Density** | Average [lbm/ft3] | 3.2581 | |---------------------|--------| | St. Dev. | 0.0919 | | Coeff. Of Variation | 2.8202 | | Min | 3.0021 | | Max | 3.4359 | | Number of Specimens | 79 | ## Previous Work – Core Shear Data WIGHITA STATE UNIVERSITY | Test | Direction | Temp | Core Shear
Strength
(psi) | | 2% Offset
Core Shear
Strength (psi) | | Modulus (ksi) | C.V. (%) | |------|-----------|------|---------------------------------|-------|---|-------|---------------|----------| | | L | RTD | 204.6 | 3.730 | 203.1 | 4.128 | 6.620 | 3.583 | | | | ETD | 170.1 | 2.094 | 165.3 | 2.702 | 5.969 | 3.198 | | C273 | | ETW | 123.4 | 8.485 | 124.5 | 6.735 | 5.482 | 4.601 | | | W | RTD | 110.5 | 3.001 | 108.6 | 3.927 | 3.942 | 2.872 | | | | ETD | 98.06 | 1.719 | 93.61 | 1.802 | 3.479 | 2.177 | | | | ETW | 76.90 | 2.513 | 71.84 | 1.970 | 3.326 | 2.867 | #### **Previous Work – Core Shear Data** ### WICHITA STATE | Test | Direction | Temp | Failure Mode | | Speed | | |------|-----------|---|--|--------------------------|--|---| | | | RTD | SGE
SGE
SGE
SGE
SGE | | TEST SPEED FOR CMH17-C273-L-RTD-1: 0.02 in/min
TEST SPEED FOR CMH17-C273-L-RTD-(2-5): 0.011
in/min | | | | L | SGE | | TEST SPEED: 0.011 in/min | | | | | | ETW | SGM, ICE
SGM, ICB
SGM, ICE
SGM, ICE
SGM, ICE | 2°X6° | 2"X6" | TEST SPEED FOR CMH17-C273-L-ETW1-1: 0.011 in/min TEST SPEED FOR CMH17-C273-L-ETW1-2: 0.0145 in/min TEST SPEED FOR CMH17-C273-L-ETW1-(3-5): 0.01165 in/min | | | | RTD | SGE
SGE
SGE
SGE
SGE
SGE
SGE | | | 2"X6" | | | w | ETD | SGE
SGE
SGE
SGE
SGE | | TEST SPEED: 0.013 in/min | | | | | ETW | SGE
SGE, ICT
SGE, ICT
SGE | | TEST SPEED FOR CMH17-C273-W-ETW1-1: 0.011
in/min
TEST SPEED FOR CMH17-C273-W-ETW1-2: 0.04
in/min
TEST SPEED FOR CMH17-C273-W-ETW1-(3-5): | | | C273 Failure Codes | | | | | | | | |--------------------|-----------------|--------------------|------------------|------------------|------|--|--| | First Characte | First Character | | Second Character | | er | | | | | Code | Failure Area | Code | Failure Location | Code | | | | Core Shear | S | At End | Α | Тор | Т | | | | Interface failure | I | Gage (within core) | G | Middle | M | | | | Explosive | Χ | One Corner | С | Bottom | В | | | | Other | 0 | Various | V | Entire Length | Е | | | | | | | U | Various | V | | | | | | | | Unknown | U | | | #### **Previous Work** – Flatwise Tension Data ## WICHITA STATE UNIVERSITY | Test | Temp | Flatwise Tensile Strength (psi) | C.V. (%) | |------|------|---------------------------------|----------| | | RTD | 340.6 | 0.9165 | | C297 | ETD | 328.2 | 2.473 | | | ETW | 296.0 | 2.514 | #### **Previous Work – Flatwise Tension Data** ## WICHITA STATE | Test | Temp | Failure Mode | Specimen
Geometry | Speed | |------|------|------------------------------|----------------------|---| | | | CORE FAILURE
CORE FAILURE | | TEST SPEED FOR CMH17-Panel 1-C297-
RTD-1: 0.02 in/min | | | RTD | CORE FAILURE
CORE FAILURE | | TEST SPEED FOR CMH17-Panel 1-C297-
RTD-2: 0.008 in/min | | | | CORE FAILURE | | TEST SPEED FOR CMH17-Panel 1-C297-
RTD-(3-5): 0.005 in/min | | | | CORE FAILURE CORE FAILURE | 2"X2" | TEST SPEED FOR CMH17-Panel 1-C297- | | C297 | ETD | CORE FAILURE | | ETD1-1: 0.02 in/min TEST SPEED FOR CMH17-Panel 1-C297- | | | | CORE FAILURE | | ETD1-(2-5): 0.006 in/min | | | | CORE FAILURE | | (1, 1 11 1 | | | | CORE FAILURE | | TEST SPEED FOR CMH17-Panel 1-C297- | | | | CORE FAILURE | | ETW1-1: 0.02 in/min | | | ETW | CORE FAILURE | | TEST SPEED FOR CMH17-Panel 1-C297- | | | | CORE FAILURE | | ETW1-(2-5): 0.0064 in/min | | | | CORE FAILURE | | L 1 VV 1 (2 5). 0.0004 III/IIIIII | #### **Previous Work – Bare and Stabilized Compression Data** ## WICHITA STATE UNIVERSITY | Test | Direction | Temp | Flatwise Compression
Strength (psi) | C.V. (%) | Flatwise
Compression
