Effects of New Jet Fuel Exposure on Aerospace Composites

Presented by:

Santanu Kundu

Dave C. Swalm School of Chemical Engineering

JAMS Technical Review September 23rd, 2021

Federal Aviation Administration

Joint Centers of Excellence for Advanced Materials

Introduction

- Project Title: Effects of New Jet Fuel Exposure on Aerospace Composites
- Project Participants
 - **Principal Investigators:** Santanu Kundu, Matthew W. Priddy, Thomas E. Lacy Jr., Charles U. Pittman Jr.
 - Graduate Students: Naoufal Harich
- FAA Technical Monitor
 - Dave Stanley
- Industry Partnerships/Other Collaborations: Aurora Flight Sciences, Advanced Composite Institute (MSU)
- Source of matching contribution for the current award: Aurora Flight Sciences, MSU, and TAMU

Background

Motivation and Key Issues

- The matrix phase of composites can absorb various fluids including fuels
- Fuel absorption can lead to matrix swelling and matrix cracking
- The degradation of thermal and mechanical properties of composites can occur because of fuel absorption
- Alternative fuels can have similar effects as conventional Jet fuels, but not reported in the literature extensively

Objective and Scope

- Investigation of the effects of alternative fuels on carbon/epoxy composites
- Evaluate the changes in thermal and mechanical properties
- Compare the effects of alternative and conventional fuels absorption
- Developing a modelling framework based on the experimental data that can be used for complex, real-life geometries
- Approach
 - Experimental investigation of fuel absorption of carbon/epoxy composites in conventional and alternative fuels
 - Track the weight gain with time to determine the amount of fuel absorbed
 - Investigate the changes in the dynamic and static mechanical properties after absorption
 - Modelling the diffusion process using Finite Element Method

Literature Study: Effects of JP4 Fuel Uptake on Composites

- AS4/3501-6: carbon fiber with epoxy resin
- IM7/8551-7A: carbon fiber with epoxy resin
- IM7/977-2: carbon fiber with epoxy resin
- IM7/5250-4: carbon fiber with bismaleimide resin
- AS4/PEEK(APC-2): carbon fiber with polyetheretherketone resin
- IM8/APC (HTA): carbon fiber with aromatic polymer composite (high temperature amorphous)

Graphs reproduced from Ref 1

MISSISSIPPI STATE

VERSITY_{TM}

- [±45]_{2s} layup and thermoplastic matrix
- Composites with a thermoset (cross-linked) matrix absorb less fuel than composites with a thermoplastic matrix
- · The type of matrix and layup affect the fuel uptake

[1] Curliss, D.B., and Carlin, D., 1990, "Effect of jet-fuel exposure on advanced aerospace composites, II: Mechanical properties," Final Report, no. WRDC-TR-90-4064, Air Force Wright Research and Development Center, OH, USA.

Material Systems: Composites

• Three aerospace-grade carbon/epoxy composites were used:

Material system	Fiber type	Fabrication method	Layup
Hexcel SGP370- 8H/8552	Eight harness woven carbon fabric	Autoclave cured	Cross-ply [0/90/90/0]
Hexcel <mark>SGP370-</mark> 8H/8552	Eight harness woven carbon fabric	Autoclave cured	Quasi-isotropic [0/-45/45/90]
DMS2436/API-1078	Warp/knit carbon fabric	Resin-infused	[45/-45/0/90/0/-45/45]

 Specimens were cut from these composite panels into 2 (L) x 0.5 (W) in² dimensions

Red: carbon fibers

Blue: Epoxy

Material Systems: Fuels

- Conventional jet fuel Jet A was used
- The alternative fuels (AF) used in this work were:

AF blend used	Process used	Blending ratio with Jet A	Aromatic content
ATJ/Jet A	ATJ/SPK	50/50	0%
SPK/Jet A	HEFA/SPK	50/50	0-0.4%
Farnesane/Jet A	HFS/SIP	20/80	0%
S8/Jet A	FT/SPK	50/50	<0.2%

ATJ/SPK: Alcohol-to-Jet to Synthetic Paraffinic Kerosene

HEFA/SPK: Hydroprocessing Esters and Fatty Acids to Synthetic Paraffinic Kerosene

HFS/SIP: Hydroprocessed Fermented Sugars to Synthetic Isoparaffins

FT/SPK: Fischer-Tropsch to Synthetic Paraffinic Kerosene

Material Systems: Fuels

ATJ/SPK: Alcohol-to-Jet to Synthetic Paraffinic Kerosene

Experimental Details: Preconditioning

- **Preconditioning** used for **all specimens** studied in this work:
 - Samples were dried at room temperature under vacuum at 0.5 atm absolute pressure for at least 12 h
 - Held in a controlled humidity chamber at 50% relative humidity (RH) for a minimum of 12 h before fuel immersion.

