

Factors Affecting Qualification/Certification:

Evaluating the Criticality of Inherent Anomalies/Defects on the Fatigue Behavior of LB-PBF Ti-6AI-4V Gr. 5

National Center for Additive Manufacturing Excellence (NCAME)

JAMS Technical Review August 26, 2021

Introduction

- **Project Title:** Factors Affecting Qualification/Certification Evaluating the Criticality of Inherent Anomalies/Defects on the Fatigue Behavior of Additively Manufactured Materials
- Principal Investigator: Nima Shamsaei
 - (See next slide for complete list of participants.)
- FAA Technical Monitor: Kevin Stonaker
- Source of matching contribution: Faculty time and use of equipment

Project team

Advisory Group

Background

AM defects:

- Significantly reduce and introduce uncertainty to fatigue performance
- Pose great challenge for qualification/certification of AM parts

Gas-entrapped pores (GEPs)

Keyholes (KHs)

(LoFs)

Shrestha et al., Addit. Manuf., 28 (2019) 23-38. // Nezhadfar et al., Int. J. Fatigue, 124 (2019) 188-204. // Gong et al., SFF Symposium, (2014) 256-267.

Challenge

- 5
- Significant data is needed to <u>statically quantify</u> the mechanical behavior of materials and generate <u>materials allowables</u> in support of qualification
- AM has virtually <u>infinite</u> combinations of feedstock, process, and design parameters, which influence micro-/defect-structure
- Knowledge on <u>defect-criticality</u> may be beneficial in decoupling the fatigue properties from the explicit consideration of process/design parameters – if defect information is known

Objective & approach

Objective: To quantify the detrimental effect of volumetric defects on mechanical properties of LB-PBF Ti-6AI-4V Gr. 5

Approach:

- I. Explore process windows by varying laser power and scan speed
- II. Determine the criticality of volumetric defects on mechanical performance using specimens seeded with different defect types
- III. Calculate the fatigue performance debit associated with defects
- IV. Evaluate the effectiveness of X-ray CT at two resolutions in capturing the fatigue critical defects (specimens will be provided to external collaborators for examining other NDE techniques)
- V. Take advantage of machine learning and simulations wherever applicable

Overall scope

Deliverables

- Reliable classification criteria for various defect types
- Definition of process window using laser power and scan speed according to a suitable printed material quality metric
- Quantitative knowledge on the criticality of volumetric defects on mechanical properties
- Data on the effectiveness of X-ray CT at two different resolutions in capturing the fatigue critical defects

Project tasks

- TASK 1: Literature Review & Design of Experiment
 - Collect information from literature, equipment OEMs, FAA AM team, and steering committee and finalize the DoE
 - Generate the process window for LB-PBF Ti-6AI-4V Gr. 5
- TASK 2: Fabrication
 - Fabricate all specimens with different types/levels of defects
- TASK 3: Non-destructive Inspections
 - Perform multiple non-destructive inspections and compare the results
- TASK 4: Mechanical Testing & Fractography
 - Conduct tensile, fatigue, and high strain rate fracture tests and perform fractography
- TASK 5: Defect Criticality Analysis
 - Utilize machine learning to identify the most critical features of defects
- TASK 6: Establishing Defect Structure Fatigue Relationship
 - Employ, calibrate, and validate a defect sensitive fatigue model to capture the effects of defects on fatigue behavior
- TASK 7: Final Report

DoE to classify volumetric defects and define process window

Defects and process window

Classify defects and define process window for LB-PBF Ti-6AI-4V Gr. 5

- Fabricate XCT witness coupons
- Individual parameter adjustments:
 - Scanning speed: up to +/- 30% of the recommended 1300 mm/s at 10% interval
 - Laser power: up to +/- 30% of the recommended 280 W at 10% interval
- Geometry designed for easy XCT scan (Scanning only central cores to exclude skin-related defects)
- Combined high/low resolution scans to classify defects (GEPs, KHs, vs. LoFs) and identify suitable parameters to induce each type

All coupons are placed in the center of build plate

EOS recommended process parameters for LB-PBF Ti-6AI-4V Gr. 5

Laser power	Scan speed	Hatch spacing	Layer thickness	Layer rotation angle
280 W	1300 mm/s	120 μm	40 µm	67 °

DoE to determine the criticality of defects on mechanical performance

Fabrication (tensile)

• Fabrication of specimens with different types of defects

Tensile Specimens (ASTM E08):

• Defect types:

- Vertical specimens: KHs (2 sets), LoFs (2 sets), GEPs (1 set)
- Horizontal specimens: LoFs (2 sets)
- Diagonal specimens: LoFs (2 sets)
- All specimens to be stress relieved
- All dimensions are in mm

Fabrication (axial fatigue)