Modulus (ksi) | C.V. (%) | |------|------------|------|--|----------|--|----------| | | Bare | RTD | 335.5 | 1.617 | N/A | N/A | | C365 | Stabilized | RTD | 458.9 | 0.9014 | 29.54 | 2.119 | | 6303 | Stabilized | ETD | 404.6 | 1.326 | 25.82 | 3.572 | | | Stabilized | ETW | 295.8 | 10.83 | 22.51 | 6.326 | #### **Previous Work – Bare and Stabilized Compression Data** ## WICHITA STATE UNIVERSITY | Test | Direction | Temp | | Specimen
Geometry | | |------|------------|------|--|----------------------|--| | | Bare | RTD | UNIFORM COMPRESSIVE FAILURE UNIFORM COMPRESSIVE FAILURE UNIFORM COMPRESSIVE FAILURE UNIFORM COMPRESSIVE FAILURE | | TEST SPEED: 0.0039 in/min | | | Stabilized | RTD | UNIFORM COMPRESSIVE FAILURE | | TEST SPEED FOR CMH17-Panel 1-C365-
RTD-1: 0.02 in/min
TEST SPEED FOR CMH17-Panel 1-C365-
RTD-(2.3): 0.0099 in/min
TEST SPEED FOR CMH17-Panel 1-C365-
RTD-(4-6): 0.0039 in/min | | | | ETD | UNIFORM COMPRESSIVE FAILURE 2°X2° UNIFORM COMPRESSIVE FAILURE | 2°X2° | TEST SPEED: 0.0039 In/min | | | | ETW | UNIFORM COMPRESSIVE FAILURE | | TEST SPEED FOR CMH17-Panel 1-C365-
ETW-1: 0.02 in/min
TEST SPEED FOR CMH17-Panel 1-C365-
ETW-(2-7): 0.003 in/min | #### **Previous Work – Core Shear Stress Data** | Test | Temp | Core Shear
Ultimate Stress
(psi) | C.V. (%) | Facing
Bending
Stress (psi) | C.V. (%) | |------|------|--|----------|-----------------------------------|----------| | | RTD | 212.7 | 2.233 | 24498.2 | 4.965 | | C393 | ETD | 197.9 | 2.115 | 21647.8 | 2.836 | | | ETW | 146.2 | 1.580 | 16106.6 | 3.682 | #### **Previous Work – Core Shear Stress Data** ## WICHITA STATE UNIVERSITY | Test | Temp | Failure Mode | Specimen
Geometry | Speed | |------|------------------------------|---|----------------------|---| | | SGC
SGC
SGC
RTD SGC | TEST SPEED FOR
CMH17-Panel 3-
C393-RTD-1: 0.25
in/min
TEST SPEED FOR
CMH17-Panel 3-
C393-RTD-(2-5):
0.035 in/min | | | | | ETD | SGC | 3"X8" | TEST SPEED: 0.035 in/min | | C393 | ETW | SGC
SGC
SGC
SGC
SGC | 3 70 | TEST SPEED FOR CMH17-Panel 3-C393-ETW1-1: 0.032 in/min TEST SPEED FOR CMH17-Panel 3-C393-ETW1-2: 0.135 in/min TEST SPEED FOR CMH17-Panel 3-C393-ETW1-(3-7): 0.08 in/min | | C393 | | | | | | | | | |--|---------|----------------|--------|---------------------|------|--|--|--| | First Characte | | Second Cha | racter | Third Character | | | | | | | Code | Failure Area | Code | Failure
Location | Code | | | | | | С | At load bar | Α | Core | С | | | | | skin to core
Delamination | D | Gage | G | core-facing
bond | Α | | | | | | F | Multiple areas | М | Bottom facing | В | | | | | Multi-mode | M (xyz) | Outside gage | 0 | Top facing | Т | | | | | transverse Shear | S | Various | V | both
Facings | F | | | | | eXplosive | X | Unknown | U | Various | V | | | | | Other | 0 | | | Unknown | U | | | | | Sandwich Panel Three Part Failure Identification Codes | | | | | | | | | #### **Previous Work – Edgewise Compression Data** | | Temp | Compressive
Strength (ksi) | | Modulus (Msi) | | |------|------|-------------------------------|-------|---------------|-------| | C364 | RTD | 63.02 | 6.589 | 9.569 | 4.248 | #### **Previous Work – Edgewise Compression Data** ## WICHITA STATE UNIVERSITY | Test | Temp | Failure Mode | Specimen
Geometry | Speed | | |------|------|------------------|----------------------|--|------------------------------| | | | FGT, CGT | | | | | | RTD | FGT, CGT,
BGM | | TEST SPEED FOR CMH17-Panel 2- | | | C364 | | FGM, CGM | 2"X4" | C364-RTD-(1-3): 0.02 in/min
TEST SPEED FOR CMH17-Panel 2- | | | | | FGB, FAB | | | C364-RTD-(4,6): 0.009 in/min | | | | FGB, CGB | | C304-KTD-(4,0). 0.009 III/IIIIII | | | | | FGM, CGM | | | | | First Character | Second Charact | ter | Third Character | | | |------------------------------------|----------------|-----------------------|-----------------|---------------------|----------| | Failure Type | Cod