Experimental Details: Tracking Weight Gain

- Weight gain was tracked for each specimen as a function of time following these steps:
 - Periodically removing the specimens from the soaking bath
 - Wiping the specimens dry
 - Weighing the specimens to assess their fluid uptake
 - Re-immersing the specimens in the bath until the next weighing
- For each sample, three replicas were employed

Weight Gain with Time for Autoclave Quasi-Isotropic Hexcel SGP370-8H/8552 Carbon/Epoxy immersed in Jet A fuel

- Faster absorption in the early stages of the fuel immersion
- The equilibrium weight gain was of ${\approx}0.27\%$ and the range [L-H] of [0.18 0.35] %

Average Weight Gain with Time for Autoclave Quasi-Isotropic Hexcel SGP370-8H/8552 Carbon/Epoxy

- Faster **absorption** in the **early stages** of the fuel immersion
- The equilibrium weight gain for all specimens was in the range of 0.26-0.32%

Average Weight Gain with Time for Autoclave Cross-Ply Hexcel SGP370-8H/8552 Carbon/Epoxy

- Faster **absorption** in the **early stages** of the fuel immersion ٠
- The equilibrium weight gain for all specimens was in the range of 0.28-0.36% ٠

SITY_{TM}

Average Percent Weight Gain with Time for Resin Infused DMS2436/API-1078 Carbon/Epoxy

- Faster absorption in the early stages of the fuel immersion ٠
- The equilibrium weight gain for all specimens was in the range of 0.04-0.07% ٠

SITY_m

Summary of Average Weight Gain for All Specimens and Fuels Used

	%Equilibrium weight gain in different fuels					
Composite Type	100% Jet A	50/50 ATJ/Jet A blend	50/50 SPK/Jet A blend	50/50 S8/Jet A blend	20/80 Farnesane/Jet A blend	
Autoclave Quasi-Isotropic Hexcel SGP370-8H/8552 Carbon/Epoxy Specimens	0.27 ± 0.08	0.26 ± 0.09	0.3 ± 0.06	0.26 ± 0.05	0.32 ± 0.04	
Autoclave Cross-Ply Hexcel SGP370-8H/8552 Carbon/Epoxy Specimens	0.28 ± 0.04	0.36 ± 0.13	0.32 ± 0.09	0.36 ± 0.04	0.29 ± 0.10	
Resin Infused DMS2436/API-1078 Carbon/Epoxy Specimens	0.04 ± 0.01	0.04 ± 0.05	0.05 ± 0.05	0.04 ± 0.03	0.07 ± 0.03	

- No significant difference in absorption of Jet A compared to alternative fuels.
- Hexcel carbon/epoxy specimens absorbed more fuels than the resin-infused specimens.
- The resin-infused specimens have a warp-knit fabric making the layers tightly stacked than for the woven fabric used for Hexcel specimens likely resulted in lower fuel absorption.

Experimental Details: DMA

• The effects of fuel absorption on the thermomechanical properties of composites are studied using Dynamic Mechanical Analysis (DMA).

- DMA was performed on neat and fuel-immersed specimens using an RSA-G2 Solids Analyzer with the three-point bending mode.
- The analysis was performed following the **ASTM D7028-07**.

DMA parameters used

Test method	Frequency	Heating Rate		
Three-point bending	1 Hz	5 °C/min		

Santanu Kundu – Mississippi State University

JAMS Technical Review – September 23rd, 2021

Experimental details: DMA (cont.)

- Thermomechanical properties of interest:
 - Storage modulus *E'* measures the elastic response
 - Loss modulus *E*" measures the viscous response (dissipation in the system)
 - tan(δ) is the ratio of *E* "/*E* '
- The **ASTM D7028-07**^[3] define **two temperatures** of interest for the **glass transition temperature:**
 - The intersection of the two tangent lines from the storage modulus gives $\rm DMA~T_g$
 - The maxima in the tan(δ) curves is the glass transition temperature, T_t

[2] Sperling, L. H. (2005). Introduction to physical polymer science. John Wiley & Sons.

[3] ASTM International. (2007). ASTM D7028-07-Standard Test Method for Glass Transition Temperature (DMA Tg) of Polymer Matrix Composites by Dynamic Mechanical Analysis (DMA).

DMA Results for Autoclaved Cross-ply Hexcel SGP370-8H/8552 Carbon/Epoxy Specimens: Neat and Immersed in ATJ/Jet A Blend

• Both DMA T_q and T_t decreased after fuel absorption: $\Delta DMA T_q = 11.3^{\circ}C$ and $\Delta T_t = 13.7^{\circ}C$