Fabrication of specimens with different types of defects

Axial Fatigue Specimens (ASTM E466):

- Defect types:
 - Vertical specimens: KHs (2 sets), LoFs (2 sets), GEPs (1 set)
 - Horizontal specimens: LoFs (2 sets)
 - Diagonal specimens: LoFs (2 sets)
 - All specimens to be stress relieved
- All dimensions are in mm

Fabrication (crack growth)

• Fabrication of specimens with different types of defects

Fatigue crack growth (FCG) specimens (ASTM E647):

Horizontal notch: 20

Defect types:

- Vertical notch spec.: LoFs (1 set) and GEPs (3 sets)
- Horizontal notch spec.: KHs (1 set), LoFs (1 set), and GEPs (3 sets)
- Diagonal notch spec.: LoFs (1 set) and GEPs (3 sets)
- All specimens to be built oversized and machined to the final dimensions
- All specimens to be stress relieved
- All dimensions are in mm

Fabrication (high strain rate fracture)

16

• <u>Fabrication of specimens with different types of defects</u>

• Defect types:

- Vertical notch spec.: KHs (2 sets), LoFs (2 sets), GEPs (1 set)
- Horizontal notch spec.: LoFs (2 sets)
- Diagonal notch spec.: LoFs (2 sets)
- All specimens to be stress relieved
- All dimensions are in mm
- Edge notch: 5 mm
- Root radius: ~100 micrometers

Mechanical testing and fractography

17

• Tasks 4.1-4.2 Mechanical Characterization & Fractography

Tensile:

- O ASTM E08
- 6 tests per set based on defect types

Axial Fatigue:

- O ASTM E466
- O Force controlled
- O Stress levels (*R* = -1):
 500 MPa, 600 MPa, and
 700 MPa
- O 4 tests per stress level, per defect type

Crack Growth:

- O ASTM E647
- O Load ratio R = 0.1, 0.4,0.7 for GEPs spec.
- O Load ratio R = 0.1 for LoFs and KHs spec.
- 3 tests per set based on defect type and notch orientation

High-Strain Rate Frac.:

- O Edge notched 3-point bend fracture
- O Strain-rate ~1000/sec
- O Optical measurements (DIC, high-speed photography)
- O 3 tests per set based on defect types

Study to analyze criticality of defects on mechanical performance

Machine learning based defect criticality

- Extract shape descriptors of defects from fractography images (2D) and XCT data (3D)
- Quantify characteristics of defects, e.g., roundness, sharpness, irregularity, etc.

Conditions	Size	Shape
Process Parameters	Area Perimeter Equivalent Diameter Major Axis Length Minor Axis Length Filled Area Convex Area Max Feret Diameter Min Feret Diameter	Circularity
Strain/Stress Levels		Eccentricity
		Extent
Property (tensile,		Solidity
		Ellipse Variance

Fatigue modeling

- 20
- Murakami's defect sensitive fatigue (DSF) model treats volumetric defects as cracks

• Fatigue life is an integration of crack growth rate from initial crack size to critical crack size

$$\frac{da}{dN} = C \left[\left(\frac{1-f}{1-R} \right) \Delta K \right]^n \frac{\left(1 - \frac{\Delta K_{th}}{\Delta K} \right)^p}{\left(1 - \frac{K_{max}}{K_C} \right)^q}$$

Murakami's DSF model is simple to use and relatively accurate

Romano, Nezhadfar, Shamsaei, Seifi, and Beretta, Theor. Appl. Fract. Mec., 106 (2020) 102477.

Preliminary results

Defect classification – state of art

- State of art: using up to three parameters (size, aspect ratio, and sphericity) and draw "hard" boundaries with each
- An example from literature: LoF: Size > 75 μm, AR < 0.5; GEP: AR > 0.5

Defect classification – NCAME approach

23

Using up to nine parameters and manual decision tree

Use of only 4 parameters and decision tree resulted in **98.7% accuracy**

Process window definition – state of art

24

- State of art: using only relative density as the fabrication quality indicator.
- Although relative density is easy to measure, it may:
 - hot represent fatigue properties well;
 - not be sensitive to process parameters near boundaries;
 - not be relevant as most modern LB-PBF machines can achieve >99.9% density.

Pegues et al., Inter. J. Fatigue, 132 (2020) 105358.

Next step

- Identify combinations of laser power and scan speed to induce
 5 different levels of defects:
 > GEP: P^{10%}V^{0%}
 - ➢ LoF: P^{-20%}V^{0%} and P^{0%}V^{20%}
 - ➢ KH: P^{20%}V^{-30%} and P^{20%}V^{-40%}
- Start mechanical testing and fractography

• Data on defect classification is planned to be fully analyzed and become available to the public by the end of 2021