e | Failure Area | Cod
e | Failure
Location | Cod
e | | Facesheet Compression | F | At End | Α | Тор | Т | | Facesheet Delamination
Buckling | В | Gage (>1 xt from end) | G | Middle | М | | Honeycomb Facesheet
Dimpling | D | Various | V | Bottom | В | | Core Compression | С | Unknown | U | Various | V | | Core Shear | S | | | Unknown | U | | Overall Panel Buckling | Р | | | | | | Explosive | X | | | | | | Other | 0 | | | | | #### **Previous Work – Climbing Drum Peel Data** ## WICHITA STATE UNIVERSITY | | Temp | Avg Peel Torque
(in-lb/in) | | |-------|------|-------------------------------|-------| | D1781 | RTD | 12.86 | 8.213 | | Test | Temp | Failure Mode | Specimen
Geometry | Speed | |-------|------|---|-----------------------|-------------------------------| | | | ADHESION TO THE FACING
FAILURE, FAILURE WITHIN THE
CORE | | | | | | ADHESION TO THE FACING
FAILURE, FAILURE WITHIN THE
CORE | 3"X12" (without | | | D1781 | RTD | ADHESION TO THE FACING
FAILURE, FAILURE WITHIN THE
CORE | tabs)
3"X14" (with | TEST
SPEED:
1.00 in/min | | | | ADHESION TO THE FACING
FAILURE, FAILURE WITHIN THE
CORE | tabs) | | | | | ADHESION TO THE FACING
FAILURE, FAILURE WITHIN THE
CORE | | | #### **Previous Work – Long Beam Flex Data** | Test | Temp | Facing
Ultimate
Stress
(psi) | C.V. (%) | Effective
Facing Chord
Modulus
(tensile) (Msi) | | Effective Facing Chord Modulus (compressive) (Msi) | | Sandwich
Flexural
Stiffness
(M lb.in2) | C.V. (%) | |-------|------|---------------------------------------|----------|---|-------|--|-------|---|----------| | D7249 | RTD | 61459.7 | 5.281 | 10.91 | 4.137 | 10.07 | 3.670 | 0.1200 | 1.711 | #### **Previous Work – Long Beam Flex Data** ## WICHITA STATE UNIVERSITY | Test | Temp | Failure
Mode | Specimen Geometry | Speed | |-------|------|-----------------|-------------------|----------------------------| | | | FAT | | | | | | FAT | | TEST SPEED, A SE | | D7249 | RTD | FAT | 3"X24" | TEST SPEED: 0.25
in/min | | | | FAT | | 111/111111 | | | | FAT | | | | First Character | Second Character | | Third Character | | | |---------------------------|------------------|----------------|-----------------|------------------|------| | Failure Type | Code | Failure Area | Cod
e | Failure Location | Code | | skin to core Delamination | D | At load bar | Α | Bottom Facing | В | | Filament fracture | F | Gage | G | Top Facing | Т | | tHrough-thickness | Н | Multiple areas | M | both Facings | F | | Layer instability | L | Outside gage | | Core | С | | local Wrinkling | W | Various | V | core-facing bond | Α | | Multi-mode | M (xyz) | Unknown | U | Various | V | | core Crushing | С | | | Unknown | U | | longitudinal sPlitting | Р | | | | | | teNsile | N | | | | | | transverse Shear | S | | | | | | eXplosive | X | | | | | | Other | 0 | | | | | #### **Previous Work – Node Tensile Strength Data** ## WICHITA STATE UNIVERSITY | Specimen | Test
Speed
(in/min) | Max Load
(lb) | Tensile-Node
Bond Strength
[psi] | Pins | Failure Mode | |----------|---------------------------|------------------|--|---------------|--| | 1 | 0.4 | 61.154 | 20.440 | Staggered | Node Bond Failure, Failure at Loading Pins | | 2 | 0.4 | 62.661 | | Double
Row | Failure at Loading Pins | | 3 | 0.4 | 50.979 | 16.917 | Staggered | Node Bond Failure, Failure at Loading Pins | | 4 | 0.4 | 48.847 | | Staggered | Failure at Loading Pins | | 5 | 0.4 | 56.529 | 18.871 | Staggered | Node Bond Failure | | 6 | 0.4 | 53.132 | 17.676 | Staggered | Node Bond Failure, Failure at Loading Pins | #### **Current Work** - Finalize Qualification Matrix - Node Tensile Testing and Edgewise Compression - Thickness Correction Factor - Repeat Density testing using 2 batches - Test Plan - Specs #### **Thank You** - Questions? - Contact - Nicole Stahl - nstahl@niar.wichita.edu