Average Values of DMA T_g and T_t

		Average values of DMA T_g and T_t of three replicates ± standard deviation.					
Specimen type	Property	Neat	100% Jet A	50/50 ATJ/Jet A blend	50/50 SPK/Jet A blend	50/50 S8/Jet A blend	20/80 Farnesane/Jet A blend
Autoclave Quasi- Isotropic Hexcel	DMA T _g (°C)	187.1 ± 7.6	174 ± 1.5	173.5 ± 0.8	173.3 ± 0.9	173.5 ± 0.1	172.9 ± 0.9
SGP370-8H/8552 Carbon-Epoxy Specimens	Tan(δ) peak T _t (°C)	200.6 ± 0.5	186.9 ± 0.8	187.9 ± 0.7	188.0 ± 0.15	187.4 ± 0.9	186.7 ± 1.3
Autoclave Cross- Ply Hexcel SGP370-	DMA T _g (°C)	182.3 ± 0.3	168.9 ± 0.4	170.1 ± 1.3	171.4 ± 0.3	170.6 ± 0.9	172.3 ± 0.7
8H/8552 Carbon- Epoxy Specimens	Tan(δ) peak T _t (°C)	198.9 ± 0	185.5 ± 2.1	184.5 ± 1.0	185.4 ± 0.9	183.4 ± 1.1	185.8 ± 0.3
Resin Infused DMS2436/API-1078	DMA T _g (°C)	168.4 ± 0.5	165.3 ± 0	167.3 ± 0.2	168.2 ± 0.3	165.7 ± 0.6	166.3 ± 0.1
Carbon-Epoxy Specimens	Tan(δ) peak T _t (°C)	182.9 ± 0.1	182.55 ± 1.8	183.4 ± 0.4	182.5 ± 0.5	181.2 ± 0.1	183.1 ± 0.1

- DMA T_g and T_t for specimens saturated with four alternative fuel/Jet A blends were impacted to the same extent as those saturated with 100% Jet A fuel.
- Decrease of DMA T_q and T_t for Hexcel specimens' higher than for the resin-infused.

MISSISSIPPI STATE

UNIVERSITY_m

Absorption of Model Fluids

- MSU has limited access to alternative fluids, particularly unblended ones.
- Model fluids with similar chemical structure as the pure alternative fuels will be used.
- Use 100% (neat) alternative fuels and investigate their effects on carbon/epoxy specimens.
- These **pure alternative fuels** are comprised **mostly of paraffins and olefins** and have almost **no aromatics**.
- Sample thickness will be varied- higher thickness leads to slower diffusion.
- Accelerated absorption using different temperatures will be performed on the thicker specimens.

[4] Sustainable bio-derived synthetic paraffinic kerosene (Bio-SPK) jet fuel flights and engine tests program results. 9th AIAA aviation technology, integration, and operations conference (ATIO) and aircraft noise and emissions reduction symposium (ANERS), (p. 7002).

Material System: Model Fluids

• Model fluids to be used:

JAMS Technical Review - September 23rd, 2021

Preliminary Results: Absorption

Autoclave cured Hexcel SGP 370-8H/8552 quasi-isotropic specimens after ~3500h

- Low model fluids absorption, similar to the alternative fuels
- Aromatic and aliphatic model fluids display similar uptake values

Autoclave cured Hexcel SGP 370-8H/8552 cross-ply specimens at ~3500h

- Low model fluids absorption, similar to the alternative fuels
- Aromatic and aliphatic model fluids display similar uptake values

Diffusion Modelling

- The diffusion study for some composites can require prolonged experimental work to reach saturation and complex experimental setup.
- Modelling of diffusion in composites can be helpful in predicting various outcomes of the experimental work, (i.e., time to reach saturation, equilibrium values, etc.).
- Finite element software (Abaqus) is used to model diffusion through its built-in mass diffusion based on Fickian diffusion model.

Diffusion Modelling

- Initial geometries with cross-ply and quasi-isotropic layups are used.
- Specimens with the exact dimensions and layers will be used and compared with the

experimental results.

Cross-ply layup [0/90/90/0]

Quasi-Isotropic layup [0/-45/45/90]

Preliminary results

Fiber Array Type Study

- The fiber arrangement of a composite specimen can affect the diffusion
- The fibers represent obstacles the fluid has to move around, changing its path and slowing the diffusion.
- Two fiber configurations are used:

Square Array

- Same fiber and matrix volume fractions: $v_f = 50\%$
- Unit cell diffusion dimensions are different (S/Hx 1/0.93)

Preliminary Results: Fiber Array study

Mass gain vs Time comparison between square and hexagonal array Square Arrav Mass gain Hexagonal Array Time

Hexagonal array appears to have a faster diffusion rate than square array.

RSITY_™

- likely due to the difference in unit cell dimensions
- Both arrays will converge to ٠ the same equilibrium value since they have same matrix volume

Technical Publications

- Bassou, R., Harich, N., Kundu, S., Priddy, M. W., Lacy, T. E., & Pittman, C. U. (2019). DOT/FAA/TC-20/22 - Effect of Jet Fuels Exposure on Aerospace Composites - Literature Review. Federal Aviation Administration. Atlantic City International Airport, NJ: FAA William J. Hughes Technical Center.
- Harich, N., Bassou, R., Kundu, S., Priddy, M. W., Lacy, T. E., & Pittman, C. U. (2020).
 DOT/FAA/TC-20/22 Effects of New Jet Fuel Exposure on Aerospace Composites Phase 1 Final Report. Federal Aviation Administration. Atlantic City International Airport, NJ: FAA William J. Hughes Technical Center.
- Harich, N., Bassou, R., Priddy, M. W., Lacy, T. E., & Pittman, C. U. Kundu, S. *"Effects of alternative jet fuel blends on aerospace-grade carbon/epoxy composites"* (To be submitted)

